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ABSTRACT 

Photopolymerizable nanocomposites with good optical properties consisting of an 

acrylamide based photopolymer and zeolite nanoparticles (Beta, zeolite A, AlPO-18, 

silicalite-1 and zeolite L) were fabricated and characterized for holographic applications. 

The colloidal zeolite solutions used in this project were characterized by several techniques 

including X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Scanning Electron 

Microscopy (SEM) and Raman spectroscopy to ensure their successful synthesis.  

 

The dependence of grating performances in these nanocomposites on recording intensity, 

spatial frequency and zeolite concentration were studied. It was found that the 

incorporation of silicalite-1 nanoparticles or a small amount of zeolite A nanoparticles (up 

to 1% wt.) leads to an improvement of the refractive index modulation of the gratings, 

while the addition of AlPO-18 and Beta nanoparticles to the photopolymer did not yield 

higher refractive index modulation. Despite a partial redistribution of nanoparticles during 

the holographic recording was observed, these results can be explained by the hydrophobic/ 

hydrophilic nature of the nanoparticles and their interactions/absence of interactions with 

the host photopolymer (studied by Visible, Raman and 13C NMR Spectroscopy). 

 

Gratings recorded in Beta and AlPO-18 nanocomposites were tested for holographic 

sensing. The interactions between zeolite L and sensitizing dyes was studied by visible 

spectroscopy for potential use in variable spectral sensitivity optical materials. A new 

photopolymerizable material was developed, with less toxic properties than acrylamide 

monomer and gratings recorded in this type of material were characterized for use in 

holographic sensor applications.   
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MOTIVATION & OBJECTIVES 

The work described in this thesis is part of a larger project within the Centre for Industrial 

& Engineering Optics (IEO) group, whose research expertise is in holography and 

holographic materials development, interferometric systems and devices and optical 

profilometry. 

 

A decade ago, holographic systems promised to revolutionize data storage and several 

materials were developed to meet the medium requirements for this application. Previous 

work showed that the incorporation of silicalite-1 zeolites in acrylamide based 

photopolymers resulted in an improvement in the dynamic range and the extent of 

shrinkage during holographic recording.  

 

The focus of this research was to produce a novel generation of photopolymerizable 

materials that could be successfully used in several holographic applications. These new 

materials were to incorporate nanoparticles in acrylamide based photopolymers. The 

project was also expected to produce a model explaining the role of nanoparticles during 

holographic recording based on the physicochemical mechanism of the interaction between 

nanoparticles and the host photopolymer. 

 

The ideal material should remain self-processing and water soluble (as the acrylamide 

based photopolymer already is) but it is expected to have a larger dynamic range (greater 

than 10-2)  while possessing low scattering of light. 
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The main objectives we intended to achieve with this work were: 

 

 Study of the influence of nanoparticles on holographic recording properties of 

nanocomposites  

 Identification of nanoparticles compatible with acrylamide-based 

photopolymers 

 Study of  optical properties of the newly created nanocomposites 

 Study of the influence of the nanoparticle properties (refractive index, size, 

structure) on the sensitivity, spatial frequency response  and dynamic range of 

the zeolite nanocomposites 

 

 Study of the Host/ Dopant Interactions 

 Study of the interaction of nanoparticles with host photopolymer by relevant 

analytical techniques 

 Study of the spatial redistribution of the nanoparticles during hoographic 

recording 

 

 Propose a model for holographic recording in nanocomposites 
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CHAPTER 1: HOLOGRAPHY 

1.1 THEORY OF HOLOGRAPHY 

In this chapter, the history and principles of holography are briefly discussed. Also, a 

classification of different types of holograms is given. Since in the present work volume 

phase holograms were used, this type of hologram is described in more detail. The reason 

for choosing of this type of hologram was because of their widespread use in holographic 

data storage and fabrication of sensors, fields that are of much interest to the IEO group. 

 

Holography is a technique by which a wavefront can be recorded and thereafter 

reconstructed in the absence of the original wavefront. A hologram is formed when a light 

sensitive material is exposed to the pattern of interference between an object and a 

reference beam. In all conventional recording techniques such as photography, a flat picture 

of a three-dimensional scene is recorded on a light-sensitive surface. What is recorded is 

merely the intensity distribution in the original scene. As a result, all information on the 

relative phases of the light waves from different points or, in other words, information 

about the relative optical paths to different parts of the object is lost [1]. 

 

The unique characteristic of holography is the recording of the complete wave field, that is 

to say, both the amplitude and the phase of the light waves scattered by the object. Since all 

recording media respond only to the intensity, it is necessary to convert the phase 

information into variations of intensity. This is done by using coherent illumination and 

adding a reference wave to the wave scattered by the object [1]. 

 

The history of holography began with its invention by Gabor in 1948. He described a new 

method that enabled one to obtain the image of an object from the diffraction pattern 
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produced by the object. He published the principle of holography and the results of his 

experiments in Nature (1948) [2], Proceedings of the Royal Society (1949) [3] and 

Proceedings of the Physical Society (1951) [4]. 

 

Gabor‟s aim when he proposed the idea of holographic imaging was to obtain increased 

resolution in electron microscopy. Prior to his work, holographic imaging can be traced 

back to work by Wofke [5] and Bragg [6, 7] in X-ray crystallography, which led to the 

development of the “Bragg X-ray microscope”. 

 

Optical holography was not very successful initially, due mainly to the poor quality of 

holographic images [1]. The breakthrough which effectively solved the twin image problem 

and opened the way to the large scale development of optical holography was the off-axis 

reference beam technique developed by Leith & Upatnieks [8, 9] and the development of 

the laser in 1960 by T. Maiman. This made available for the first time a powerful source of 

highly coherent light and made it possible to record holograms of diffusely reflecting 

objects with appreciable depth [10]. 

 

 

1.2 THE HOLOGRAPHIC PROCESS 

The holographic process involves two steps: the recording of the hologram and the 

subsequent reconstruction of the object wave. 

 

The process of recording a hologram can be explained in terms of the theory of 

superimposition of waves by two beam interference. If two wavefronts overlap interference 

occurs (as shown in Figure 1.1). This interference pattern can be recorded in a recording 
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medium and it consists of a set of straight parallel fringes. If one uses two plane waves and 

the hologram is assumed to lie with its faces parallel to the (x,y) plane and to be of 

thickness d in the z dimension the fringes are perpendicular to the (x,y)plane. 

                    

Figure 1.1. Recording of a plane wave (transmission). 

 

The interference pattern (hologram) diffracts the incident light to reconstruct the original 

beam (see Figure 1.2). 

            

Figure 1.2. Reconstruction of a plane wave (transmission). 

 

If these two plane wavefronts have complex amplitudes U1 (object wave) and U2 (reference 

wave) at a point r, expressed by [11]: 

r k - t f 2 i exp uU  111    (Eq. 1.1) 

r k - t f 2 i exp uU 222    (Eq. 1.2) 

where ui is the amplitude, f the frequency, t is time and
ii nk 2 ,  is the wavelength and 

ni is the refractive index. Omitting the time dependence we can rewrite equations 1.1 and 

1.2: 
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r k i -  exp uU  111    (Eq. 1.3) 

r k i -  exp uU  222   (Eq. 1.4) 

 

and the intensity at a point r is then given by: 

r k-k cos II 2  I   II  212121  (Eq. 1.5) 

where Ii are the intensities of the waves. 

 

For simplicity the axes are chosen so that ni lies in the xz-plane and makes equal but 

opposite angles θ with the z-axis [11]. Hence: 

k θ cos  i θsinn1   (Eq. 1.6) 

k θ cos  i θsinn 2   (Eq. 1.7) 

and 

i θsin4k-k 21
n   (Eq. 1.8) 

Consider the time-averaged light intensity along a line parallel to the x-axis. Such a line is 

described by the vector kzixr 0 , where z0 is the position of the line in the z-axis. Eq. 

1.5 then becomes [11]: 

sin4 cos II 2  I   II 2121    (Eq. 1.9) 

 

This means that the intensity varies sinusoidally along any line parallel to the z-axis and it 

is known as interference fringe pattern.  

 

The distance  (in transmission mode) between the nearest two points with the same 

intensity in the intensity variation is given by [11]: 
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sin2
  (Eq. 1.10) 

 can be defined as the spatial period of the unslanted grating (fringes are perpendicular to 

the surface of the material), i.e., the space between two adjacent fringes and 1/  is the 

spatial frequency of the grating. 

 

1.3 CLASSIFICATION OF HOLOGRAMS 

There are four basic hologram types, i.e., the thick and thin versions of amplitude and 

phase holograms. 

 

1.3.1 AMPLITUDE AND PHASE HOLOGRAMS 

The physical change in the recording material must be capable of affecting the 

reconstructing wave. This means that the hologram must alter either the amplitude or the 

phase of this wave, which defines the distinction between amplitude and phase holograms. 

If a hologram affects both amplitude and phase simultaneously it is termed a complex 

hologram. Other than the thin surface deformation phase type, most holograms are in 

principle complex since they depend upon variations of refractive index and absorption 

coefficient, quantities which are inextricably linked by the Kramers-Kronig relations [12].                                                                                                  

 

Amplitude holograms have lower maximum achievable diffraction efficiency and thus have 

been used more rarely. Some examples of their application are in communications [13], in 

the fabrication of transmission holographic optical elements (HOE) [14] and in holographic 

data storage [15] to a lesser extent. On the other hand, phase holograms also find 

applications in communications [16], fabrication of HOEs [17] and have been widely used 

in data storage [18]. They also find applications in fields such as holographic scanners [19], 

spectroscopy [20], medical applications [21] and holographic interferometry [22]. 
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1.3.2 THIN AND THICK HOLOGRAMS 

A hologram can be considered thin if its information carrying structure is substantially two-

dimensional, that is, if its thickness is small compared with the wavelength of light [12].  

 

Thin holograms and volume holograms correspond to the Raman-Nath and Bragg 

diffraction regimes, respectively [1]. The distinction between these two regimes is 

commonly made on the basis of a parameter Q [23] which is defined by the relation: 

2
0

02
n

d
Q   (Eq. 1.11) 

where 0 is the wavelength of light, d is the thickness of the layer, n0 is the refractive index 

and  is the spatial period of the grating as defined by Eq. 1.10.  

 

Small values of Q (Q< 1) correspond to thin gratings, while large values of Q (Q>10) 

correspond to volume gratings. The region 1 Q 10 represents intermediate regime 

holograms [24]. 

 

Thin holograms, both computer-generated and optically recorded, have shown much utility 

in the fields of imaging (embossed holograms, such as the images on bank cards), beam 

shaping [25] and microscopy [26]. On the other hand, volume holograms provide potential 

for higher efficiency and greater capability for multiplexing information due to their 

angular and frequency selectivity properties. They will be discussed in more detail in the 

following sections of this work. 
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1.4  VOLUME HOLOGRAMS 

In this work, volume holograms (also called thick holograms) were recorded since they are 

very useful in many areas of interest for the IEO research group, such as holographic data 

storage (HDS)  [27, 28], which allows  large storage capacities (in the order of TB) and 

high transfer rates (in the order of GB/s), and sensing [29, 30]. They also find applications 

in volume HOEs [31], interconnections [32], optical filters [33] and 3-D displays [34].  

 

This type of hologram is a three-dimensional system of layers corresponding to a periodic 

variation of absorption or refractive index and the diffracted beam amplitude is a maximum 

only when the Bragg condition is satisfied [1] (for Bragg condition see Eq. 1.17).  

. 

1.4.1  THE COUPLED WAVE THEORY 

When analysing the diffraction of light by thick gratings, it is necessary to take into 

account the fact that the amplitude of the diffracted waves increases progressively, while 

that of the incident wave decreases, as they propagate through the grating. One way of 

doing this is by means of a coupled wave approach,  developed by Kogelnik [35]. 

 

The grating vector K is perpendicular to the fringe planes. It is of length K =2π/ , where 

 is the grating period. The refractive index n and the absorption constant α are assumed to 

vary sinusoidally, their values at any point r being given by the relations [1]: 

r) (K  cos nnn 10   (Eq. 1.12) 

) r  (K  cos ααα 10  (Eq. 1.13) 

where n0 is the average refractive index,  n1 is the refractive index modulation, 0 is the 

average absorption constant and 1 is the absorption constant modulation and  is the 

phase difference allowed between the refractive index and the absorption constant. 
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The coupled wave theory assumes monochromatic light incident on the hologram grating at 

or near the Bragg angle and polarized perpendicular to the plane of incidence. If the 

thickness of the medium is large enough, only two significant light waves are assumed to 

be present in the grating: the incoming “reference” wave R and the outgoing “signal” wave 

S [35]. The other diffraction orders violate the Bragg condition strongly and are severely 

attenuated and so can be neglected [1].  

 

Diffraction efficiency of the grating, , in the present work is defined as the ratio of 

diffracted light intensity I1,  to incident light intensity, I0. 

0

1

I
I

 (Eq. 1.14) 

 

Thick holographic layers can be used to record transmission and reflection holograms. 

 

1.4.2 VOLUME PHASE TRANSMISSION HOLOGRAMS  

Gratings having a refractive index variation given by Eq. 1.12, with 
d
2πk  (d being the 

thickness of the grating) and having negligible absorption can be regarded as volume phase 

transmission holograms (Fig. 1.3). The reconstructed images have amplitudes whose 

magnitude is: 

λ  cos 
d n π

 sinA 1   (Eq. 1.15) 

where n1 is the refractive index modulation, d is thickness of the layer,  is the free space 

wavelength and  the angle of incidence [12]. This is valid for s-polarized readout. 
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Figure 1.3. Transmission Volume Hologram; R is the incoming “reference” wave R 

and S the outgoing “signal” wave. 

 
Such holograms can, therefore, achieve a theoretical maximum diffraction efficiency of 

100% when n1d = ½ (  cos ).  

 

1.4.3 VOLUME PHASE REFLECTION HOLOGRAMS  

Thick reflection phase holograms (see Fig. 1.4) reconstruct images with amplitude whose 

magnitude is [12]:  

λ  cos 
d n π tanhA 1   (Eq. 1.16) 

 

Figure 1.4. Reflection Volume Hologram; R is the incoming “reference” wave R 

and S the outgoing “signal” wave. 

 

This type of hologram also approaches a limiting diffraction efficiency of 100%, but it does 

so asymptotically with increasing n1d.  

 

The diffraction efficiency of thick phase holograms is shown in Fig. 1.5. 
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Figure 1.5. Theoretical diffraction efficiency for thick transmission and reflection 

phase holograms (after Kogelnik [35]).  

 
1.5 HOLOGRAPHIC EXPERIMENTAL SETUP 

The final quality of a holographic image will depend on a number of factors that should be 

taken into account when building the holographic setup [36]: 

 Vibration isolation  - any change in the phase difference between the two beams 

during the exposure will result in a movement of the fringes and reduced 

modulation of the hologram; 

 Coherence of the laser light - in order to obtain maximum fringe visibility, i.e., as 

high a contrast as possible it is also essential to use a coherent light source. This is 

because one needs a stable interference pattern; 

 Beam expansion - due to high coherence of laser light, the expanded beam 

invariably exhibits diffraction patterns (spatial noise) due to scattering from dust 

particles on the optical surfaces in the beam path, which can be eliminated by 

spatially filtering the beams. 

 

1.5.1 REAL TIME OBSERVATION OF GRATING FORMATION  

The grating growth can be monitored in real time by probing it with a laser beam with a 

wavelength to which the photopolymer is insensitive, incident at the Bragg angle.  
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This Bragg angle should satisfy the following condition: 

 

                                       (Eq. 1.17) 

 
 
where λ1 is the wavelength of the recording beam, λ2 is the wavelength of the probe beam, 

θ1 is half of the angle between the two recording beams and θ2 is the angle between the 

probe beam and normal.  

 

Eq. 1.17 arises from Bragg‟s law [37]: 

 
sinθ2dmλ   (Eq. 1.18) 

where m is an integer,  λ is the wavelength and d is the spacing between the planes in the 

atomic lattice, and θ is the angle between the incident ray and the scattering planes. 

 

1.6 CONCLUSIONS 

Holography is a relatively new field in optics. It was introduced by Denis Gabor who called 

it “wavefront reconstruction”. Although there are dynamic holograms in which the 

reconstruction and the recording are practically simultaneous, for simplicity the 

holographic process can be divided in two-steps; first a hologram is recorded using a 

reference wave coherent with the light scattered or diffracted by an object, so that 

information about the amplitude and phase of these waves is  retained; then from this 

recorded interference pattern an image of the original object can be reconstructed using just 

the reference wave. There are many types of holograms, depending on whether amplitude 

or phase information (amplitude or phase holograms) is recorded, and on the thickness of 

the recording medium relative to the spatial frequencies that are recorded (thin or thick 

holograms) and on the recording geometry (transmission or reflection holograms). These 
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different types of holograms find applications in many fields of optics and some examples 

were mentioned.  

 

Particularly important for this present work are volume phase holograms and the coupled 

wave theory by Kogelnik, which explains their holographic behaviour, was briefly 

discussed.  
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CHAPTER 2: RECORDING MATERIALS 

2.1 INTRODUCTION 

In this chapter, several recording materials used in diverse holographic applications are 

reviewed. The recording materials described are silver halide materials, dichromated 

gelatin, photorefractive crystals, photochromics, photothermoplastics and photorefractive 

materials. The main advantages are mentioned as well some of the major drawbacks of 

each material. 

 

Special emphasis is given to photopolymeric materials and photopolymerizable 

nanocomposites. A brief introduction to the properties of these materials and the theories 

behind the recording mechanisms in them is given. The concept of introducing 

nanodopants in photopolymers and the development of photosensitive nanocomposites is 

also explained. 

  

In order to be able to record a hologram a material must respond to exposure to light (after 

additional processing where necessary) with a change in its optical properties. The ideal 

recording material for holography should have a spectral sensitivity well matched to 

available laser wavelengths, a linear transfer characteristic, high resolution and low noise. 

In addition, it should be either indefinitely recyclable or relatively inexpensive [1]. 

 

2.2 TYPES OF HOLOGRAPHIC RECORDING MATERIALS 

Back in 1969 [2] the use of recording materials other than silver halides showed great 

promise for certain applications but little quantitative information was published. In the last 

decades many other types of holographic recording materials came of age, and the most 

widely used will be described in the next sections. 
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2.2.1 SILVER HALIDE PHOTOGRAPHIC MATERIALS 

Silver halide materials have a long tradition and they were the first materials used to record 

a hologram. A silver-halide recording photographic material is based on one type, or a 

combination, of silver halide crystals embedded in a gelatin layer, commonly known as the 

photographic emulsion.  This photosensitive emulsion is not really an “emulsion” but rather 

a thin film of silver-halide microcrystals dispersed in a colloid (gelatin) that is coated on a 

flexible or stable substrate material. There are three types of silver halides: silver chloride 

(AgCl), silver bromide (AgBr), and silver iodide (AgI) [3]. 

 

Holograms recorded on these emulsions are processed using techniques similar to those 

used for normal photographic materials. Processing should be carried out immediately after 

exposure, since such fine grain emulsions exhibit significant fading of the latent image [1].  

These type of materials are versatile, commercially available in several sizes, can be coated 

on both film and glass and cover large formats. These materials can record phase, 

amplitude, colour and Lippmann holograms (reflection holograms that have been recorded 

with very short temporal coherence, white light). They can also be handled and processed 

with a minimum of equipment and have high resolution power. Their sensitivity, 

unequalled by other materials, is achieved however by means of the time-consuming wet 

developing process, which makes it also unlikely that silver halide emulsions ever might 

provide the possibility of local erasure and rewriting, as desired for optical memories [4, 5]. 

Development is actually an amplification process with a gain of the order of 106, which 

yields high sensitivity as well as a stable hologram [1]. Others drawbacks are the fact that 

they are absorptive, their inherent noise (because of their granular structure), they are 

irreversible and possess a limited linear response [4, 6]. 
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Photographic emulsions are still widely used in the recording of phase holograms. Because 

of the relatively low diffraction efficiency of amplitude holograms several techniques have 

been optimized in order to produce phase holograms on photographic emulsions showing 

high diffraction efficiencies and low levels of noise. Among these techniques, bleaching 

processes are one of the most interesting as they involve a relatively small number of steps 

and produce holograms of high quality [1, 6]. 

 

Some of the most used silver halide holographic recording materials include plates from 

Agfa-Gavaert [7] and Kodak [8].  Due to the discontinuity of some of the most widely used 

plates, new materials  have been introduced such as the plates provided by Slavich [9] and 

the BB series from HRT materials [10]. Other alternatives are the materials from Konica 

[11] and the Orwo film from Filmotec. 

 

2.2.2  DICHROMATED GELATIN 

Dichromated gelatin (DCG) and other dichromated colloids are among the oldest 

photographic materials. They record information either as a variation of the index of 

refraction or as a thickness variation, or as a combination of the two.  

 

Hologram recording makes use of the fact that a gelatin layer containing a small amount of 

a dichromate such as (NH4)2Cr2O becomes progressively harder on exposure to light. This 

hardening is due to the photo chemically produced Cr3+ ion forming localized cross links 

between the carboxylate groups of neighbouring gelatin chains [1]. Dichromated gelatin is 

an important holographic material, because it possesses almost ideal properties for the 

recording of volume phase holograms. When properly used, it forms a clear film that 

exhibits very little absorption and optical scattering. Furthermore, it has high resolution and 
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a large index change can be produced in the interior of the gelatin, making possible thick 

phase holograms of close to 100% efficiency. Both transmission and reflection holograms 

can be recorded [1, 5]. 

 

Despite their high promise, the main reasons why dichromated gelatin holograms have not 

been widely used are the difficulty of obtaining reproducible results and complex wet 

processing. The problems can be overcome, but considerable care is required. Also 

sensitivity to moisture is another issue, as the holograms need to be rigorously protected 

from humidity, which can result in poor shelf-life [5].  

 

Dichromated gelatin was first used as hologram recording material by Shankoff [12] who 

found that very large index modulation can be obtained in relatively thin films. Shankoff 

used hardened gelatin layers as the starting material so that there would be no, or only 

small, variation in thickness.  Recently, better polymeric materials such as dichromated 

polyvinyl alcohol (DCPVA) and dichromated polyacrylic acid (DCPAA) have been used in 

several holographic applications and in real time holographic recording [13].  

 

Some applications of this type of materials are in holographic grating couplers [14] and in 

reflection holography [15]. 

 

2.2.3 PHOTOREFRACTIVE CRYSTALS 

In some electro-optic crystals, exposure to light frees trapped electrons which then migrate 

through the crystal lattice and are again trapped at defects in adjacent unexposed regions. 

The migration usually occurs through diffusion or an internal photovoltaic effect. The 

spatially varying electric field produced by the resulting space-charge pattern modulates the 
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refractive index through the electro-optic effect, resulting in the formation of a phase 

hologram. When desired, this hologram can be erased by uniformly illuminating the 

crystal, which can be recycled almost indefinitely [1]. 

 

It is generally accepted that the mechanism for writing and erasure of holographic gratings 

in photorefractive materials involves an active impurity (or centre), such as iron, with two 

valence states (e.g., Fe2+ and Fe3+). Negative carriers are photo ionized from donor states 

(Fe2+) move through the lattice and are finally trapped at the acceptor sites (Fe3+) [16]. 

 

The application of these materials for hologram recording was first considered by Chen et 

al. [17] with his work in undoped LiNbO3. The holograms formed had high diffraction 

efficiencies and were thermally erasable. 

 

 The advantages of photorefractive crystals are their excellent resolution, readout 

efficiency, reversibility, storage capacity, and sensitivity. In addition, they are useful in 

both read/write and read-only systems. The read/write operation is particularly simple 

because the as-recorded holograms can be immediately read out without processing and 

then erased with the same wavelength used for storage. The prime limitation of these 

materials at present is that most of the holographic storage properties are strongly 

interrelated; in enhancing one property (e.g., sensitivity) by proper choice of material or 

material treatment one finds a tradeoff in others (e.g., storage capacity). Future research, 

both in materials and in methods of use, is needed before these crystals can fulfil their 

potential [5]. 
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Among others, crystals such as lithium niobate LiNbO3 [18], lithium tantalate LiTa03 [19], 

barium titanate BaTiO3 [20] and barium sodium niobate Ba2NaNb5O15 [21] have been used. 

 

2.2.4 PHOTOCHROMICS 

Photochromic materials have the property of changing absorption (thus colour) reversibly 

under light illumination. Typically, they are transparent or lightly coloured in the normal or 

thermally stable state, and become more darkly coloured after irradiation with UV or blue 

light. The induced photochromic optical absorption decays thermally at room temperature 

in a time ranging from seconds to days depending on the material. The materials can also 

be returned to their original state by irradiation with visible light [22].  

 

This characteristic of photochromic compounds (a reversible change is achieved by the 

action of light with different wavelengths) makes them applicable in the field of rewritable 

holographic storage [23]. Both organic [24] and inorganic [25] materials have been studied 

for photochromism. These materials have been the subject of considerable interest as 

holographic recording media because of their high resolution, lack of grain (no inherent 

resolution limit) and self-development. They also have fast response time, are re-writable 

and have nondestructive readout capability [26, 27]. Despite their advantages, 

photochromics use is limited by their low diffraction efficiency (<2%), poor sensitivity and 

low storage time. i.e, the stored hologram is degraded during readout, so that for 

applications requiring many read cycles it is necessary to use a low-intensity read beam [1, 

5, 29].  The reconstruction beam usually degrades the stored information. In alkali halide 

crystals the playback can be non-destructive if the temperature of the material is lowered 

after recording [30]. The first hologram recorded in photochromic material was reported by 

Kirk [28]. The photochromic glass functioned as a high resolution three dimensional 
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recording material that was developed as it was exposed and was erasable. This permitted 

the making of a hologram, the observation of the hologram without moving the glass and, if 

not adequately exposed, continuation of the exposure. 

 

2.2.5 PHOTOTHERMOPLASTICS 

Thermoplastic materials as holographic recording mediums are a combination of materials 

and two basic film structures are mostly found: (1) single layer, where a photoconductor is 

dissolved, or finely dispersed, in a layer of thermoplastic; and (2) separate layers, where a 

layer of thermoplastic is coated over a layer of photoconductor [31]. 

 

The thermoplastic is charged to a high voltage before exposition. Next pulse of electric 

current, passing through the photoconductor provides the heating of the thermoplastic that 

becomes soft enough to be deformed by the field. Such heating involves the development 

of the latent electrostatic image showing itself as geometric relief of the thermoplastic 

surface. The thermoplastic is cooled to fix the pattern of deformation. Erasing of the 

hologram requires heating of the thermoplastic to a higher temperature [32]. The use of 

themoplastics as holographic recording materials was first reported by Urbach et al. [33] in 

1966. They used an organic photoconductor overcoated with an insulating thermoplastic 

and operated in the charge-expose recharge mode using a He-Ne laser. 

 

Such materials have a reasonably high sensitivity over the whole visible spectrum and yield 

a thin phase hologram with fairly high diffraction efficiency. In addition they have the 

advantage that they do not require wet processing. If a glass substrate is used the hologram 

can be erased and the material re-used a number of times [1]. 
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2.2.6 PHOTORESISTS 

Photoresists are light-sensitive organic films which form a relief image after exposure and 

development. Resist holograms are made by exposing the resist, coated on a suitable 

substrate, to the interference fringe pattern and immersing it in developer. The solubility of 

the resist in developer is dependent on exposure. Thus a fringe pattern consisting of 

variations in intensity is recorded as variations in resist thickness. These variations 

modulate the phase of an incident wave resulting in the formation of a reconstructed image 

[1, 34]. Several photoresists have been used to record holograms and there are two types of 

photoresists: negative and positive photoresists. In negative photoresists the areas exposed 

to light becomes insoluble to the developing solution and are dissolved away during that 

step. Relatively long exposures are necessary, usually through the back side of the plate, to 

ensure that the exposed photoresists adheres to the substrate during development. Because 

of this, positive photoresists in which the exposed areas become soluble and are washed 

away during development are preferable [1]. 

 

The first use of photoresists was reported by Sheridan in 1968 [35] in his work regarding 

blazed holographic diffraction gratings. In the past these materials were relatively slow, 

typically requiring an exposure of 10 mJcm-2 to blue light ( =442 µm) and since a thin 

phase hologram is formed, nonlinear effects are noticeable at diffraction efficiencies greater 

than 5%. However they had the advantage that replication was easy [1]. Recently, 

holographic transmission gratings that possess high diffraction efficiency (near unity), high 

wavefront quality, and high damage threshold have been designed, fabricated and 

characterized for use in high-power, solid-state laser systems [36]. 
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2.2.7 PHOTOPOLYMERS 

A number of organic materials are known to be activated through a photosensitizer to 

exhibit thickness and refractive index changes due to photopolymerization or cross-linking. 

Thick layers can be made to yield volume phase holograms with high diffraction efficiency 

and high angular selectivity, which can be viewed immediately after exposure. After the 

exposure a continuing dark reaction due to diffusion of the monomer into the zones of 

polymerization increases the refractive index modulation [1]. Photopolymer systems for 

recording holograms typically comprise one or more monomers, a photoinitiaton system 

and an inactive component often referred as a binder. The resulting composition is typically 

a viscous fluid or a solid with a low glass transition temperature, which is prepared for 

exposure either by coating onto a solid or flexible substrate, or by containing it between 

two transparent solid substrates [37]. 

 

Photopolymers for holographic recording were first reported by Close [38]. He recorded 

volume holograms in a photopolymer formulation containing acrylamide and metal 

acrylates as monomers. The material was fixed by exposure to ultraviolet radiation. The 

light source was a ruby laser tuned at 694 nm. Photopolymers exhibit high resolution and 

they possess rapidity and ease of optical processing when compared to wet processing and 

some are self-developing. They have high sensitivity, real-time image development, large 

dynamic range, good optical properties, format flexibility, good image stability and 

relatively low cost. High diffraction efficiency is obtainable. Some of the disadvantages 

observed are the relatively low signal-to noise ratio due to the presence of light scattering 

polymer particles, short shelf life time of the prepared materials and that the material 

cannot be recycled [37, 39]. 
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2.3 HOLOGRAPHIC RECORDING IN PHOTOPOLYMERS 

The mechanisms accepted for explaining of the holographic recording in photopolymers 

involves three processes: the concentration gradient driven diffusion and 

photopolymerization processes that result in a third process called refractive index 

modulation of the material. 

 

Vinyl monomers, such as acrylates [40] and methacrylate esters [41] are used in most 

photopolymer systems. These monomers polymerize through a free radical mechanism. 

Monomers capable of polymerizing through a cationic ring opening (CROP) have also 

been reported [42]. 

 

Holographic photopolymer systems typically use at least two different molecules to form a 

photoinitiating system that is sensitive to the visible wavelengths commonly used in optical 

holography. A photosensitiser molecule absorbs the imaging light and in its excited state 

interacts with a free radical generator molecule, either through energy transfer or through a 

redox reaction to produce the initiating species [1]. Two-photon systems have also been 

developed.  Molecular excitation via the simultaneous absorption of two photons can lead 

to improved three-dimensional control of photochemical or photophysical processes due to 

the quadratic dependence of the absorption probability on the incident radiation intensity 

[43]. The binder is sometimes a polymer that is included to modify the viscosity of the 

formulation, to aid sample preparation and to enhance holographic exposure. Binders can 

also be small molecules or oligomers that are required for the development of the 

holographic image [1]. 

 



40 
 

2.3.1 MECHANISM OF FREE RADICAL CHAIN POLYMERIZATION 

Initiation of a free radical chain takes place by addition of a free radical (R ) to a vinyl 

monomer (M) [44]: 

R  + M  RM  (Eq. 2. 1) 

The propagation is a bimolecular reaction, which takes place by the addition of a new free 

radical (RM ) to another molecule of the monomer (M) and by many repetitions of this step 

[44]: 

RM  + M  RM M   (Eq. 2. 2) 

 

The termination of the growing free radical chains usually occurs by coupling of two 

macromolecules [44]: 

RM  n  M      +   RM  m  M      
 RM  mn  M  (Eq. 2. 3) 

 

2.3.2 DIFFUSION PROCESSES IN PHOTOPOLYMERS 

It is also known that during hologram formation monomer diffusion occurs from the dark 

to bright fringe areas. Colburn and Haines [45] have shown that gradients in monomer  

concentration  due  to  differential polymerization  by  the  initial exposure  (during 

exposure the monomer in areas of higher intensity illumination is polymerized to a greater 

extent than in lower intensity areas) give rise to diffusion  of monomer  molecules  from  

regions  of higher residual concentration to regions of  lower  concentration. This monomer 

diffusion effect in the end has a positive influence on the modulation of refractive index in 

the grating - since polymer has a different refractive index than the monomer and its 

concentration is greater in the areas of previously higher exposure, a difference of 

refractive index between the components in the dark and bright fringes occurs, The 

diffusion of monomer that leads to grating formation can be observed in Fig. 2.1. 
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Figure 2.1. Light induced redistribution of photopolymer components (where  are 

monomer molecules and - are polymer molecules). 

 

A widely used theoretical model describing these processes is a one-dimensional standard 

diffusion equation written for the monomer concentration, which assumes that monomers 

are free to diffuse in the material: 

),(),),(),(),( txutxF
x

txutxD
xt

txu

 (Eq. 2.4) 

where u (x, t) is the monomer concentration, F (x, t)  is the polymerization rate, x and t are 

the spatial and time coordinates, respectively, and D (x, t)  is the so-called diffusion 

constant, which is not a constant and might change due to the change in polymer 

concentration and associated change in the mobility of monomers [46].  

 

2.3.3 REFRACTIVE INDEX CHANGES IN PHOTOPOLYMERS 

Tomlinson and Chandross [47] have discussed the possible photochemical mechanism for 

refractive index changes in organic systems. The most relevant for hologram recording in 

photopolymers include alteration in molecular electronic structure, density changes and 

spatial segregation of system components, which will be further discussed below. 

 

Examination of the Lorentz-Lorenz relationship (Eq. 2.5) for an isotropic ideal mixture can 

provide estimates of these effects [48]: 
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where n is the average refractive index, ρi is the density, Mi is the molecular weight and Ri 

is the molar refraction of the ith component of the mixture.  

 

Differentiation of Eq. 2.5 for a single component reveals the effects that small changes in ρ 

and R have on the refractive index [49].  
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  (Eq. 2. 6) 

Change of electronic structure upon polymerization is responsible for changes in molar 

refraction when a monomer is incorporated into the polymer chain. During vinyl 

polymerization, the double bond of the monomer is converted to a single bond in the 

backbone structure of the polymer. This change in bond order can be responsible for a 

significant change in molar refraction, as indicated by Tomlinson [47]. In those studies, 

contributions to refractive index change from changes in molar refraction upon 

polymerization were estimated to be around 0.05 for the some types of vinyl monomers.  

 

Before polymerization, monomers cannot approach closer to one another than the sum of 

their van der Waals radii. After polymerization, monomers are linked by covalent bonds 

and thus the distance between connected monomers is shortened. Polymerization therefore 

almost always produces a decrease in volume and an increase in density [49]. A density 

increase must occur by mass transport. During exposure contiguous volume elements, 

undergoing relatively slow and relatively fast polymerization are established in the 

recording material by the spatial variation of light intensity in the holographic interference 

pattern. Density increases in the rapidly polymerizing volume elements require material 

influx from the surrounding volumes. Spatial variations in polymerization rates produce 
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monomer concentration gradients that also drive monomer diffusion. These two effects 

combine to promote spatial segregation of the various components of the photopolymer 

system. If the components have different refractive indices their spatial segregation will 

make a significant contribution to the refractive index modulation [1]. 

 

2.4 ACRYLAMIDE BASED PHOTOPOLYMER 

Acrylamide-based photopolymer systems were first suggested in 1975 by Sugawara et al. 

[50]. Their composition consisted of acrylamide, methylene-bis-acrylamide with a 

photoreductant such as acetylacetone or triethanolamine (TEA) and a diffraction efficiency 

of 65% using a exposure energy of 50 mJcm-2 was obtained. By introducing poly-vinyl 

alcohol binder in the system, Sadlej et al [51] made dry photopolymer layers. Jeudy et al. 

[52] presented a new composition by adding photochrome (indoline-spiropyran) as 

sensitiser and polyvinylalcohol (PVA) as binder. Sensitizing action was only activated 

when irradiated with UV light. The sensitizer shifted its absorption band when excited with 

UV light and allowed recording at 633 nm. The diffraction efficiency was 80% with 

exposure energy of 100 mJcm-2. Calixto [53] reported a material which consisted of 

acrylamide as monomer, triethanolamine as electron donor, poly-vinylalcohol (PVA) as 

binder and contained  methylene blue as a dye. The diffraction efficiency of 10% was 

achieved with an exposure of 94 mJcm-2. Fimia et al. [54] introduced a method to increase 

the sensitivity of acrylamide photopolymers by reducing the inhibition period mainly 

caused by oxygen. The solution consisted of two dyes, methylene blue and rose bengal. 

The layer was pre-exposed at 546 nm wavelength to generate free radicals which react with 

oxygen, thus reducing the amount of oxygen in the composition. The monomer was then 

polymerized at 633 nm and a diffraction efficiency of 40% was achieved with an exposure 

of 3 mJcm-2 at a spatial frequency of 1000 lmm-1. Martin et al. [55] characterized Calixto‟s 
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photopolymer at 514 nm region with five xanthenes dyes. By adding a cross-linking 

monomer, the life time of the recorded gratings was improved and the matrix became more 

rigid, less permeable and as a result the diffusion process was slowed down. Jallapuram et 

al. [56] optimized further this photopolymer composition and were able to record reflection 

holograms with a diffraction efficiency of 35% at 3500 lmm-1.  

 

Several other research groups [57-61] use acrylamide-based photopolymers in their studies. 

The polymeric matrix is based on polyvinyl alcohol (PVA), the initiator is triethanolamine 

(TEA), acrylamide and bisacrylamide are used as monomers and erythrosine B is the 

sensitizing dye (for recording in the green). Acrylamide monomer and bisacrylamide co-

monomer, the latter being used as a cross-linker, polymerize and polyacrylamide is formed. 

 

Acrylamide based photopolymer has been used for various applications such as 

holographic data storage [62], fabrication of polymer dispersed liquid crystal gratings [63], 

humidity sensors [64] and photo patterning [65]. 

 

2.4.1 MECHANISM OF HOLOGRAPHIC RECORDING IN ACRYLAMIDE BASED 

PHOTOPOLYMERS 

In the first process, polymerization, a dye molecule (XD) absorbs a photon of light and gets 

promoted to an excited   singlet state. It may then transfer to an excited triplet state, through 

intersystem crossing, and react with the electron donor (ED), triethanolamine, to produce a 

dye radical anion and a triethanolamine radical cation [55, 66]: 

 XD + hν  XD*    (absorption of light)              (Eq. 2.7) 

 XD *  3XD*                     (intersystem crossing)          (Eq. 2.8) 

 XD* + ED   XD • + ED •      (dye reduction –electron transfer)     (Eq. 2.9) 
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The dye radical is not usually reactive enough to initiate polymerization but the 

triethanolamine radical will react with an acrylamide molecule (ACR) and polymerization 

may then occur: 

ED • + ACR  ED − ACR •                                   (initiation)                 (Eq. 2.10) 

ED − ACR • + ACR  ED − ( ACR )2 •                (propagation)               (Eq. 2.11) 

ED − ( ACR ) n • + ACR  ED − ( ACR )(n +1) •     (propagation)         (Eq. 2.12) 

ED − ( ACR ) n • + ED − ( ACR ) m •  ED − ( ACR )n + m − ED  

 (termination)   (Eq. 2.13) 

 

It has been shown [67] that in acrylamide-based photopolymers two different diffusion 

processes contribute with opposite sign to the refractive index modulation responsible for 

the diffraction grating build up. While monomer diffusion from dark to bright fringe areas 

increases the refractive index modulation as discussed previously, a second diffusion 

process takes place during the recording. This second process decreases the refractive index 

modulation and we ascribe it to diffusion of short chain polymer molecules and/or radicals 

from bright to dark fringe areas. The presence of the second process could be responsible 

for poor high spatial frequency response of the acrylamide based photopolymers.  

 

2.5 HOLOGRAPHIC RECORDING IN PHOTOPOLYMERIZABLE 

NANOCOMPOSITES 

It is rather difficult to achieve a large refractive index modulation for pure polymer 

materials [68]. Different classes of volume holographic recording materials such as 

organically modified silica glass [69] and sol-gel materials containing zirconium 

isopropoxide [70] have been developed in the past decade and show improved holographic 

properties such as higher dynamic range and lower level of shrinkage during holographic 
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recording and hence have been studied mainly for applications such as holographic 

memories. A different approach was introduced by Bunning et al. [71] who pioneered the 

idea of introducing inorganic nanoparticles, having substantially higher (or lower) 

refractive index (n), in photopolymer mixtures as a movable non-reactive component. 

Nanoparticles are non-reactive components known for having low scattering, stability in 

water suspensions and there is a broad range of refractive index available [72]. The idea 

was further developed by other groups, particularly by Prof. Tomita in Japan [73]. 

Successful was the use of TiO2 nanoparticles by Tomita et al. [74] and Smirnova et al. 

(n=2.55, bulk) [75], but other nanoparticles have been also used, such as ZrO2 (n=2.1, 

bulk)/TiO2 [68, 78] and SiO2 (n=1.46, bulk) [76, 77, 82]. 

 

A summary with the review of the literature on some of the existing photopolymerizable 

systems is given in table 2.1.  
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Table 2.1. Grating Performances of photopolymerizable nanocomposites. 

 

Nanoparticle Type 
Size 

(nm) 

Photopolymer type 

(monomers) 

Maximum 

Dynamic Range, n1 
Scattering Losses 

Literature 

Reference 

TiO2 15 Methacrylate 5.1x10-3 20% for 40 µm 74 

TiO2 4 Acrylate 15.51x10-3 12% for 15 µm 40 

ZrO2 3 Acrylate 5.3x10-3 <1% for 40 µm 78 

ZrO2/TiO2 <10 Acrylic 16.1x10-3 8-10% for 20 µm 68 

SiO2 13 Methacrylate 8x10-3 2-3% for 40-50 µm 82 

Zr(O‟Pr) 4 Acrylate 10x10-3 1.8% for 15 µm 70 

Zeolite Si-MFI 60 Acrylamide 3.8x10-3 - 72 

LaPO4 (doped with Ce3+ and Tb3+) 7 Acrylate 1.3x10-2 3% for 20 µm 79 

Au functionalized 1.5-3 Acrylate 3.8x10-3 - 80 

Silver 5 Acrylic 3.8x10-3 - 81 
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In addition to obtaining much larger n1 compared with conventional all-organic 

photopolymers, the inclusion of nanoparticles results in substantial suppression of 

polymerization shrinkage, giving high dimensional stability as well [82]. 

 

However, these materials are usually sandwiched between two glass slides, which limit 

their area of exposure to the surrounding environment, which can be a disadvantage if the 

intended use is for sensing chemical compounds present in the atmosphere. 

 

2.5.1 MECHANISM OF HOLOGRAPHIC RECORDING IN PHOTOPOLYMERIZABLE 

NANOCOMPOSITES 

The dark diffusion mechanisms in photopolymerizable materials have been studied both 

experimentally [83] and theoretically by several authors [84, 85]. In the particular case of 

photopolymerizable nanocomposites, it has been proposed that the nanoparticles can be 

spatially redistributed during the holographic recording, and when nanoparticles with 

appropriate refractive index are used, this leads to significant improvement in the ultimate 

refractive index modulation. It has been observed that the nanoparticles are expelled from 

the bright to the dark fringes areas, in the opposite direction to monomer diffusion [73, 77, 

86, 87, 89]. 

 

Tomita et al. have proposed that the photo-insensitive nanoparticles, which are not 

consumed, undergo counter-diffusion from the bright to the dark regions, and their 

chemical potential increases in the bright regions due to consumption of the monomer. This 

polymerization-driven mutual diffusion process (i.e., phase separation) essentially 

continues until photopolymerization is complete [86].  
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In this way, periodic assembly of nanoparticles under holographic exposure is 

accomplished - see Figure 2.2 - and as a result a refractive index grating is created owing to 

the compositional and density difference between the bright and the dark regions [87]. 

 

Figure 2.2. The distribution of constituents of photopolymerizable nancomposites 

(monomer molecules and nanoparticles) during holographic exposure (where  are 

monomer molecules,  nanoparticles and - are polymer molecules). 

 

The effect of Si-MFI zeolite nanoparticles on the final refractive index modulation in 

acrylamide-based photopolymers [72] and in a recent zeolite doped photopolymer review 

[88] suggests that they are expelled from the bright to the dark fringes areas, in the opposite 

direction to monomer diffusion.  

 

The two-dimensional periodic distribution of the polymer and solid nanoparticles in 

nanocomposite films was experimentally observed indirectly by a novel real-time optical 

method [87] and directly by a transmission electron microscopy (TEM) [86] Electron-

Probe MicroAnalysis (EPMA) [77] and more recently by Raman spectroscopy [89].  

 

Most of the models proposed so far explain the improvement in holographic grating 

diffraction efficiency by the fact that the inorganic nanoparticles are inert and take part 

only in mass transport mechanism during holographic exposure, as described above.  But 
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recently, Goldenberg et al. [80] has proposed a new mechanism of the refractive index 

contrast amplification in new functionalized acrylate monomers and gold nanoparticles in 

which the non inert inorganic nanoparticles were found to promote the monomer spatial 

segregation in addition to mass transport effects. 

 

2.6 CONCLUSIONS 

Despite the existence of several classes of holographic recording materials, the ideal one 

has not been yet developed. The advantages and drawbacks of several holographic 

recording materials have been discussed. 

 

Particularly, photopolymers are a class of holographic recoding materials that have 

attracted much interest of the research community due to their promising characteristics. 

The improvement of their holographic characteristics has been one of the major concerns 

leading to the development of photopolymerizable nanocomposites. The inclusion of 

nanoparticles promotes better performance of the grating parameters such as refractive 

index modulation and level of shrinkage. 

 

The achievement of higher refractive index modulation is beneficial for applications like 

holographic data storage as it provides higher storage capacities. It is also an advantage in 

the fabrication of spectroscopic devices and holographic optical elements (HOE) as it 

allows the use of thinner photosensitive layers and hence with less scattering. The reduced 

level of shrinkage is also beneficial to avoid distortion of the data recorded in the 

holographic memories. 
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The holographic recording mechanisms in nanocomposites have been reviewed and the 

general consensus is that the nanoparticles diffuse from the bright to the dark fringe areas 

during   holographic recording, in the opposite direction to that of the monomer diffusion. 

This results in higher refractive modulations when compared to the undoped photopolymer 

systems. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 INTRODUCTION 

In this chapter, information regarding the synthesis of zeolite nanoparticles from colloidal 

solutions and preparation of photopolymerizable nanocomposites is provided. These 

materials will be characterized and used in several holographic applications as described in 

the following chapters of this thesis. Two different types of zeolites, i.e. zeolite A and 

zeolite Beta were synthesised from clear precursor solutions during a research stay at 

France at the group of Prof. Mintova, University of Caen. The other types of zeolites 

studied in this work (zeolite L, AlPO-18 and silicalit-e1) were synthesised by her group and 

were extensively characterised at the Dublin Institute of Technology, Ireland. The 

fabrication of acrylamide based photopolymer is described as well as the nanocomposites 

design methodology. 

 

A number of techniques can be used to analyse and characterize zeolite nanoparticles and 

nanocomposite materials. Different techniques would suit different materials and our aim 

was to carry out the most complete analysis of the colloidal solutions to confirm their 

successful synthesis. The optical properties of the nanocomposites can be related with the 

grating performances recorded in these materials. The most common analytical techniques 

in zeolite characterization used in this work were summarized. Regarding the interactions 

of the nanoparticles with the host material and their redistribution during holographic 

recording access to NMR, DLS, SEM and TEM was sought. Besides well established 

analytical techniques, purpose- built systems were utilized such as an optical setup capable 

of monitoring grating performances such as diffraction efficiency growth and angular 

selectivity curves, an optical setup for measuring the light scattering properties of materials 

and an optical fibre test system for sensing purposes. 
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3.2  ZEOLITES 

Zeolites are defined as crystalline aluminosilicate materials with framework structures with 

regular and uniform pores of molecular dimensions [1]. Structurally, aluminosilicalites 

zeolites are inorganic materials based on an infinitely extending four-connected framework 

of SiO4 and AlO4 tetrahedra that are linked to each other by shared oxygen atoms. Each 

AlO4 tetrahedron in the framework bears a net negative charge that is balanced by an extra 

framework cation [2]. The general empirical formula is [3]:  

OnHOSiAlM xxmx 242/ .  (Eq. 3.1) 

where m is the valence of cations M, n the water content and 0 < x < 1.  

 

On the other hand, microporous aluminophosphates are a new class of inorganic materials 

often called zeo-type materials. The basis for the synthesis of these materials is the crystal 

chemical similarity between Si and P and SiO2 and AlPO4 in particular [4]. Their 

framework consists of alternating Al3+ and P5+ sites and the overall framework is 

electrically neutral since the positive charge of organic cations is balanced by the 

simultaneous occlusion of OH- groups [5]. The general formula is [6]: 

 

[(AlO2)x(PO2)x · yH2O  (Eq. 3.2) 

 

The properties of zeolites are dependent on the topology of its framework, the size, shape 

and accessibility of its free channels, the charge location and size of the cations within the 

framework, the presence of faults and occluded material, the order of T-atoms (T is an 

aluminium or silicon atom in aluminosilicalites or phosphorus in aluminophosphates), and 

the local environment of T-atoms [7]. 
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Zeolites and zeo-type materials are classified according to their framework type. A 

framework type is defined on the basis of the connectivity of tetrahedral atoms and is 

independent of chemical compositions, types of extra-framework species, crystal 

symmetry, unit cell dimensions, or any other chemical or physical property [5]. An 

important structural parameter is the size of the pore opening through which molecules 

diffuse into the channels and cages of zeolites. The pore size is related to ring size defined 

as the number of tetrahedral atoms forming the pore [5].  

 

Depending on the structural type, the pore sizes range from 0.3 to 1 nm [8]. Among the 

zeolites, there are materials with small pore openings such as LTA (4.1 Å) with 8 atoms 

rings, with medium pore openings, i.e. MFI- and MEL (5.5 Å) with 10 atom rings and with 

large pore openings such as FAU-, LTL-, and BEA- molecular sieves (>7.0 Å) with 12 

atom ring [9]. The pore volume of a zeolite is related to the framework density defined as 

the number of tetrahedral atoms per 1000 Å [5]. The tetrahedra are linked together to form 

cages connected by pore openings of defined size.  

 

 In Fig. 3.1 the framework of the zeolites used in this work are shown. The zeolites are 

zeolite A(LTA), AlPO-18 (AEI), beta (BEA), zeolite L (LTL) and silicalite-1 (MFI). 
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Figure 3.1. Zeolite framework types used in the present work. 

 
Zeolites are widely used in several applications such as catalysts, especially in the 

petrochemical industry [10], as molecular sieves in separation technology [11] or as ion 

exchangers in detergent formulations [12]. New applications of zeolites contribute to 

environmentally friendly processes and refined zeolites such as catalytic zeolite membranes 

and zeolites containing exhaust-pipe reactors are being introduced. The possibility to 

accommodate ions, large molecules or nanostructures in the crystalline matrix has been 

explored and the electronic, acoustic and photonic modifications of the properties response 

of the materials has been tested [13]. 

 

3.2.1 ZEOLITE FORMATION IN COLLOIDAL SUSPENSIONS 

Zeolites are usually synthesized from aqueous basic aluminosilicate precursor gels under 

hydrothermal conditions at elevated temperatures. The complex process of self-assembly of 

the zeolite involves numerous simultaneous and inter-independent equilibrium and 

condensation steps [14]. Every zeolite has a specific molar composition range often 

represented in a ternary compositional phase diagram (Na2O, Al2O3 and SiO2). 
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In general, the synthesis of microporous materials is governed by the overall chemical 

composition of the reactant mixtures and the thermodynamic variables. The zeolite 

formation process is very sensitive to the initial reactants, conditions of hydrothermal 

synthesis and post-synthesis treatments [9]. The synthesis of ordered microporous silicas 

by cooperative self-assembly of organic surfactants and inorganic species was described by 

Beck et al. [15]. The synthesis of microporous nanocrystals in the form of stable colloidal 

suspensions was one of the important developments in zeolite science in the past decade 

[16].  

 

A typical hydrothermal zeolite synthesis could be described by the following steps [17] 

shown in Fig. 3.2: 

- Amorphous precursor gel is obtained by mixing of the silica and alumina sources, 

mineralizer, template and solvent (water); 

- After an aging step, the mixture is heated in a sealed autoclave (for reaction 

temperatures above 100 °C); 

- During the induction period the reactants remain amorphous after raising the 

synthesis temperature; 

- Crystal growth converts essentially all amorphous material into zeolite  

- Zeolite crystals are recovered by filtration, washing and drying. 
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Figure 3.2. Hydrothermal synthesis of aluminosilicate zeolites [reproduced from 

Ref. 17]. 

 

 Regarding the zeolite formation, recent theories propose a solution-mediation model based 

on crystal growth by localized construction from small, mobile species ordered by the 

participating cations, stating that the common presence of mobile species renders 

unnecessary  the distinction between „gel rearrangement‟ and „solid-phase transformation‟ 

mechanisms [17]. 

 

Hydrothermal conditions make use highly alkaline aluminosilicate gels and temperatures 

between 100 and 200 °C and yield bulk zeolites of micrometer size. To obtain colloidal 

zeolite nanoparticles (stable suspensions of discrete zeolite crystals with sizes under 100nm 

and narrow particle size distribution) one should use clear homogeneous precursor 

solutions and factors such as low crystallization temperatures (typically 25 and 100 °C) and 

high levels of supersaturation that potentially can favor nucleation over growth. Another 

important factor is the steric stabilization of the proto-nuclei, which is often achieved by 

low alkali content and abundant addition of organic templates. These bulky quaternary 

ammonium cations can be absorbed on the surfaces of the growing particles and prevent 
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further agglomeration. The organic cations also act as structure-directing agents, thus 

directing the growth of certain zeolite framework types by being incorporated into the 

channels and cages [18, 19]. 

 

3.2.2 SYNTHESIS OF ZEOLITE A 

Zeolite A was synthesized in the Na+ form at room temperature, following the procedure 

described in Ref. 14. Firstly, all reactants (see table 3.1) were mixed except for the organic 

template, tetramethylammonium (TMA). The template was then added and the solution 

stirred and kept for 3 days at room temperature. The nearly clear mixture with the molar 

composition (12 TMAOH: 0.8 Al2O3: 5 SiO2: 0.15 NaOH: 272 H2O) was transferred to the 

crystallization vessel and crystallization was performed at 70 °C (see Table 3.1). After 

crystallization, the mother liquor was separated from the product using a high performance 

centrifuge (Beckman Coulter, Model Avanti J-30I with 50ml vials) at 20 000rpm for 180 

minutes. For further processing, the product was washed twice with an appropriate amount 

of water using ultrasonication for better dispersion. 

 

Table 3.1. Experimental conditions for the synthesis of zeolite A. 
 

Molar composition 12 TMAOH: 0.8 Al2O3: 5 SiO2: 0.15 NaOH : 272 H2O 

Precursors  

 

 

 

 

TetramethylAmmonium Hidroxide Pentahydrate (Sigma-Aldrich) 

Aluminium isopropoxide (Acros Organics) 

Silica 30% -Ludox SM (Sigma-Aldrich)  

Sodium hydroxide (Riedel-de-Haen) 

Distilled water 

Temperature and time In the oven: 70 oC @ 65- 72 hours 
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The following mechanism for zeolite A crystal growth (large crystals) was proposed by 

Mintova et al. [13] (see Fig. 3.3).  

 

Figure 3.3. A schematic representation of the proposed zeolite growth mechanism 

[After Ref. 13]. 

 
In our studies we were interested in small size particles before the crystals grow above 200-

400nm as shown in the last step of Figure 3.3. 

 

3.2.3 SYNTHESIS OF ZEOLITE BETA 

Zeolite Beta was first synthesized by Wadlinger et al. in the Na2O-TEAOH-Al2O3-SiO2-

H2O (TEAOH, tetraethylammonium hydroxide) system, wherein the recommended 

SiO2/Al2O3, Na2O/TEAOH and TEAOH/SiO2 molar ratios are in the range 10-200, around 

0-0.1 and 0.1-1.0, respectively. Crystallization takes place between around 75 °C and 200 

°C and synthesis times vary between 40 days at the lower temperature (although the 
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crystallization is thought to be incomplete) and 6 days at elevated temperatures (150 °C). 

The SiO2/Al2O3 molar ratio of zeolite is claimed to be between 10 and 100 although it may 

be synthesized with a ratio as high as 150 [20]. 

 

In our studies, the nanosized zeolite Beta crystals were synthesized from clear precursor 

suspensions containing the organic template tetraethylammonium hydroxide (TEAOH). 

The crystalline nanoparticles were extracted from the reaction mixture after the 

hydrothermal treatment by a three-step centrifugation (20 000 rpm for 180 minutes) and 

subsequently redispersed in distilled water, thus achieving stabilized zeolite suspensions in 

water with a concentration of 1%wt. (see Table 3.2). 

 
Table 3.2. Experimental conditions for the synthesis of zeolite Beta. 
 

Molar composition  9 TEAOH: 0.25 Al2O3: 25 SiO2: 295 H2O* 

Precursors Tetraethyl Ammonium Hidroxide (Sigma-Aldrich) 

Aluminum isopropoxide (Acros Organics); 

Silica 30% -Ludox SM (Sigma-Aldrich) 

Distilled water 

Temperature and time in the oven: 100 oC @ 3 to 5 days 

 

* Correction for molar composition was needed because there was no silica 40% available:  

9 TEAOH: 0.25 Al2O3: 25 SiO2: 331 H2O  

 

3.2.4 OTHER SYNTHESIS PROCEDURES FOR ZEOLITES  

The following zeolites were also used in the present work and were synthesized in the 

group of Prof. Mintova according to procedures described below. 
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AlPO-18 

AlPO-18 nanocrystals were prepared according to procedure described in Ref. 21. Briefly, 

aluminum isopropoxide (Aldrich, 98%) was dissolved in TEAOH (Aldrich, 35%) and 

distilled water, followed by vigorous stirring until a clear solution was obtained. 

Phosphoric acid (Acros, 85%) was added drop wise under continuous stirring; the resulting 

mixture was stirred for 45 minutes in order to ensure a clear solution. The final 

composition of the precursor solution was 1 Al2O3 : 3.16 P2O5 : 3.16 (TEA)2O : 186 H2O. 

The hydrothermal treatment of the precursor solution (25 ml) was carried out in a 

microwave oven (800 W) at 180 C for 5 minutes. The purification of the suspension was 

carried out using high-speed centrifugation (24 500 rpm for 10 minutes) followed by re-

dispersion in water using an ultrasonic bath.  

 

Silicalite-1 (pure silica MFI type zeolite) 

Pure silica silicalite-1 particles (Si-MFI) were synthesized by the procedure described in 

Ref. 22. A pre-hydrolyzed precursor solution having the chemical composition: 7 TPAOH: 

25 SiO2: 150 4H2O: 100 EtOH was used. The silica source used for preparation of this 

solution was tetraethoxy silane (TEOS, Aldrich, 95%) and the organic template was 

tetrapropylammonium hydroxide (TPAOH, Aldrich, 1M aqueous solution). After 

hydrothermal treatment of the precursor solution at 90 °C for 48 hours, the Si-MFI crystals 

were purified in three steps of high-speed centrifugation (25 000 rpm for 1 hour) and 

redispersed in distilled water under ultrasonication. 

 

Zeolite L 

Nanosized zeolite L crystals [23].were synthesized from a colloidal precursor solution 

having the chemical composition: 5 K2O:10 SiO2: 0.5 Al2O3: 200 H2O. Aluminum 
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hydroxide and potassium hydroxide were dissolved in water under vigorous stirring. 

Colloidal silica was then added and aged in a vessel at ambient temperature for 24 hours 

prior to the further hydrothermal treatment. The nanosized crystals resulting from the 

hydrothermal treatment of colloidal solutions were purified by separation from the mother  

liquor by three steps of centrifugation (20 000 rpm for 1 hour).  

 

Some of the colloidal zeolite solutions used in the present work can be seen in Fig. 3.4. 

 

Figure 3.4. Colloidal zeolite solutions used in the present work. From left to right: 

Zeolite A (4% wt.), Beta (5% wt.), AlPO-18 (4% wt.), MFI (2% wt.) and zeolite L (2% 

wt.). 

 

3.3 PREPARATION OF ACRYLAMIDE BASED PHOTOPOLYMER 

Acrylamide based photopolymer consists of two polymerizable monomers (acrylamide and 

N, N‟-methylene bisacrylamide), an electron donor (triethanolamine, TEA) that generates 

free radicals that initiate the polymerization of the monomers, a photosensitive dye and a 

binder (polyvinyl alcohol, PVA) acting as a matrix in which the other components are 

suspended (see table 3.3). The recording wavelength is determined by the photosensitive 

dye used in the composition, e.g. erythrosine B for recording in the green or methylene 

blue for recording in red. 
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Table 3.3. Standard composition of acrylamide based photopolymer for transmission 

mode recording in the green. 
 

Component Molecular Structure Quantity 

PVA Stock solution (10%wt.) 
 

18 ml 

TEA 
 

2ml 

Acrylamide 
 

0.6g 

N, N‟-methyleneBisacrylamide 
 

0.2g 

Erythrosine B Stock solution 

(0.11%wt.) 

 

 

 

 

 

4ml 

 
* 1 - Stock solution of 10%wt. polyvinyl alcohol (PVA) solution is prepared by dissolving 10 g of PVA in 

100ml of water under heating and stirring 

* 2 - Stock Dye Solution is prepared by dissolving 0.11 g of Erythrosine B in 100 ml of water under stirring 

 

These components were mixed for 30 minutes with a magnetic stirrer at room temperature 

until a homogeneous solution was obtained. All chemicals were purchased from Sigma. 

The photopolymer solution can be coated onto glass or plastic substrates and dried for 24 

hours in order to obtain dry photopolymer layers (see Fig. 3.5). The tickness is controlled 

by the amount of solution deposited in each slide. 
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Figure 3.5. Acrylamide based photopolymer dry layers sensitized with: (left) 

methylene blue; (right) erythrosine B. 

 
3.4 PHOTOPOLYMERISABLE NANOCOMPOSITES 

Before use, the aqueous nanoparticle suspensions were sonicated for 20 minutes in order to 

disintegrate the particles and to ensure homogeneous particle size distribution. These 

suspensions were filtered and added to the photopolymer solution and the mixture was 

sonicated for further 10 minutes.  Different concentrations of nanoparticles were introduced 

in the dry layers (detailed compositions will be given in the following chapters). In order to 

obtain similar mass concentrations of the monomer in the dried layers, deionised water was 

added to the photopolymer solutions containing different concentrations of nanoparticles to 

give the same %volume of monomer in solution. The photopolymerizable nanocomposite 

films were prepared by spreading different quantities of the suspensions (depending on 

how thick the dry layer is to be) on glass plates with dimensions of 26x38 mm followed by 

drying for 24 hours. 

 

3.5 GRATING PERFORMANCES 

A holographic setup with real time grating growth monitoring capability was developed by 

N. Pandey [24] and it can be seen in Fig. 3.6.  
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Figure 3.6. Experimental set-up for real time grating growth monitoring. 

 
To record holographic transmission gratings, the recording material is exposed to 

twomutually interfering s-polarized beams of an NdYVO4 green laser ( =532 nm). The 

laser beam goes through a half wave plate to obtain the vertically polarised  light beam  

perpendicular to the xy plane of the table, spatially filtered and expanded through a lens. 

The size of the recorded hologram can be controlled by an aperture placed in front of the 

LG - green laser  ATT – attenuator ST – shutter HP – half wave plate 

SF – Spatial Filter L – lens AP – aperture   M – mirror 

BS – beam splitter SH – sample holder RS – rotational stage 

LR – red laser   D - photodetector 
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 beam splitter. The intensity ratio of the two recording beams is 1:1. The recording beams 

were incident on the sample in an unslanted configuration and gratings at different spatial 

frequencies can be recorded, changing the geometry of the setup and the recording intensity 

can be adjusted (ranging from of 0.1 to 20 mWcm-2). A shutter is also part of the setup and 

it is controlled by computer. It opens after a delay time of 5 seconds and closes 

automatically after a preset time. In this way, the recording time can be controlled. To 

minimize vibrations during recording, the setup lies in a gas floating table (Newport 

instruments). The sample is held in a rotational stage, which permits adjustment of the 

incident angle, enabling to record the angular selectivity profile of the grating. The system 

is computer controlled, which allows recording the diffracted beam intensity measured by a 

Newport photodetector (model 1830-C) with picowatt sensitivity. 

The following grating performances can be determined: 

 Dynamics of the grating growth and maximum diffraction efficiency ( ) 

 Thickness of the samples, obtained by the fitting of the angular selectivity curves, 

according to Kogelnik theory.  

 The refractive index modulation (n1) of the grating: 

arcsincos
1 d

n   (Eq. 3.3) 

where λ is the reading beam incidence angle, θ is the Bragg angle within the 

material and d the thickness of the photosensitive layers. 

 

3.6 LIGHT SCATTERING MEASUREMENT 

To better characterise the compatibility of nanoparticles with the acrylamide based 

photopolymer a scatterometer based method was used, which is able to measure the light 

scattering from materials. The theory behind this method [25] is that scattering of 

electromagnetic waves in any system is attributed to the heterogeneity of that system on the 
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molecular scale or to the aggregation of many molecules. Since all matter is composed of 

discrete electric charges, if an obstacle is illuminated by an electromagnetic wave, the 

electric charges in the obstacle are set into oscillatory motion by the electric field of the 

incident wave. The accelerated electric charges radiate or scatter electromagnetic energy in 

all directions. 

 

In figure 3.7 we can see the scatterometer set-up used in this study.  

 

 

 

 

 

 

Figure 3.7. Set-up for light scattering measurements of materials. 

 
The technique for light scattering measurements of surfaces can be based in angle resolved 

scattering (ARS). Angle resolved scattering is defined as the power ΔPs scattered into the 

solid angle ΔΩs normalized to the incident power Pi [26]: 



74 
 

is

ss
s P

PARS )()(
   (Eq. 3.4) 

where θs is the angle of scattering defined with respect to the surface normal of the sample 

under investigation. Since the scattering is not isotropic, a polariser was placed in front of 

the detector. ARS is equivalent to the cosine corrected bidirectional scatter distribution 

function (BSDF) [25].  

 

3.7 ANALYTICAL METHODS USED IN THE PRESENT WORK  

The zeolite nanoparticles and nanocomposites were also characterized by several analytical 

techniques (Table 3.4). 

 

Table 3.4.  Analytical techniques used in the present work.  
 

TECHNIQUE NAME INSTRUMENT USED 

DLS  Dynamic light scattering Malvern Instruments, Zeta sizers – Nanoseries 

XRD X-Ray diffraction (powder) 
STOE STADI-P X-ray diffractometer 

with Ge-monochromated Cu KR1 radiation. 

 Nitrogen adsorption Micromeritics ASAP 2010 surface area analyzer 

SEM and 

SEM-EDX 

Scanning electron microscopy 

(coupled with X-Ray Fluorescence) 

Philips XL 30 with Baltec SCD 004 sputter 

Coater 

UV-VIS 
Ultra violet and Visible absorption 

spectroscopy 
Perkin Elmer 

13C NMR Carbon Nuclear Magnetic Resonance 
Bruker Biospin 400 spectrometer, RF of 106.2 

MHz  

WLI  White Light Interferometry MicroXAM S/N 8038 

Raman  Raman spectroscopy Jobin Yvon Raman Spectrometer 
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3.7.1 DYNAMIC LIGHT SCATTERING 

Dynamic light scattering (DLS) [27, 28] is a well established technique for measuring 

particle size over the size range from a few nanometers to a few microns. The concept is 

that particles in a suspension move randomly, and the phenomenon is known as Brownian 

motion and that larger particles move more slowly than the smaller ones if the temperature 

is the same. According to Einstein developments in his Kinetic Molecular Theory (applied 

to heat) [29] molecules that are much smaller than the particles can impart a change in the 

direction of the particle and its velocity. 

 

When a coherent source of light (such as a laser) of known frequency is directed at the 

moving particles the light is scattered, but at a different frequency. The shift is termed a 

Doppler shift or broadening. The shift in light frequency is related to the size of the 

particles causing the shift. Due to their higher average velocity, smaller particles cause a 

greater shift in the light frequency than larger particles. It is this difference in the 

frequencies of the light scattered from particles of different sizes that is used to determine 

the sizes of the particles. 

 

3.7.2 X-RAY DIFFRACTION 

X-Ray diffraction (XRD) [30] is applied to identify crystalline phases and to determine 

certain structural properties such as atom arrangement, grain size, preferred orientation and 

defect structure. 

 

The conventional method of producing X-Rays is to bombard a metal target with high-

energy electrons. Structural information is obtained from the diffraction patterns caused by 

constructive and destructive interference of X-Rays scattered by the ordered lattice planes. 
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In certain specific directions, where the scattered X-Rays are “in-phase”, the X-Rays 

scatter cooperatively to form a new wave. This process of constructive interference is 

called diffraction. The directions of possible diffractions depend only on the size and shape 

of the unit cell. Certain classes of diffraction are systematically extinguished by lattice 

centering and by certain space-group symmetry elements. The angular positions (2 ) and 

intensities of the diffracted peaks of radiation (reflections or peaks) produce a two 

dimensional pattern. And each reflection represents the X-Ray beam diffracted by a family 

of lattice planes (hkl). The intensities of the diffracted waves depend on the kind and 

arrangement of atoms in the crystal structure. It is the study of the geometry of diffraction 

from a crystal that we use to discern the unit cell dimensions; the missing diffractions give 

the symmetry of the crystal. The intensities are used to work out the arrangement of atoms. 

Powder diffraction patterns allow quick identification of crystalline phases by comparison 

with sample libraries. In this work we used X-Ray to confirm the correct synthesis of the 

zeolite structures. 

 

3.7.3 NITROGEN ADSORPTION 

Analyzing the adsorption of gas molecules, e.g. nitrogen, on solid surfaces is a widespread 

technique for characterization of porous samples [31]. By recording the adsorption and 

desorption isotherms, fundamental data including the surface area, pore size distribution 

and accessible pore volume of a given material can be obtained. 

 

Adsorption isotherms can be described by several different models. The two principal 

methods currently applied in the study of porous materials are based on the Brunauer-

Emmett-Teller (BET) theory and the density functional theory (DFT). The BET theory is 

based on a number of simplifying assumptions in order to extend the Langmuir model [31] 
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to multilayer adsorption. The hydrophilicity of any sorbent is quantitatively and 

qualitatively classified according to IUPAC, based on the type of the water sorption 

isotherms. The water sorption isotherms are of seven types. The isotherm type I represents 

a material with high water sorption capacity and very fast saturation at low partial pressure 

(P/P0), followed by constant adsorption over a wide range of P/P0 due to the water 

saturation in the pores. These sorbents are classified as very hydrophilic due to high 

affinity for water even at low P/P0. On the other hand, hydrophilic materials exhibit 

sorption isotherms of type II or IV, with a very high water sorption capacity at low and 

moderate P/P0 [32] (see Fig. 3.8). 

 

Figure 3.8. Water sorption isotherms of four nanoporous solids with different 

degrees of hydrophilicity [reproduced from Ref. 30]. 

 

3.7.4 SCANNING ELECTRON MICROSCOPY 

In Scanning Electron Microscopy (SEM) [33] a focused electron beam is generated under 

vacuum and rastered over the sample surface. As the electron beam penetrates the surface, 

a number of interactions can occur which result in the emission of secondary electrons or  

photons. Depending on the desired analysis, the resulting species are detected and 

evaluated. The amount of secondary and backscattered electrons is dependent on the 

acceleration voltage of the primary electron beam. However, the number of electrons is 
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also dependent upon the sample morphology and will increase with increasing angle of 

incidence as more scattering occurs close to the surface. This change in number of detected 

electrons and thus signal intensity depending on the change in surface slope of the sample 

is responsible for the high topological contrast in SEM. 

 

In addition, collisions of primary electrons with core electrons from atoms in the sample 

result in excited atomic states. After decaying to their ground state, the atoms in the sample 

emit X-Ray photons with characteristic wavelength distributions for different elements 

(SEM-EDX) allowing one to determine elemental composition. 

 

3.7.5 UV-VISIBLE SPECTROSCOPY 

Ultraviolet and visible (UV-Vis) absorption spectroscopy [34] is the measurement of the 

attenuation of a beam of light after it passes through a sample or after reflection from a 

sample surface at a single wavelength or over an extended spectral range. This technique 

gives information about the electronic energy levels of a compound and can be used to 

identify some functional groups in molecules and secondly, it can be used for determining 

the concentration of an analyte in solution by measuring the absorbance at some 

wavelength and applying the Beer-Lambert Law [34].  

 

3.7.6 WHITE LIGHT INTERFEROMETRY (WLI) 

A white light interferometer [35] allows measurement of roughness and height of a surface 

on a nanometre scale. In an interferometer, good contrast fringes are obtained only when 

the two paths of the interferometer are matched in length to within the coherence length of 

the light source. In a Mirau interferometer, a beam splitter inside the objective divides the 

incident beam from a white light source into two. The reference beam travels to a reference 

http://www.files.chem.vt.edu/chem-ed/spec/beerslaw.html
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mirror whereas the sample beam goes through directly to the sample. Both are reflected 

back and they interfere with each other when the two paths are matched in length. The 

measurement of the vertical position of the sample is then carried out for which the fringe 

contrast is a maximum. Only a single surface height is measured at a time. The typical 

resolution is 1 nm in the vertical direction and 1-3 μm (depending on the magnification of 

the objective) in the lateral direction. In this work, WLI was used to measure the surface 

roughness of the nanocomposites. 

 

3.7.7 CARBON NUCLEAR MAGNETIC RESONANCE (NMR) 

The 13C NMR [36] technique is used to study the interaction of the nuclei of atoms of 

carbon isotopes with a static magnetic field. When atoms having nuclear spin are placed in 

an external magnetic field, the different nuclear spin states are given different magnetic 

potential energies. The magnetic field produces a small amount of spin polarization and a 

radio frequency signal of the proper frequency can induce a transition between spin states. 

This "spin flip" places some of the spins in their higher energy state. If the radio frequency 

(RF) signal is then switched off, the relaxation of the spins back to the lower state produces 

a measurable amount of RF signal at the resonant frequency associated with the spin flip. 

This process is called Nuclear Magnetic Resonance (NMR). 

 

NMR studies of zeolites, and their catalytic reactions, have been thoroughly reviewed in 

references 37 and 38. One should expect to distinguish organic molecules incorporated or 

adsorbed in the zeolite framework on the basis of their chemical shifts in the 13C NMR 

spectra [39]. 

 

http://hyperphysics.phy-astr.gsu.edu/Hbase/Nuclear/nspin.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magpot.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magpot.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/magnetic/magpot.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/Nuclear/spinpol.html#c1
http://hyperphysics.phy-astr.gsu.edu/Hbase/Nuclear/spinrel.html#c1
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3.7.8 RAMAN SPECTROSCOPY 

Vibrational spectroscopy is applied in two analytical techniques – Infrared (IR) and Raman 

spectroscopy. Raman and infrared spectroscopy both give molecular information and the 

methods complement one another [40].  

 

Raman spectroscopy [34] is applied to study the chemical bonding in a material via 

excitation of vibrational modes. When molecules are irradiated with monochromatic light, 

a portion of light is scattered. Most of the scattered radiation (about 99%) has the original 

frequency (Rayleigh scattering or elastic scattering process), but a small portion (less than 

1%) is found at other frequencies. This weak inelastic scattering of light from a sample is 

known as the Raman effect. The difference in frequency between these new frequencies 

and the original frequencies is characteristic of the molecule irradiated and numerically 

identical to the vibration and rotational frequencies of the molecule. 

 

Raman Spectroscopy studies of zeolites were reported back in the 70s by Angell [41]. 

Before that, Dekanter et al. studied the location of cations in zeolites by Infrared and 

Raman Spectroscopy [42]. In the early 80s, some of the first zeolites studied using Raman 

spectroscopy were the natural analcime [43] and natrolite [44] zeolites. Studies of zeolites 

A, X and Y were described later [45]. Since then many other papers have been published in 

this area. Of particular relevance is the work of Dutta and coworkers [46-50], culminating 

in three review papers in 1988 [51], 1991 [52] and 2003 [53].  

 

Vibrational spectroscopic methods have proven to be useful tools of structural research. IR 

and Raman spectroscopy and inelastic neutron scattering (INS) are well established for the 

characterization of zeolites and molecular sieves [54]. In comparison with the vast amount 
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of IR work, the field of Raman spectroscopy was rather undeveloped, as stated by Knops 

in 1997 [55]. Raman did not reach the level of popularity of IR for zeolite studies due to 

experimental difficulties associated with the technique. One of the main problems 

associated with Raman is that of fluorescence. There was considerable difficulty in 

obtaining Raman spectra with acceptable signal-to-noise ratios from highly disperse 

materials such as zeolites. One cause of fluorescence is that luminescent molecules might 

be present in the samples. High temperature treatment under oxygen often reduces this 

problem but n some cases it was found that the heating treatment actually increased the 

fluorescence background. This may be due to the transformation of simple organic 

molecules into fluorescent species at high temperature, possibly under the influence of acid 

sites. Secondly, the presence of Fe impurities in the lattice is known to cause 

luminescence. The latter problem can be overcome by high purity synthesis, starting e.g. 

from metallic Al. These problems have been overcome in recent times by using IR lasers 

and near-IR lasers [56, 57]. In the last years there have been several papers that focus on 

zeolite structure characterization, for example, characterization of new zeolites or new 

techniques of zeolites synthesis [58, 59]. Also there is a need to describe the zeolite 

properties using Raman spectroscopy, usually by studying guest molecules inside the pores 

of the zeolites [60]. Examples are the applications of zeolites as sorbents [61], ion 

exchangers [62] and catalysts [63].  

 

The prominent band in the Raman spectra of a zeolitic framework in the 300-600 cm-1 

region is found to be sensitive to the ring structures present in the framework. This band 

has been assigned to the motion of an oxygen atom in a plane perpendicular to the T -O-T 

bonds [51]. In the case of zeolites with even-numbered rings such as 4, 6, 8, 10, and 12 

rings, the band is around 500 cm-1. The presence of five-membered rings leads to a 
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lowering of this frequency to 390-450 cm-1 and the precise band pattern depends on the 

type of rings present. For the ferrierite family of zeolites with 5-, 6-, 8-, and 10-membered 

rings, this band is at 430 cm-1. The absence of eight-membered rings in this set increases 

the frequency to 450 cm-1, as in ZSM-23 and NU-10. The presence of 4-, 5-, 6-, 8-, 10-, or 

12-membered rings, as in ZSM-5, mordenite, and ZSM-48 leads to bands at 390 and 460 

cm-1 [51]. Within the above-mentioned groups of zeolites, the symmetric stretching of 

tetrahedral - S(TOT) - frequency further depends on the value of the average T-O-T angle. 

A higher T-O-T angle results in a decreased bending force constant, hence in a lower 

S(TOT) frequency. If within one zeolite structure the individual T-O-T angles are 

sufficiently different, a splitting of the S(TOT) band can be observed. The influence of the 

Si/Al ratio on the S(TOT) is less clear. Also, the effects of exchange cations may 

especially be prominent for zeolites with a high cation exchange capacity, such as zeolite 

A [51]. The bands of low to moderate intensity that are observable in the high-frequency 

(850 to 1210 cm-1) are generally ascribed to the asymmetric stretching vibration of the Si-

O bond [51]. 

 

3.8 CONCLUSIONS 

Zeolites are microporous crystalline solids with well-defined structures. Colloidal zeolite 

nanoparticles can be prepared using clear precursor solutions and bulky quaternary 

molecules as organic templates. Zeolite A and Beta synthesis procedures were described in 

detail and were obtained during a research stay at France. The nanocomposites studied in 

this work were prepared using colloidal zeolite nanoparticles and acrylamide based 

photopolymer. 
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The grating performances of volume phase transmission holograms of the nanocomposites 

were obtained using a computer controlled optical setup which can be used to monitor  the 

grating diffraction efficiency growth curve in real time and the angular selectivity curve. 

Light scattering and white light interferometry were used to characterize the optical 

properties of the nanocomposites. Analytical techniques such as DLS, XRD, SEM, 

nitrogen adsorption and Raman spectroscopy were used to characterize the zeolite colloidal 

suspensions, confirming their successful synthesis. Analytical techniques such as UV-Vis, 

SEM-EDX, NMR and Raman spectroscopy were extensively used to study the interactions 

between the zeolite nanoparticles and the acrylamide based photopolymer. These later 

techniques are useful for analyzing polymer components adsorbed at the surface of the 

zeolite or inside the pores of the zeolite or for investigating the redistribution of 

nanoparticles during the holographic recording process. 
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CHAPTER 4: BETA (BEA-TYPE STRUCTURE) DOPED 

NANOCOMPOSITES 

4.1 INTRODUCTION 

In this chapter, information regarding the characterization of zeolite Beta colloidal 

solutions is given. This characterization is required in order to confirm the successful 

formation of the zeolite, since their syntheses are complex processes. Wherever possible, a 

combination of well established techniques was used as described in this and following 

chapters.  Using the techniques of confocal Raman Spectroscopy and Scanning Electron 

Microscopy coupled with Energy Dispersive X-Ray Fluorescence (SEM-EDX), the 

redistribution of Beta nanoparticles can be investigated. By means of refractive index 

calculations, the pore volume before and after incorporation of the Beta nanoparticles can 

show if they are mostly to be empty or filled when the zeolite is added to the 

photopolymer. For zeolite Beta, they are possibly filled by photopolymer components. The 

interactions between the photopolymer components and zeolite nanoparticles in the 

photopolymerizable nanocomposites were characterized by 
13

C NMR spectroscopy (solid-

state NMR is a very sensitive probe of the local environment of a particular atom in the 

structure) and UV-Visible spectroscopy. It was found that the Beta zeolite nanoparticles 

(up to 5%wt.) behave as non-inert components during holographic recording, bonding to 

the triethanolamine (TEA) electron donor molecules, resulting in an effective increase in 

layer thickness that causes doubling of the diffraction efficiency of the nanocomposite in 

comparison to that of the undoped photopolymer. Raman spectroscopy also provided 

evidence of acrylamide molecules bonding to the zeolite. 

 

Transmission gratings of Beta nanocomposites show potential to be used as holographic 

sensor for chemical detection.   
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4.2 ZEOLITE BETA NANOPARTICLES CHARACTERIZATION  

Nano-sized Beta zeolite crystals (Figure 4.1) in a colloidal suspension were used in the 

present study.  

 

 

 

 

 
 
 
Figure 4.1.  Periodic building unit of the Beta zeolite (BEA-type framework): view 

along (A) [001], (B) [010] and (C) [100] of the basic layer; (D) pore structure. 

 

Two solutions of zeolite Beta (with different nanoparticle sizes) were used in the present 

study. The dynamic light scattering results are shown in Fig. 4.2.  

 

Figure 4.2.  DLS curves of zeolite Beta suspensions.  
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The results are shown in number of particle counts obtained per unit volume of sample 

(number weighted). The results show particle sizes of 40 and 60nm, both below 100nm and 

also both the materials exhibit monomodal particle distribution.  

 

The crystalline nature was determined by examining its XRD pattern (Fig. 4.3).  
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Figure 4.3. X-ray diffraction pattern of zeolite Beta nanoparticles. 

 

The formation of zeolite Beta was confirmed by comparing its diffractogram with the 

literature [1]. The most prominent peak, corresponding to (302) reflection appeared at 

22.48° and this is characteristic for highly crystalline zeolite Beta. The broad peak at 6° 2θ, 

is formed by overlaping of two reflections with hkl of (100) and (101). The XRD pattern in 

Fig. 4.3 showed fully crystalline Beta zeolite material and absence of an amorphous phase.  

 

The zeolitic microporosity was demonstrated with the nitrogen sorption isotherm depicted 

in Fig. 4.4. 

(100) 
(101) 
 

(302) 
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Figure 4.4.  Nitrogen-sorption isotherm of zeolite Beta nanoparticles. 

 

The apparent BET specific surface area was calculated to be 663 m2g-1 and the total pore 

volume (P/P0=0.97) was 0.71 cm3g-1 (the surface area is calculated according to the BET 

model from the adsorption branch of the isotherm in the pressure range 0.001–0.15 P/P0 

and the total volume is calculated from single point measurements at P/P0 = 0.97).  

 

The nitrogen adsorption-desorption curves possess the typical type IV isotherm in 

accordance with IUPAC classification [2]. The isotherm exhibits a rapid increase in the 

amount of nitrogen adsorbed at low relative pressure (P/Po < 0.1), which corresponds to the 

filling of the micropores with the gas. A nearly flat region follows and then a distinctive 

hysteresis loop at high relative pressure (P/Po > 0.85) is observed, which is associated with 

multilayer adsorption in the textural mesopores of the nanosized material. The sample has 

similar values of total pore volume and BET than the values referred in literature [3]. The 

total specific pore volume is 0.71 cm3g-1 (of those 0.25 are micropore volume) which is due 

to the small crystal size of the nanoparticles and the high surface area (> 500 cm2g-1) is 

explained by the high degree of crystallinity of the zeolite.  
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The zeolite morphology was characterized using SEM (Fig. 4.5). 

 

Figure 4.5. Morphology of Beta zeolite nanoparticles after gold coating.  

From Fig. 4.5 we can see that the Beta nanoparticles have a spherical shape, which is the 

crystal morphology reported before in the open literature [1]. 

 

Raman spectroscopy has the ability to detect amorphous substances and to fingerprint 

different crystalline silicalite and aluminosilicate materials. Raman spectroscopy for 

examination of the structure of the colloidal zeolite was previously thought to be useful for 

the following reasons: (i) allows probing of the structure of very small particles; (ii) the 

intense spectroscopic signals from the organic molecules ensure sufficient sensitivity of the 

method even in the case of low concentrations of the colloidal suspension; and (iii) 

stabilized colloidal zeolites with narrow particle size distribution always contain organic 

molecules [4].   

 

The Raman spectrum of Beta nanoparticles is shown in Fig. 4.6, where the most intense 

peaks are evidenced. 
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Figure 4.6.  Raman spectrum of zeolite Beta nanoparticles. 

 

This spectrum was well matched with that in literature [4]. The authors showed that the 

most appropriate Raman spectroscopic features for detecting zeolite Beta nanocrystallites 

when compared to the template, tetraethylammonium hydroxide (TEAOH) in water are: (i) 

a single peak at 674 cm-1 instead of two signals at 664 and 674 cm-1, characteristic of free 

template (ii) red-shift of the peaks at 1004-999 cm-1 and of the peak at 1118-1113 cm-1, and 

(iii) splitting of the band at 2952 cm-1 and red-shift of the more intense component to 2945 

cm-1. 

 

The prominent band in the Raman spectra of zeolite Beta in the fingerprint region (300-600 

cm-1) is found at 419 cm-1. This band is assigned to the motion of an oxygen atom in a 

plane perpendicular to that of the T-O-T bonds (Fig. 4.7): 
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Figure 4.7. Stretching mode of T-O-T mode in zeolites. 

 
 
Other prominent bands assigned to zeolites are summarized in Table. 4.1.  

 

Table 4.1. Raman peak assignments of zeolite Beta. 
 

Raman Peak (cm-1) Functional Group/ Vibration 

419.0 T-O-T stretching of zeolite (6 rings) 

678.0 C-C-N (template) 

1120.3 Stretching of Si-O (zeolite) 

1467.7 Deformation of CH (template) 

2946.6 Symmetrical Stretching of CH3 (template) 

2999.5 Asymmetrical Stretching of CH3 (template) 

 
 

4.3 BETA NANOCOMPOSITES OPTICAL PROPERTIES 

Beta nanocomposites were prepared by adding different quantities of zeolite solution to the 

photopolymer solution and adding water to obtain the same mass concentration of 

photopolymer components per volume. An example using PVA 20%wt. stock solution and 

zeolite Beta 1%wt. is given in table 4.2. 
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Table 4.2. Compositions used for preparation of photopolymerizable Beta 

nanocomposite (NC) layers from zeolite solution 1%wt. (20% PVA stock solution). 
 

Photopolymerizable Material Photopolymer 

Solution (ml) 

Nanoparticle 

Solution (ml) 

Water (ml) 

Undoped Photopolymer 1 0 2.5 

NC Beta 1%wt. 1 0.25 2.25 

NC Beta 2.5%wt. 1 0.625 1.875 

NC Beta 5%wt. 1 1.25 1.25 

NC Beta 10%wt. 1 2.5 0 

 

The compatibility of the zeolite particles suspensions with the photopolymer solutions was 

characterized by DLS. No aggregation of the zeolite nanoparticles directly after mixing and 

after 24h aging of the nanocomposite suspensions was observed (Figure 4.8).  

 

Figure 4.8. DLS curves (number weighted) of: (blue) zeolite Beta; (red) 

photopolymer doped with Beta nanoparticles (freshly mixed); (green) photopolymer 

doped with Beta nanoparticles (24 hours stored at RT). 

 

The Beta nanocomposite layers after drying were stable for more than 24 hours after 

preparation as can be seen in Fig. 4.9. In this experiment a large batch of dry layers of Beta 
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nanocomposite (2.5 and 5%wt.) was prepared and gratings were holographically recorded 

every day over more than one month and compared with the acrylamide based 

photopolymer gratings. To prepare the layers, 0.4 ml of each solution was deposited on a 

glass substrate (13×38 mm2) to give a thickness of around 40 m. The gratings were 

recorded in the green with an exposure of 700 mJcm-2 (recording intensity of 5 mWcm-2) at 

a spatial frequency of 1000 lmm-1. 

A) 
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 B) 

Figure 4.9.  Temporal evolution of (A) diffraction efficiency; (B) optical losses of 

undoped photopolymer - ABP (pink circle) and containing 2.5%wt. (blue squares) 

and 5%wt. (green triangles) of Beta nanoparticles; exposure was 700 mJcm-2 at a 

spatial frequency of 1000 lmm-1. 

 
As can be seen in Fig. 4.9A, the photopolymer materials degrade with time: two weeks 

after preparation, the diffraction efficiency of gratings recorded decreased by around 30% 

when compared to initial values. One possible explanation is due to the precipitation of bis-

acrylamide, which forms white crystals in the surface of the layer. 

 

Zeolite Beta nanoparticles seem to have no effect on the aging (shelf-life) of the 

photopolymer. The optical losses (OL) of the material were calculated by: 

 
0

1
I

IIIOL RDT  (Eq. 4.1) 

where I are the intensities of the transmitted (IT), diffracted (ID), reflected (IR) and incoming 

(I0) beams. 
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The results for the measured optical losses are shown in Fig. 4.9B. The addition of 2.5 and 

5%wt. of zeolite Beta nanoparticles to the photopolymer increases the optical losses. With 

time the optical losses of all materials also increase.  

 

The effect of incorporation of zeolite Beta in the photopolymer was further investigated by 

analyzing the dependence of optical losses as a function of increasing concentrations of 

zeolite Beta nanoparticles (see Figure 4.10). Layer thickness was around 20 m for 

undoped photopolymer and increased to around 50 m for a nanocomposite containing 

10%wt. Beta. 

 

Figure 4.10. Optical losses of Beta nanocomposites . 

 
As can be seen in Fig.4.10 the optical loss increased from 3% (undoped photopolymer) to 

7% when we introduce 5%wt. Beta nanoparticles and to 10% when we add 10%wt. Beta 

nanoparticles. 

 

In order to investigate in more detail the influence of the concentration of Beta zeolites on 

the optical properties we measured the bidirectional scattering distribution function (the 

way in which the light is scattered by a surface) of samples of approximately the same 
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thickness (around 40 m) and this is shown in Fig. 4.11. For comparison the scattering of 

the glass substrate is also shown. The instrument signature wre measured in the absence of 

the materials or the glass substrate. 

A) 

 B) 

Figure 4.11. Bidirectional scattering distribution function of glass, acrylamide based 

photopolymer (ABP) and nanocomposites with several concentrations of Beta 

indicated in the figure; (A) unpolymerized material; (B) grating of 1000 lmm-1 

(logarithmic scale). 

 



100 
 

For the unpolymerized material, the increase in zeolite Beta concentration leads to an 

increase in the scattering of light. The addition of Beta nanoparticles up to 5%wt. to the 

photopolymer does not significantly increase the light scattering of the layer compared to 

undoped photopolymer, but it seems to be a substantial increase for an addition of 10%wt. 

zeolite Beta (indicated by the BDSF larger amplitude angular spread). After 

polymerization, the scattering of light by the material seems to be lower. One possible 

explanation is that the nanoparticles are now evenly redistributed across the photopolymer 

volume. 

 

For comparison, we have measured the scattering from nanocomposites made with 

photopolymer and alumina (Fig. 4.12) and titania (Fig. 4.13) nanoparticles. 

 

Figure 4.12. Bidirectional scattering distribution function of glass, acrylamide based 

photopolymer (ABP) and Al2O3 nanocomposites in several concentrations indicated in 

the figure; grating of 1000 lmm-1 (logarithmic scale). 
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Figure 4.13. Bidirectional scattering distribution function of glass, acrylamide based 

photopolymer (ABP) and TiO2 nanocomposites in several concentrations indicated in 

the figure; grating of 1000 lmm-1 (logarithmic scale). 

 
As can be seen by comparing Figures 4.11 and 4.12, the Beta nanoparticles produce very 

low scattering (comparable to the undoped layer) as indicated by the lower angular spread, 

while the alumina nanoparticles aren‟t compatible with the water soluble photopolymer, 

resulting in the formation of large aggregates in the material, even visible by a naked eye 

inspection. 

 

By comparing the data from Figures 4.11 and 4.13, one can see that the addition of titania 

nanoparticles produces an opaque material (Fig. 4.14B), where the light is not transmitted 

through the layer, which is not the case for zeolite Beta nanocomposite (Fig.414A).  
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A) 

B) 

Figure 4.14. Transmitted light intensity for nanocomposites using (A) zeolite Beta 

nanoparticles, and (B) titania nanoparticles. 

 

On can see that in the case of titania nanocomposites, most light is scattered. In the case of 

Beta zeolite, this effect increases as the zeolite concentration increases. 

  

Although the solid nanoparticles, titania (n=2.5) and alumina (n=1.8) have substantially 

higher refractive index than the acrylamide based photopolymer (n=1.5) they did not 
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produce optically transparent layers. We chose to focus our work in photopolymerizable 

materials with zeolites (n~1.3) since we were able to obtain optically transparent layers 

with low light scattering, as it can be shown by the fact that BDSF functions are spread 

over similar amplitude of angles as the undoped photopolymer. 

 

After studying the nanoparticle distribution in the photopolymer by light scattering 

measurements, the surface scattering of the nanocomposites was evaluated. Thus 

conclusions about the homogeneous distribution of nanoparticles across the photopolymer 

volume can be made. The surface morphology of several nanocomposites containing from 

0 to 10%wt. of Beta zeolite nanocrystals was studied using a white light interferometric 

(WLI) surface profiler (See Fig. 4.15). For this study. the samples were uniformly 

polymerized under UV radiation. 

 

Figure 4.15. Surface profiles of Beta nanocomposites using white light 

interferometric surface profiler; the zeolite concentrations are indicated on the figure. 

 



104 
 

When zeolite Beta nanoparticles are added to the acrylamide based photopolymer the 

surface morphology changes. In the undoped photopolymer the surface is flat and when we 

add zeolite Beta the surface presents a spatially uniform distribution of sharp peaks a few 

nanometers in height. From these measurements one can see that the Beta nanoparticles 

present a good compatibility with the polymeric matrix since the addition of Beta  

nanoparticles to the acrylamide based photopolymer leads to a not very pronounced 

roughening of the initially flat undoped surface, which will be next quantified. 

 

The profile height of the layers was measured (Fig. 4.16) in five different locations across 

the material and from these values, the surface roughness was calculated. This method was 

used to measure the compatibility of the nanoparticles with the photopolymer; for instance 

expelling of the nanoparticles to the surface of the photopolymer leads to increase of the 

surface roughness.  

 

Figure 4.16. Height profile of Beta nanocomposites obtained using White Light 

Interferometric Surface profiler. The doping level is 0, 1, 2.5, 5, 7.5 and 10%wt. of 

zeolite Beta (from top left to bottom right). 
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In Fig. 4.16, one can evaluate the surface height of the materials tested in both x and y 

directions. As we introduce higher concentrations of zeolite Beta the surface height 

becomes more pronounced.  

 

The standard deviation of these profile heights is represented by Rq or RMS (Root-Mean-

Square). This is an average of the measured height deviations taken within the evaluation 

length or area and measured from the mean linear surface and can be used to estimate the 

surface roughness of the nanocomposite. The results are summarized in Table 4.3 and Fig. 

4.17.  

 

Table 4.3. Surface roughness measurements (RMS) for Beta nanocomposites. 
 

Concentration of Beta (%wt.) Surface Roughness (nm) 

0 1.1 ± 0.3 

1 3.0 ± 0.1 

2.5 3.1 ± 0.3 

5 5.6 ± 0.5 

7.5 5.5 ± 0.7 

10 4.4 ± 0.5 
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Figure 4.17. Surface roughness of Beta nanocomposites.  

 
The surface roughness increases initially (1nm for undoped photopolymer) as we 

incorporate zeolite Beta nanoparticles, reaching a maximum value for 5%wt. zeolite 

nanoparticles (5.6nm) where it remains constant. Interestingly, there is a slight decrease for 

the Beta 10%wt. nanocomposite (4.4nm), which is consistent with data in Fig. 4.11B. 

 

As part of optical characterization of the Beta nanocomposites, their refractive indexes 

were calculated (see table 4.4). 

 

Table 4.4. Volume refractive index of zeolite Beta nanocomposites at 633 nm. 

Zeolite concentration (% wt.) Refractive Index 

0 1.499± 0.005 

2.5 1.493± 0.005 

5 1.483± 0.005 

10 1.471± 0.005 
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The method of determining the refractive index was detailed elsewhere [5] and were kindly 

provided by Dr. T. Babeva. Briefly, the volume refractive indices of the photopolymer 

nanocomposites) were determined by measuring transmittance, T, and  reflectances Rf and 

Rb from front (air) side and back (substrate) side of the layers, respectively using a UV-

VIS-NIR spectrophotometer. The simultaneous determination of refractive index, n, 

extinction coefficient, k and thickness, d of the layers was performed by minimization of 

the goal function F consisting of discrepancies between measured (“meas”) and calculated 

(“calc”) spectra:   

222
m bmeasbcalcfmeasfcalceascalc RRRRTTF  (Eq. 4.2) 

 

F was minimized at each wavelength  in the spectral range from 400-800nm by a Nelder-

Mead simplex method [6] using a dense grid of initial values of n, k and d. Additionally, n 

and k were determined from combinations (TRf) and (TRb) using Newton-Raphson iterative 

algorithm [7] and thickness values measured with WLI profiler (the measurement is made 

by making a cut in the sample and calculating the height difference between the glass 

substrate and the surface of the sample). The refractive index of the photopolymer 

decreases with the incorporation of Beta nanoparticles (see Table 4.4), which is expected 

since the refractive index of this zeolite nanoparticles filled with H2O nanoparticles at 

633nm is 1.414± 0.005, as calculated from the dispersion curve based on Bruggeman 

effective media approximation (EMA), the Wemple-Di Domenico dispersion equation and 

the nonlinear minimization of the appropriate goal function (Eq. 4.2); more details in this 

method can be found in [5].  
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Since the decrease in refractive index of the beta nanocomposites with the incorporation of 

this zeolite into the photopolymer is not significant, one hypothesis is that the micropores 

of zeolite Beta are filled with guest molecules from the photopolymer matrix. This 

hypothesis was further tested by comparing the pore volumes of zeolite Beta before and 

after incorporation into the photopolymer. 

 

The pore volume of zeolite Beta before incorporation in the photopolymer was determined 

experimentally by N2-sorption data (see fig. 4.4) to be 0.25 cm3g-1. The refractive index 

and density of a mixture Al2O3: (SiO2) was calculated by Bruggeman EMA using the 

refractive index and density of these oxides. Considering both the free volume and the 

density of a mixture of Al2O3 / SiO2 to be 2.27 gcm-3, the density of BEA zeolites with 

empty pores was of 1.45 gcm-3. Using the density of zeolite Beta calculated by the method 

described in reference 6, the density of zeolite Beta when incorporated in the photopolymer 

is 2.24 gcm-3 and thus the pore volume of zeolite Beta after incorporation in the 

photopolymer was estimated to be 0.006 cm3g-1. Comparing this value with the 0.25 cm3g-1 

one can conclude that zeolite Beta pores do not remain empty after the particles are 

incorporated in the photopolymer.  

 

In conclusion, the previous results demonstrate that the zeolite nanoparticles are compatible 

with the photopolymer, thus homogeneous coating suspensions can be obtained and 

homogeneous dry layers prepared (Figure 4.18), and an optically transparent material is 

obtained (Fig. 4.19).  
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Figure 4.18.  Surface analysis of the acrylamide based photopolymer doped with 

Beta nanoparticles (5%wt.) (50 m thickness), the white portion is the cut made 

across the thickness of the layers. 

 

Observing the morphology of the nanocomposite by SEM (Fig.4.18), it can be seen that the 

nanoparticles are randomly and homogeneously distributed within and at the surface of the 

film. These results are also shown by surface roughness measurements. 

 

Figure 4.19. Typical layer of Beta nanocomposite film. 

 
 

4.4 GRATING PERFORMANCES OF BETA NANOCOMPOSITES 

4.4.1 AT DIFFERENT RECORDING INTENSITIES 

The laser used was a solid state laser at 532 nm. The layer thickness was not measured. The 

recording intensities used were 5, 10 and 20 mWcm-2 and the exposure time was 100 s, 

when the laser was turned off and further 40s of intensity data were collected. Several 

samples for each experimental condition were used (in Fig. 4.20 for example, seven 

different samples were measured) in order to be statistical meaningful and the results are 

shown in Fig. 4.21.  
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Figure 4.20. Typical example of diffraction efficiency growth curves for several 

gratings of nanocomposite containing 5%wt. of zeolite Beta; recording intensity of 20 

mWcm-2; arrow indicates time at which the laser was turned off. 

 

Figure 4.21. Diffraction efficiency for different Beta nanocomposites for different 

recording intensities; spatial frequency of 1000 lmm-1.  

 

It was observed that the nanoparticles improve the diffraction efficiency (η) at 5 and 20 

mWcm-2. For addition of 5%wt. of zeolite Beta, the increase of η, when compared to 

undoped photopolymer was 26% for a recording intensity of 5 mWcm-2. For the case of 

recording intensity of 20 mWcm-2, this increase of η was 10%. At a recording intensity of 

10 mWcm-2 no improvement was observed. A recording intensity of 5mWcm-2 was chosen 

to conduct most of the experiments in this project. 
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 At Different Spatial Frequencies 

The angular selectivity curves were obtained for four spatial frequencies (500, 1000, 1500 

and 2000 lmm-1). The results are shown in Fig. 4.23 for different Beta concentrations and 

in Fig. 4.22, a typical example of a set of angular selectivity curves is shown. 

 

 
Figure 4.22. Typical angular selectivity curves for different zeolite Beta 

concentrations indicated in the figure; spatial frequency of 1000 lmm-1 and recording 

intensity of 5 mWcm-2. 

 

Figure 4.23. Diffraction efficiency dependence on spatial frequency for different 

zeolite Beta concentrations; recording intensity of 5 mWcm-2. 
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The reason for not calculating the refractive index modulation for this set of data is that the 

curves are overmodulated (see example in Fig. 4.24). 

 

Figure 4.24.  Typical overmodulated angular selectivity curve, where points are 

experimental data and line is the fitting by Kogelnik theory (grating of undoped 

material recorded with a spatial frequency of 500 lmm-1). 

 

Followed this first experiment (Fig. 4.23) a decision for working with thinner films was 

made. New layers were prepared and gratings were recorded at four spatial frequencies 

(200, 500, 1500 and 2000 lmm-1) recorded at a constant intensity of 5 mWcm-2 for 100s 

(Fig. 4.256 and Table 4.5) and two different concentrations (1% and 5%wt. of zeolite Beta) 

were studied. 
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 A) 

B) 

Figure 4.25. Grating performance dependences on spatial frequency for different 

Beta concentrations: (A) diffraction efficiency; (B) refractive index modulation; 

recording intensity of 5 mWcm-2. 
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Table 4.5. Thickness of gratings recorded in zeolite Beta films presented in Fig. 4.25 

(obtained from the fitting of the angular selectivity curves). 
 

Spatial Frequency 

 (lmm-1) 

Thickness (µm) 

Undoped 1%wt. Beta 5%wt. Beta 

500 54 ±3 61 ±4 95 ±2 

1000 46 ±3 54 ±1 73 ±6 

1500 48 ±1 62 ±2 88 ±2 

2000 47 ±3 54 ±0.2 61 ±4 

 

When compared with the undoped photopolymer, the Beta doped photopolymer shows a 

lower refractive index modulation for all the spatial frequencies tested. The highest 

refractive index modulation (n1) observed was of 5×10-3 for the spatial frequency of 1000 

lmm-1. This value is the optimum in the case of undoped photopolymer. In the case of 

zeolite Beta doped photopolymer it is no conclusive wether there is any dependence of the 

grating performances on the space fringing. For 500 lmm-1 higher orders were observed 

and diffraction efficiency was calculated using solely the intensity of the first order. 

 

 

4.4.2 AT DIFFERENT ZEOLITE CONCENTRATIONS 

The grating performances were studied as a function of zeolite Beta concentration and the 

results are presented in Fig. 4.26 and Table 4.6. 

 

 



115 
 

A) 

 B) 

Figure 4.26. Grating performance dependences on concentration of zeolite for 1000 

lmm-1and 2000 lmm-1: (A) diffraction efficiency; (B) refractive index modulation; 

recording intensity of 5 mWcm-2 using 20% PVA solution. 
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Table 4.6. Thickness of gratings recorded in zeolite Beta films shown in Fig. 4.26 

(obtained from the fitting of the angular selectivity curves). 
 

Zeolite Beta 
(%wt.) 

Thickness (µm) 

1000lmm-1 2000lmm-1 
0 22 ±2 18 ±2 

1 28 ±2 26 ±1 

2.5 34 ±3 33 ±0.3 

5 40 ±0.4 38 ±1 

10 48 ±2 43 ±3 

 

In Figure 4.26, the refractive index modulation of acrylamide based photopolymer is 

compared with that for the Beta nanocomposite (for spatial frequencies of 1000lmm-1 and 

2000lmm-1). The incorporation of 10%wt.nanoparticles in the photopolymer results in a 

decrease in the refractive index modulation of around 25% compared to the undoped 

acrylamide based photopolymer. This could be due to the fact that the pores of beta zeolite 

are filled as seen before. It can also be observed that, as the percentage of doping increases, 

the refractive index modulation decreases. Although the diffraction efficiency of the layers 

significantly increased from 15% for undoped to 30% for those doped with 10%wt. Beta 

zeolite, when the thickness of the gratings was taken into account in the calculation of the 

refractive index modulation, no increase of the latter with the increase of nanoparticle 

concentration was observed.  
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4.5 REDISTRIBUTION OF BETA NANOPARTICLES 

Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Fluorescence 

(SEM-EDX) was used to study the redistribution of nanoparticles in the layers as a result of 

the holographic recording process. SEM pictures of the photopolymer films with the 

distribution of silicon and oxygen belonging to the zeolite Beta nanoparticles are shown in 

Figure 4.27. The SEM-EDX analysis shows that the distribution of the nanoparticles 

changes from a random pattern on the outside of the grating (Fig. 4.27A) to a regular 

pattern of lines with high and low intensities inside, corresponding to silicon and oxygen 

clearly originating from the nanoparticles (Fig 4.27B). The spacing is about 2 m, which is 

in good agreement with the spatial frequency of the holographic grating (500lmm-1). This 

indicates that there is a redistribution of the Beta nanoparticles in the surface of the 

photopolymer of the same spatial frequency as that used during holographic recording. 

 

Figure 4.27.   SEM-EDX images of acrylamide based photopolymer film doped with 

5%wt. of zeolite Beta; (A) outside the grating and (B) inside the grating (500 lmm-1, 

2µm space fringing). 
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These results were confirmed using Raman spectroscopy. Raman spectra of the acrylamide 

based photopolymer doped with Beta nanoparticles (Fig. 4.28A) show two well isolated 

peaks, one at 415 cm-1 and other at 673 cm-1 originating from C-C-N vibrations of the 

organic template used for the synthesis of zeolite Beta nanoparticles (Fig. 4.28C), which 

are absent in the undoped polymer (Fig. 4.28B).  

 

Figure 4.28. Raman spectra of (A) photopolymer doped with 10%wt. Beta 

nanoparticles; (B) undoped photopolymer and (C) zeolite Beta; (200 lmm-1, 5 µm 

space fringing); Inset depicts the C-C-N vibrations from the organic template in the 

zeolite Beta nanoparticles. 

 

A grating was recorded in 5%wt. zeolite Beta nanocomposite. The space fringing of the 

grating was chosen to be 5 µm (spatial frequency of 200 lmm-1). The reason to choose this 

space fringing was due to limitations of the spatial resolution of the confocal Raman 

spectrometer, which is 1 µm. 
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The variation of the Raman peak intensity at 673 cm-1 was monitored in the direction of the 

grating vector, since this peak was found to be more sensitive to the changes in zeolite 

concentration. As can be seen in Figure 4.29, the variation of the Raman peak at 673 cm-1 

intensity in the grating vector direction is cyclic in conformity with the fringe spacing of 

5µm in the grating, indicating that there is indeed a redistribution of nanoparticles when a 

grating is recorded. If one assumes that the intensity of the Raman peak at 673 cm-1 is 

proportional to the concentration of the Beta zeolite nanodopant, one can estimate that 

around 40% of the nanoparticles are redistributed; this was calculated from the differences 

between the minimum and maximum Raman intensities at 673 cm-1. As expected, the 

periodical spatial modulation of the Raman signal was not observed for the nanocomposite 

outside the grating. 

 

Figure 4.29. Raman spectra scan in grating vector direction (1 µm steps): (blue) 

outside the grating; (red) inside the grating; (dashed line) Sin function; (dots) 

experimental data; 200 lmm-1, 5 µm space fringing. 

 
The redistribution of Beta nanoparticles was observed for the first time in the case of 

acrylamide based photopolymer nanocomposites. Despite this, no improvement of the 

refractive index modulation with the increase of the concentration of nanoparticles was 
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observed. A possible reason for this observation is that the difference between the 

nanoparticles refractive index and the photopolymer matrix is not sufficient to produce an 

improvement in the refractive index modulation. From the analysis of the refractive index 

of the nanocomposites with different concentration of zeolite Beta nanoparticles one can 

estimate the refractive index of the layers doped with 5%wt. nanoparticles to be 1.483 ± 

0.005 at 633 nm and the refractive index of the undoped photopolymer matrix at this 

wavelength is 1.499 ± 0.005 (Table 4.4), a difference of 0.016. If the redistribution of Beta 

nanoparticles is of around 40%, then one could assume that a maximum increase in 

refractive index difference of 0.0064 is possible. 

  

4.6 INTERACTIONS BETWEEN ZEOLITE BETA AND PHOTOPOLYMER 

COMPONENTS 

To determine how the presence of zeolite nanoparticles affects the grating performances of 

acrylamide based photopolymer, we have compared the recording characteristics of layers 

with different concentrations of polymer components. Layers were prepared using stock 

solutions with 5%, 10% and 20%wt. polyvinyl alcohol (PVA). The compositions of the 

different suspensions are presented in Table 4.7.  
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Table 4.7. Compositions of layers (dry content wt. %) prepared with different 

concentrations of matrix components: (1) undoped photopolymer; (2) nanocomposite 

containing 1%wt. of zeolite; (3) nanocomposite containing 5%wt. of zeolite.  

 

Matrix 

component 

Matrix with 20% PVA Matrix with 10% PVA Matrix with 5% PVA 

1 2 3 1 2 3 1 2 3 

PVA 54% 54% 51% 46% 46% 43% 57% 56% 52% 

TEA 34% 33% 32% 37% 36% 34% 23% 22% 20.5% 

AA 9% 9% 9% 13% 12% 11.5% 15% 15% 14% 

BA 3% 3% 3% 4% 4% 4% 5% 5% 4.5% 

Zeolite - 1% 5% - 2% 7.5% - 2% 9% 

 

The refractive index modulations for all the above samples are shown in Figure 4.30. 

 

Figure 4.30. Refractive index modulation of Beta nanocomposites, layers were 

prepared with PVA stock solutions with a concentration of 5% PVA, 10% and 

20%wt.; spatial frequency of 1000 lmm-1 and recording intensity of 5 mWcm-2. 
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The layers show a decrease of the refractive index modulation with increasing the PVA 

concentration, which is expected since the monomer concentration in the dry layer is 20 ± 

0.8%wt. in the case of 5% PVA stock solution, 16 ± 0.6%wt. for 10% PVA stock solution 

and 12 ± 0.3%wt. for 20% PVA stock solution. The standard deviations indicate similar 

monomer concentrations when using the concentration of the PVA stock solution. Since the 

observed difference in the decrease in the refractive index modulation for the doped and 

undoped layers cannot be accounted by differences in the monomer concentration, one can 

suspect that it could be caused by differences of about 10% in the TEA concentration. This 

hypothesis was further investigated. 

 

Firstly, the interactions between zeolite nanoparticles and the photopolymer components 

were studied by means of Visible Spectroscopy. Typical absorption spectra are shown in 

Figure 4.31 for aqueous solutions of pure erythrosine B (sensing dye) and a mixture of 

erythrosine B and zeolite. 

 

Figure 4.31. Visible absorption spectrum of (pink) aqueous solution of erythrosine 

B; (dark blue) aqueous solution of zeolite Beta; (blue) aqueous solution of erythrosine 

B and zeolite Beta. 
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No shift in the absorption spectrum of the dye was observed after the addition of the zeolite 

nanoparticles indicating the absence of interaction between the dye and the nanoparticles.  

Spectra were also taken from photopolymer solutions. The shapes of the spectra remained 

the same but a red shift of the absorption maximum of 9nm was obtained. This was 

expected since the absorption maxima of dyes are dependent on solvent polarity. In non-

hydrogen-bond donating solvents, solvation of dye molecules probably occurs via dipole-

dipole interactions, whereas in hydrogen-bond donating solvents the phenomenon is more 

hydrogen bonding in nature [8, 9]. Studies in xanthene dyes such as eosin and erythrosin 

showed that the absorption maximum in aqueous solutions shifts to longer wavelengths in 

ethanol, and the same type of solvent dependency of the absorption spectra was observed 

for hidroxyxanthenes, in which the shift in the absorption maximum is due to hydrogen 

bonding [10]. 

 

Different components of the photopolymer (one at a time) were then added to the solution 

of zeolite and erythrosine B and their visible absorption spectra taken. The shift in the 

maximum absorption was measured (Figure 4.32).  

 

Figure 4.32. Change in the position of the absorption maximum intensity in aqueous 

solutions containing erythrosine B and zeolite Beta in comparison to aqueous solution 

in the presence of acrylamide (AA), TEA and PVA. 
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It was observed that the water dispersions of Beta showed a larger red shift in the 

absorption peak intensity of erythrosine B in presence of PVA (16 nm). A red shift of 5nm 

in the absorption peak for zeolite Beta was detected in the presence of TEA, which does not 

occur in the case of other types of zeolite studied (see chapter 5). 

 

In the second part of this study, the interactions between zeolite Beta and photopolymer 

components, layers of acrylamide based photopolymer containing 5%wt. of Beta 

nanoparticles were studied by 13C NMR and compared with undoped layers. The spectra 

were collected outside and inside the grating area (Figure 4.33).  

 

 

Figure 4.33. 13C NMR spectra of photopolymer doped with Beta; (1, black): 

undoped photopolymer; (2, blue): zeolite doped photopolymer (outside grating); (3, 

red): zeolite doped photopolymer (inside grating); spatial frequency 1000 lmm-1 and 

recording intensity of 5 mWcm-2. 

 

In Beta containing nanocomposite the two peaks corresponding to TEA are shifted to lower 

field as highlighted by the arrows in Figure 4.34 indicating an interaction (possibly 

hydrogen bonding) between the TEA and the nanoparticles. As can be seen a more 
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pronounced shift in the C peak is obtained for Beta-nanocomposite inside the grating, thus 

confirming the strong interactions between the particles and the photopolymer. The 

addition of acrylamide to the water dispersion of zeolite nanoparticles and erythrosine B 

dye leads to a 2nm red shift in the erythrosine B absorption peak in solutions containing 

zeolite Beta (see Fig. 4.33), A study of the interaction of the monomer and Beta 

nanoparticles was carried out using Raman spectroscopy.   

 

Initially only acrylamide was studied. It was dissolved in water and the solvent was 

allowed to evaporate. A series of 30 Raman spectra were then taken. It was found that the 

acrylamide molecules could be in associated (e.g. hydrogen bonding) or free states [11] 

(Figure 4.34A and 4.34B respectively). The associated state can be distinguished from the 

free-state by the appearance of a new peak at lower frequency, as denoted by the black 

arrow in the figure. The second study involved a mixture of acrylamide and Beta 

nanoparticles. The two components were mixed in water and then the solvent is allowed to 

evaporate. Analysis of these spectra showed that, in the presence of Beta nanoparticles, the 

acrylamide molecules were in an associated state (Figure 4.34). The presence of a shoulder 

(new peak) at lower frequencies indicates the presence of acrylamide molecules in an 

associated state (e.g. hydrogen bonding) [11]. Black arrows denote bands due to associated 

species. 
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 A)  B)                            

Figure 4.34.  Raman spectra in the region of N-H stretching; (A) associated 

acrylamide in absence (1) and in presence (2) of Beta nanoparticles; (B) free 

acrylamide in absence of Beta nanoparticles (1) and some associated acrylamide in 

presence of Beta nanoparticles (2) 

 

From these results, one can conclude that, due to an interaction between the monomer and 

the Beta nanozeolites, the mobility of acrylamide molecules can be significantly reduced if 

they trapped inside of zeolite pores resulting in decrease in the diffraction efficiencies.  

 

4.7  SENSING OF TOLUENE 

Despite the fact that no improvement of the refractive index modulation was observed in 

this particular nanocomposite, the spatial redistribution of nanodopants observed can be 

used in fabrication of holographic sensors. Holographic sensors are devices consisting of a 

hologram that changes its properties (diffraction efficiency or spectral response) when 

exposed to analyte containing environment. The main advantages of holographic sensors 

recorded in photopolymers are that they provide visual information, can be easily mass 

produced and are relatively cheap. 
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Holographic sensors reported in literature are usually based in reflection holograms [12, 

13]. In this type of material the interference fringe structure runs parallel to the layer 

surface and a physical, chemical or biological mechanism that changes the spacing of the 

fringes (for instance due to the fact that the polymeric matrices are generally hydrogels that 

can swell and shrink in the presence of water) or the average refractive index (for instance 

due to a change of the refractive index of the medium through the absorption of moisture) 

will generate observable changes in its reconstruction wavelength (color). 

 

In the case of unslanted transmission holograms, the fringe planes are perpendicular to the 

substrate surface and thus are insensitive to dimensional changes in the polymeric matrix 

(shrinkage or swelling). In this type of sensor differences in the layer thickness or 

refraction index of medium due to water/analyte absorption do not lead to fringe spacing 

change. The diffraction efficiency (η) is given by: 

cos
sin 12 dn

  (Eq. 4.3), 

where n1 is the refractive index modulation, d is the thickness of the layer, λ is the 

wavelength of light and θ is the angle between the two recording beams. 

Diffraction efficiency can be expected to change if a change in the refractive index 

modulation (Δn1), thickness (Δd) or light wavelength (Δλ) occurs. The change in efficiency 

is derived from Eq. 4.3: 

dndnnddn 1
1

1
1

 cos
2sin    (Eq. 4.4) 

 

The operating principle of a holographic sensor based on a transmission hologram recorded 

in a nanocomposite material can be seen in Fig. 4.35. 
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Figure 4.35.  Operational principle of a holographic sensor recorded in a 

nanocomposite material. 

 

Zeolite films have proved to be effective materials for water vapor sensing. The Beta films 

showed a higher absorption capacity towards water vapor than the zeolite A films [14]. 

Zeolite Beta is also a promising material for the adsorption of toluene and propene [15, 16]. 

Chemical vapors such as acetone (n=1.36), chloroform (n=1.45) and toluene (n=1.50) have 

been reported [17] to change the overall average refractive index of a reflection grating 

recorded in undoped acrylate polymer. Using toluene as a test probe our aim was to detect 

volatile organic compounds by the change of the diffraction efficiency of holographic 

sensors. In order to evaluate the sensing properties of the materials, volume gratings were 

recorded in undoped photopolymer and Beta nanocomposite. The gratings were then placed 

in a container into which toluene was added (where the concentration of toluene inside the 

volume of the container was estimated to be 19 ppm), and the container was sealed for 10 

minutes. This experiment was carried out in a fume hood, and contact with ignition sources 

was prevented.  

 

The angular selectivity of gratings of both undoped acrylamide and Beta 

photopolymerizable nanocomposite were obtained before and after exposure to toluene 

(Figure 4.36) and the results are summarized in Figure 4.37. 
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Figure 4.36. Angular selectivity curves measured before and after exposure to 

toluene (19ppm) for the highest change in the diffraction efficiency observed: (A) 

undoped photopolymer; (B) photopolymer containing Beta nanoparticles. 

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.37. Change in diffraction efficiency of a grating exposed to toluene for: 

(diamonds) Beta photopolymerizable nanocomposite and (circles) undoped 

acrylamide based photopolymer.  
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As can be seen, the nanocomposite grating exhibits a greater change in diffraction 

efficiency than the undoped photopolymer grating. For gratings made in undoped 

photopolymer with initial diffraction efficiency ranging from 20 to 80% a change in the 

diffraction efficiency of less than 10% occurred after exposure to toluene (maximum 

observed was Δη=9.8 % for a grating with initial diffraction efficiency of 58%). As 

discussed previously, the change in the diffraction efficiency in undoped layers is possibly 

due to a toluene induced dimensional change of the layer since one would not expect a 

change in the refractive index modulation. The gratings recorded in the layers containing 

5wt% Beta nanoparticles, exhibit a maximum diffraction efficiency change of 22% (double 

of the value observed for undoped layers) from   values initially ranging from 20 to 60%. 

An improvement in the sensitivity towards toluene for Beta photopolymer composite 

(Figure 4.37) is observed. It is also worth noting that the higher the initial diffraction 

efficiency of the doped layers is, the greater change caused by the exposure to toluene. This 

can be explained by the fact that in higher diffraction efficiency gratings the redistribution 

of nanoparticles is more effective, i.e., there is a greater difference between the 

concentrations of nanoparticles in the bright and dark regions. 

 

It is also expected that the refractive index in the bright regions is higher than the refractive 

index in the dark regions rich in zeolite nanoparticles. Due to adsorption of toluene in the 

nanocomposite grating, the refractive index in the dark regions is increased. Thus the 

resulting refractive index modulation which is defined as the difference between the 

refractive index in the bright and in the dark regions decreases. This ultimately is observed 

as a decrease of the measured diffraction efficiency. The observed decrease is expected to 

be higher when the nanoparticle redistribution is more effective, which is confirmed by the 

experimental data shown in Figure 4.37. 
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4.8 CONCLUSIONS 

Colloidal solution of zeolite Beta was characterized by DLS, XRD, nitrogen adsorption, 

SEM and Raman spectroscopy. Beta photopolymerizable nanocomposites were 

characterized in terms of their optical properties. The results by DLS, light scattering, 

surface morphology and surface roughness showed that a good optical quality material is 

produced in the case of the acrylamide-based photopolymer doped with Beta nanoparticles. 

The stability of films of acrylamide-based photopolymer doped with Beta nanoparticles 

was compared with that of undoped photopolymer. It was observed that zeolite Beta 

nanoparticles have no effect on the aging of the acrylamide based photopolymer. We have 

observed that during holographic recording a 40% redistribution of Beta nanoparticles 

occurs in the nanocomposite. This was shown both by SEM-EDX and Raman analysis. 

Although there is a spatial redistribution of Beta nanoparticles during the holographic 

recording, this effect is attenuated due to the fact that some monomer molecules interact 

with TEA molecules as shown by 13C NMR and Raman spectroscopy. Also, the interaction 

between acrylamide with zeolite Beta is shown by Raman spectroscopy. These 

photopolymer - zeolite interaction ultimately result in no improvement of the refractive 

index modulation of this nanocomposite. This is confirmed by the refractive index 

measurements before and after incorporation of Beta nanoparticles in the photopolymer, 

which showed that the micropores of this zeolite are filled.  

 

This nanocomposite is a good candidate for the fabrication of holographic sensors for 

chemical detection, as shown here for toluene. Photopolymer doped with Beta zeolite 

showed increased sensitivity toward toluene when compared to undoped photopolymer. 
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CHAPTER 5: ZEOLITE A (LTA-TYPE STRUCTURE) 

DOPED NANOCOMPOSITES 

5.1 INTRODUCTION 

In this chapter we provide information regarding the characterization of zeolite A colloidal 

solution. In contrast to zeolite Beta, zeolite A is a small pore material with a more 

hydrophilic nature. The interactions between the photopolymer components and zeolite A 

nanoparticles were characterized by 
13

C NMR and UV-Visible spectroscopy and compared 

with the Beta nanocomposite.  

 

Unlike zeolite Beta nanocomposites, zeolite A nanocomposites showed a maximum 

improvement of the light induced refractive index modulation of the grating of 16% for a 

small addition of 1%wt. zeolite A in comparison to the undoped photopolymer. Host 

photopolymer/ zeolite interactions can explain these results because in the case of zeolite A 

nanocomposites, the nanoparticles showed no evidence of interaction with the polymer 

components. 

 

5.2 ZEOLITE A NANOPARTICLES CHARACTERIZATION  

Nano-sized zeolite A crystals (Fig. 5.1) in a colloidal suspension were used in the present 

study.  

A) B) 

Figure 5.1.  Periodic building unit of the zeolite A family (LTA-type framework): 

(A) view along [001]; (B) the pore structure of zeolite A. 
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Two solutions of zeolite A were used in the present study. The light scattering results 

showed that the particle sizes were around 180nm and 90nm (Fig. 5.2).  

 

Figure 5.2. DLS curves of zeolite A suspensions. 

 

Both materials exhibit monomodal particle size distribution, but only the solution of 90nm 

particles is considered nanosized material. The results were shown in number of particle 

counts obtained per unit volume of sample (number weighted). 

 

The zeolite morphology was characterized using SEM technique (Fig. 5.3). 

 

Figure 5.3. Morphology of zeolite A nanoparticles. 
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Zeolite A nanoparticles show an almost cubic shape at high magnification, which is typical 

of larger crystals of zeolite A [1].  

 

Zeolite A was analyzed using Raman spectroscopy which is applied for structure study as 

well. The Raman scattering in the range 730-770 and 930-980 cm-1 is generated from the 

symmetrical and antisymmetrical NC4 stretching modes, respectively. The template 

(tetramethylammonium hydroxide, TMA) species trapped in the precursor amorphous 

solidified substance during the crystallization of zeolite A exhibits the same Raman spectra 

as that of TMA in water solution. The Raman signals generated by the N-C stretching are at 

753 and 951 cm-1. The appearance of additional, higher-energy shifted Raman scattering at 

about 770 and 960 cm-1 is a strong indication of the formation of crystalline sodalite-type 

zeolite structure. The Raman signal generated by the sodalite-cage trapped TMA ions 

appears at 767cm-1 for zeolite A and there is a blue shift of the band originating from the 

antisymmetrical C-N bond stretching modes at 958 cm-1 [2].  

 

The Raman spectrum of zeolite A nanoparticles is shown in Fig. 5.4.  

.  

Figure 5.4.  Raman spectrum of zeolite A nanoparticles. 
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The prominent band in the Raman spectrum of zeolite A in the fingerprint region (300-600 

cm-1) was found at 489 cm-1. This band is assigned to the motion of an oxygen atom in a 

plane perpendicular to the T-O-T bonds. Other prominent bands observed were also 

assigned (see Table. 5.1). To observe zeolite redistribution during holographic recording it 

would be useful to investigate the 489 or 1100 cm-1 Raman peaks.  

 

Table 5.1. Raman peak assignments of zeolite A. 
 

Raman Peak (cm-1) Functional Group/ Vibration 

489.1 T-O-T stretching of zeolite (6 rings) 

768.2 Symmetrical NC4 stretching (template) 

957.1 Asymmetrical NC4 stretching (template) 

1100.3 Stretching of Si-O (zeolite) 

1452.4 Deformation of CH (template) 

2983.8 Symmetrical CH3 stretching (template) 

3038.2 Asymmetrical CH3 stretching (template) 

 
 
 
5.3 ZEOLITE A NANOCOMPOSITES OPTICAL PROPERTIES 

Zeolite A doped nanocomposites are prepared by adding different quantities of zeolite 

solution to the photopolymer solution and adding water to have the same concentrations of 

the remaining components (monomers, TEA, PVA) in unit volume. An example using 

PVA 10% stock solution and Zeolite A 4.1%wt. stock colloidal suspension is given in 

Table 5.2. 
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Table 5.2. Compositions used for preparation of photopolymerizable zeolite A 

nanocomposite (NC) layers from zeolite solution 4.1%wt. (10% PVA stock solution). 
 

Photopolymerizable Material 
Photopolymer 

Solution (ml) 

Nanoparticle 

Solution (ml) 
Water (ml) 

Undoped Photopolymer 1 0 0.5 

NC - A 1%wt. 1 0.05 0.45 

NC -A 2.5%wt. 1 0.125 0.375 

NC - A 5%wt. 1 0.25 0.25 

NC - A 10%wt. 1 0.5 0 

 

The compatibility of the zeolite particles suspensions with the photopolymer solutions was 

measured the DLS. No aggregation of the zeolite nanoparticles directly after mixing and 

after 24h aging was observed (Figure 5.5).  

 

Figure 5.5. DLS curves of (orange) zeolite A; (purple) photopolymer doped with 

zeolite A nanoparticles (freshly mixed); (green) photopolymer doped with zeolite A 

nanoparticles (24 hours stored at RT). 
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The optical losses of zeolite A nanocomposites (see Eq. 4.1) (layer thicknesses of around 

20 m) were characterized as a function of the concentration of zeolite A nanoparticles (see 

Figure 5.6). 

 

Figure 5.6. Optical losses of nanocomposites at different concentrations of zeolite A 

with a mean size of 180 nm. 

 
As can be seen in Fig.5.6, the optical losses increase from 4% (undoped photopolymer) to 

7% when we introduce 2.5%wt. zeolite A nanoparticles. This experiment was conducted 

with the solution of zeolite A with a mean size of 180 nm. The optical losses of the 

nanocomposite at 5%wt and 10 % of nanoparticles were 20% and 47%, respectively. One 

can expect lower optical losses by using zeolite A nanoparticles with a size of 90 nm, 

which was confirmed by studying its bidirectional scattering distribution function (see Fig. 

5.7).  
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A)  B) 

Figure 5.7. Bidirectional scattering distribution functions of glass, undoped 

photopolymer and zeolite A nanocomposites (size of A crystals of 90 nm) in several 

concentrations; (A) unpolymerized material; (B) grating of 1000 lmm-1 (logarithmic 

scale). 

 
 
The increase in zeolite A concentration leads to a small increase in the scattering of light, 

except for the nanocomposite containing 10%wt. of zeolite A, where an increase of light 

scattering is observe. There was no difference in scattering between the unpolymerized and 

polymerized material (grating of 1000 lmm-1).  
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The two solutions of zeolite A are expected to yield different scattering which was firstly 

investigated by visible spectroscopy, where we have compared the scattering of solutions 

of zeolite A of these two different sizes: 90 and 180 nm (Fig. 5.8). 

 

Figure 5.8. Visible spectra of zeolite A nanocomposites; ABP is the acrylamide 

based photopolymer, A is zeolite A, and NC are the nanocomposite (180 nm, 1%wt. 

and 90 nm 4.1%wt.). 

 

The scattering of solution containing 90 nm size zeolite A is much lower than that observed 

for zeolite A with size of 180 nm as seen by the lower absorbance intensity value of 

nanocomposite zeolite A (90 nm) at lower wavelengths (<450 nm). 

 

Secondly, the roughness of the nanocomposites made with zeolite A 90 and 180 nm using a 

white light interferometric (WLI) surface profiler is compared. Figure 5.9 and Table 5.3 

show these results.  
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Figure 5.9. Dependence of surface roughness from the concentration of zeolite A in 

the two nanocomposites (A nanoparticles of 90 nm and 180 nm).   

 
Table 5.3. Surface roughness measurements (RMS) for zeolite A nanocomposites. 
 

 
Concentration of zeolite A (%wt.) Surface roughness (nm) 

90
 n

m
 

0 1.1 ± 0.3 

1 2.9 ± 0.3 

2.5 4.3 ± 0.1 

5 3.3 ± 0.4 

7.5 4.2 ± 1 

10 3.3 ± 0.5 

18
0 

nm
 1 8.4 ± 0.7 

5 21.2 ± 3.3 

 

The addition of Zeolite A nanoparticles (90 nm) to the photopolymer leads to a not very 

pronounced roughening of the initially flat undoped surface (1 nm), which is not the case of 

the 180nm nanoparticles, where a significant roughening of the surface occurs (Fig. 5.9 and 

Table 5.3). In the case of 90 nm nanoparticles, the roughness increases initially with the 

addition of zeolite A, reaching a plateau for 2.5%wt. concentration of zeolite A, with a 

value of 3 nm. The roughness of the nanocomposites made with 180 nm is around six times 

higher (5%wt.) than the one obtained with the 90 nm zeolite.  
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It can be concluded that the size of zeolite nanoparticles can influence the optical properties 

of the nanocomposites. The smaller the size of nanoparticles, the less scattering is expected 

to occur.  

 

5.4 GRATING PERFORMANCES OF ZEOLITE A NANOCOMPOSITES 

 

5.4.1 AT DIFFERENT SPATIAL FREQUENCIES 

Gratings were recorded at four spatial frequencies (200, 500, 1500 and 2000 lmm-1) at a 

constant intensity of 5mWcm-2 for 100s (Fig. 5.10 and Table 5.4) for two different 

concentrations (1% and 5%wt.) for zeolite A of 180 nm in size. 

 

 

 

 

    

 

A) A) 

B)                                                                  

 

 

 

 

                                                                                                                            B) 

Figure 5.10. Grating performances dependence on spatial frequency for different 

concentrations of zeolite A (180 nm): (A) diffraction efficiency; (B) refractive index 

modulation at recording intensity of 5 mWcm-2. 
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Table 5.4. Thickness of gratings recorded in zeolite A films presented in Fig. 5.10 

(obtained by fitting of angular selectivity curves). 
 

Spatial Frequency 

 (lmm-1) 

Thickness (µm) 

Undoped 1% wt. A 5% wt. A 

500 54 ±3 44 ±5 51 ±6 

1000 46 ±3 54 ±2 54 ±6 

1500 48 ±1 35 ±2 48 ±6 

2000 47 ±3 53 ±2 43 ±2 

 

The highest refractive index modulation observed was of 5.1×10-3 for both undoped and 

5%wt. doped zeolite A nanocomposite. This value is the optimum in the case of undoped 

photopolymer, observed for a spatial frequency of 1000 lmm-1. For zeolite A 5%wt. 

nanocomposite, the refractive index modulation increases with the spatial frequency and 

reaches its maximum value for 2000 lmm-1. For the 1%wt. zeolite A nanocomposite, the 

refractive index modulation increases with the spatial frequency up to the optimum value of 

1500 lmm-1.  

 

5.4.2 DIFFERENT ZEOLITE CONCENTRATIONS 

The grating performance dependences on zeolite A concentrations (90 nm) is shown in Fig. 

5.11 and Table 5.5. 
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Figure 5.11.  Grating performances dependence on concentration of zeolite A (90 

nm) nanocomposites: (A) diffraction efficiency and (B) refractive index modulation; 

gratings recorded at 1000 lmm-1 and recording intensity of 5 mWcm-2. 

 

Table 5.5. Thickness of gratings recorded in zeolite A films presented in Fig. 5.11 

(measured by the angular selectivity curve). 
 

Zeolite (%wt.) Thickness (µm) 
0 19 ±1 

1 21 ±2 

2.5 21 ±1 

5 22 ±0.4 

10 22 ±2 
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The incorporation of small concentrations of zeolite A shows an improvement of the 

refractive index modulation of 16% and 8 % for a concentration of zeolite of 1%wt. and 

2.5%wt., respectively.  

 

5.5 INTERACTIONS BETWEEN ZEOLITE A AND PHOTOPOLYMER 

COMPONENTS 

To determine how the zeolite nanoparticles affect the grating performance of the 

nanocomposites, we have varied the concentrations of zeolite in the polymer components.  

This was done for both zeolite Beta (see Chapter 4) and zeolite A since these two zeolites 

have different properties, such as pore size and hydrophilic nature, properties that we 

suspect would have an influence on holographic properties of the two photopolymerizable 

nanocomposites. 

 

As previously described, layers containing both zeolites were prepared using stock 

solutions of 5%, 10% and 20%wt. polyvinyl alcohol (PVA). The compositions of the 

different suspensions were presented in Table 4.7. The refractive index modulation values 

determined for zeolite A nanocomposites (90 nm) are shown in Figure 5.12. 
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Figure 5.12. Refractive index modulation of photopolymer nanocomposites 

containing zeolite A nanoparticles; the layers were prepared with PVA stock solutions 

with a concentration of 5%, 10% and 20% of PVA. For comparison, the data for 

zeolite beta 5% PVA doped layers is also presented. 

 
The decrease in refractive index modulation in the case of zeolite A nanocomposites (16%) 

is twice smaller than the one observed for zeolite Beta nanocomposites (37%), as it can be 

visually seen by observing the slop decrease for both nanocomposites for the case of PVA 

5% matrix. This PVA concentration was chosen for comparison since it was the set of data 

where the decrease in refractive index modulation was more pronounced.   

 

The interactions between zeolite A nanoparticles and the photopolymer components are 

studied. The same methodology as described before is followed. First, a study by visible 

spectroscopy was carried out. Different components of the photopolymer (one at a time) 

were added to the solution of zeolite and erythrosine B (Figure 5.13). 
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Figure 5.13. Change in the position of the absorption maximum intensity in aqueous 

solutions containing erythrosine B and zeolite A and Beta when compared to aqueous 

solution in the presence of acrylamide (AA), TEA and PVA. 

 

No shift in the absorption spectrum of the dye (erythrosine B) was observed after addition 

of the zeolite nanoparticles indicating the absence of interaction between the dye and the 

nanoparticles. Spectra were also taken from photopolymer solutions. In this case, the 

shapes of the spectra remained the same but a red shift of the absorption peak of 9nm was 

measured in the case of solutions with zeolite A.  

 

It was observed that the addition of acrylamide to the water dispersion of zeolite 

nanoparticles and erythrosine B dye leads to a 2 nm red shift in the erythrosine B 

absorption peak in solutions containing both zeolite A and Beta. This indicates that a 

similar change of the solvent polarity after acrylamide addition in the case of zeolite A and 

Beta. The water dispersions of zeolite showed a larger red shift in the absorption peak of 

erythrosine B in presence of PVA (16nm) than zeolite A (12 nm). The main difference 

observed between these two nanoparticles was that a red shift of 5 nm in the absorption 

peak for zeolite Beta was detected when TEA was present, while no shift occurred in the in 

the presence of zeolite A.  
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Finally, gratings recorded in a photopolymer doped with 5%wt. of zeolite A nanoparticles 

(90 nm) were also studied by 13C NMR and compared with undoped layers. The spectra 

were collected outside and inside the grating area (Figure 5.14).  

 

Figure 5.14. 13C NMR spectra of acrylamide based photopolymer doped with zeolite 

A: (black, 1) undoped photopolymer; (blue, 2) zeolite doped photopolymer (outside 

grating); (red, 3) zeolite doped photopolymer (inside grating); spatial frequency 1000 

lmm-1 and recording energy of 600 mJcm-2. 

 

In contrast to zeolite Beta doped nanocomposite, where the peaks were shifted to lower 

field (see Fig. 4.33), in the zeolite A nanomposite the two peaks corresponding to TEA 

showed no shift, indicating no interaction between zeolite A nanoparticles and the host 

photopolymer components. The origin of a new peak after polymerization needs further 

studies.  
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5.6  CONCLUSIONS 

Zeolite A nanocomposites with good optical quality were prepared by incorporating 

different concentrations of zeolite A into the photopolymer. The nanocomposites were 

studied by DLS and light scattering surface roughness measurements. The influence of the 

zeolite A particle size (around 90 and 180 nm) on the optical properties of the 

nanocomposites was investigated, and it was concluded that the smaller the size of 

nanoparticles, the less scattering occurs. There was an improvement of 16% in the 

refractive index modulation upon addition of 1%wt. of zeolite A with a size of 90 nm. One 

of the possible reasons for this is the luck of interactions between the zeolite A 

nanoparticles and the photopolymer components, which can be explained by the high 

hydrophilicity and small pores of this zeolite. Future work on this nanocomposite could 

investigate the nanoparticles redistribution and the refractive index differences between the 

nanoparticles and the photopolymer matrix.  
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CHAPTER 6: ALPO-18 (AEI-TYPE STRUCTURE) DOPED 

NANOCOMPOSITES 

6.1 INTRODUCTION 

AlPO-18 is an aluminophosphate molecular sieve, firstly synthesized by Wilson et al. [1] 

The framework topology is characterized by a three-dimensional pore system possessing 

eight-membered intersecting channels with a diameter of 3.8 Å [2]. 

 

Optical properties of the AlPO-18 doped nanocomposite were investigated by means of 

DLS, light scattering measurements, surface roughness and refractive index determination. 

Grating performances of AlPO-18 nanocomposites (diffraction efficiency and refractive 

index modulation) on parameters such as recording intensity, special frequency and zeolite 

concentration were also studied. Raman spectroscopy was used to study the AlPO-18 

nanoparticle redistribution during the holographic recording. The optimum redistribution 

conditions for this type of nanocomposite were obtained. Despite the redistribution effect 

observed, the pores of zeolite are partially filled (as shown by refractive index calculations) 

by water molecules and no improvement of the refractive index modulation occurs when 

we add AlPO-18 to the photopolymer.  

 

The optical properties of the photopolymer layers combined with the ability of the AlPO-18 

nanoparticles to be light-induced redistributed during the holographic recording are were 

explored for fabrication of holographic humidity sensors. It was observed that the addition 

of AlPO-18 to the photopolymer introduces irreversibility in the humidity response of the 

layers. This is important for instance in situations where, regardless of current (potentially 

lower) humidity levels, one would like to know if humidity had previously been higher. 
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6.2 ALPO-18NANOPARTICLES CHARACTERIZATION  

The structure of AlPO-18 crystals (AEI type zeolite framework) is shown in Figure 6.1. 

 A) B) 

Figure 6.1.  Periodic building unit of .the AEI-type molecular sieve: view along (A) 

[110]; (B) the pore structure of AlPO-18. 

 

The DLS results showed that the particle size of AlPO-18 was 115 nm (Fig. 6.2) expressed 

in number of particle counts obtained per unit volume of sample (number weighted). 

 

Figure 6.2.   DLS curve of AlPO-18 suspension. 

 

The crystalline nature of the microporous AlPO-18 nanoparticles was proven by the XRD 

and the patterns are shown in Figure 6.3.  



153 
 

 

Figure 6.3. X-ray diffraction patterns of AlPO-18 nanocrystals: (A) as-prepared 

and (B) calcined (390 °C for 12 h). 

 

The sharp reflections with high intensities indicate high crystallinity of the sample and the 

XRD patterns exhibit the typical Bragg reflections for AEI-type crystalline structure [3]. 

 

The morphological features of the AlPO-18 nanoparticles were examined by scanning 

electron microscopy (Fig. 6.4). 

 

Figure 6.4. Morphology of AlPO-18 nanoparticles. 

 

AlPO-18 nanocrystals have elongated elliptical shape with well-shaped single crystals 

which is typical for this framework [4].  



154 
 

The porosity of the AlPO-18 nanocrystals has been proven by N2 sorption measurements 

(Fig. 6.5).  

 

Figure 6.5. Nitrogen adsorption isotherms of AlPO-18 nanoparticles (open circles 

denote desorption). 

 

The nitrogen adsorption-desorption curves possess the typical type IV isotherm in 

accordance with IUPAC classification [5]. The isotherm exhibits a rapid increase in 

nitrogen uptake at low relative pressure (P/Po < 0.1), which corresponds to the filling of the 

micropores (size of 3.8 Å) with nitrogen. A plateau with an abrupt inclination step at high 

relative pressure (P/Po > 0.8) was observed, which is associated with multilayer adsorption 

in the textural mesopores of the nanosized material. The micropore volume was calculated 

to be 0.21 cm3g-1 and of the total specific pore volume of 0.73 cm3g-1, which is due to the 

small crystal size of the nanoparticles. According to literature these are typical values [3]. 

 

Raman spectroscopy was also used to characterize the AlPO-18. The spectrum of AlPO-18 

nanoparticles is shown in Fig. 6.6. 
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Figure 6.6.  Raman spectrum of AlPO-18 nanoparticles. 

 

The prominent band in the Raman spectrum of AlPO-18 in the fingerprint region (300-600 

cm-1) is found at 420.4 cm-1. This band is assigned to the motion of an oxygen atom in a 

plane perpendicular to the T-O-T bonds. Other prominent bonds observed were also 

assigned (see Table. 6.1). 

 
 
Table 6.1. Raman peak assignments of AlPO-18. 
 

Raman Peak (cm
-1

) Functional Group/ Vibration 

420.4 T-O-T stretching (4 rings) 

678.0 C-C-N (template) 

1118.9 Stretching of Si-O (zeolite) 

1465.2 Deformation of CH (template) 

2948.0 Symmetric stretching of CH3 (template) 

2999.5 Assymmetric stretching of CH3 (template) 
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For the synthesis of AlPO-18 tetraethylammonium hydroxide (TEAOH) was used, the 

same template as for zeolite Beta. One can see that the peaks of the template are found at 

around the same frequencies.  

 

6.3 ALPO-18 NANOCOMPOSITES OPTICAL PROPERTIES 

AlPO-18 doped nanocomposites were prepared by adding different quantities to the 

photopolymer solution and adding water to have the same concentration of the remaining 

components (monomer, TEA, PVA) in unit volume, as described for the previous 

nanocomposites. The AlPO-18 concentration in the colloidal suspension was 4%wt. 

 

As before, the compatibility of the AlPO-18 particles with the photopolymer solutions was 

first characterized by measuring the DLS curves for the photopolymerizable 

nanocomposites (Figure 6.7).  

 

Figure 6.7. DLS curves (number weighted) of: (black) AlPO-18; (red dashed) 

photopolymer doped with AlPO-18 nanoparticles (freshly mixed); (green) 

photopolymer doped with AlPO-18 nanoparticles (24 hours stored at RT). 
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The size of the AlPO-18 particles does not change after incorporation into the 

photopolymer, and the DLS curves have the same maximum. One can conclude that no 

aggregation of the AlPO-18 nanoparticles directly after mixing or after 24h aging was 

observed. 

 

The scattering of AlPO-18 doped nanocomposites (thickness of around 40 m) was 

characterized by light scattering measurements and the results are shown in Fig. 6.8. For 

comparison the scattering of the glass substrate is also shown. 

 

 

 

 

 

 

 

 

 

Figure 6.8. Bidirectional scattering distribution function of glass, acrylamide based 

photopolymer (ABP) and AlPO-18 nanocomposites in several concentrations as 

indicated in the figure (logarithmic scale).  

 

We can see that the BDSF curves for the AlPO-18 nanocomposites up to a concentration of 

2.5%wt. show similar dependence with the scattering angle with that for the undoped 

photopolymer. For 5%wt. and higher concentrations of AlPO-18 nanoparticles there is a 

significant increase of light scattering when compared to undoped photopolymer. One 

possible explanation is that the nanoparticles at these concentrations are located at the 



158 
 

surface of the layer by a mechanism of segregation of the nanoparticles to the air/polymer 

interface. 

 

The surface roughness of the AlPO-18 nanocomposites was quantified in five different 

locations across the material (Fig. 6.9 and Table 6.2). This method was used in the present 

work as a measure of how compatible the nanoparticles can be with the photopolymer, 

since if they are, for instance expelled to the surface of the photopolymer, the roughness 

will increase.  

 

Table 6.2. Surface roughness measurements (RMS) for AlPO-18 nanocomposites. 
 

Concentration of AlPO-18 (%wt.) Surface Roughness (nm) 

0 1.3 ± 0.3 

1 1.9 ± 0.8 

2.5 3.0 ± 1 

5 16.5 ± 0.5 

7.5 21.3 ± 1.2 

10 27.0 ± 2.6 

 

Figure 6.9. Surface roughness dependence on concentration of AlPO-18. 
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The undoped photopolymer has almost a flat surface (roughness of 1nm). The addition of 

AlPO-18 to the photopolymer has a small effect in the increase of the surface roughness up 

to a concentration of 2.5%wt. The nanocomposite containing 5%wt. has a roughness 

increase of around 12 times its initial value and for the material doped with AlPO-18 

10%wt. the roughness is of 27nm. This data confirms the previous hypothesis that the 

AlPO-18 nanoparticles are predominantly at the surface of the photopolymer for 

concentrations above 5%wt. of nanocomposite photopolymer material (see Fig. 6.8). 

 

The refractive index of AlPO-18 nanocomposites was calculated as shown in previous 

chapters (Eq. 4.2). The value for AlPO-18 doped nanocomposite does not differ much from 

the undoped photopolymer (see table 6.3). These values will be useful to calculate the pore 

volume of the zeolite before and after its incorporation into the photopolymer and 

determine if the pores are empty or filled.  This was done by Dr. T. Babeva. 

 

Table 6.3. Volume refractive index of AlPO-18 nanocomposites (633 nm).  

AlPO-18 concentration (%wt.) Refractive Index  

0 1.499 ± 0.005 

2.5 1.478 ± 0.005 

5 1.505± 0.005 

10 1.481± 0.005 

 

The refractive index of the photopolymer decreases with the incorporation of AlPO-18 

nanoparticles (except for the incorporation of 5%wt. alPO-18 nanoparticles), which is 

expected since the refractive index of this nanoparticles filled with H2O nanoparticles is 

1.414 at 633 nm, calculated from the dispersion curve based on Bruggeman effective media 

approximation (EMA), the Wemple-Di Domenico dispersion equation and the nonlinear 
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minimization of appropriate goal function (see Eq. 4.2); more details in this method can be 

found in [6]. 

 

Since the decrease in refractive index before and after incorporation of AlPO-18 in the 

photopolymer is not significant, one hypothesis is that the micropores of AlPO-18 are filled 

with guest molecules from the photopolymer matrix.  

 

The pore volume of AlPO-18 before incorporation in the photopolymer determined 

experimentally by N2-sorption data (see Fig. 6.5), was of 0.21 gcm-3. The refractive index 

and density of a mixture Al2O3 and P2O5 in the ratio 1:1 was calculated by Bruggeman 

EMA using the refractive index and density of oxides, i.e. 4gcm-3 and 2.4 gcm-3 for Al2O3 

and P2O5, respectively. Further if the AlPO-18 nanocrystals consist of two phases – air and 

(Al2O3: P2O5) one can calculate the volume fraction of the two phases using the 

Bruggeman effective media approximation. Using this approach, it was calculated that the 

AlPO-18 nanoparticles consist of 71% oxides (Al2O3: P2O5) mixture and 29 % voids. 

Considering both the free volume and the density of a mixture of Al2O3 : P2O5 to be 3gcm-3, 

the density of AlPO-18 particles was determined to be 2.42 gcm-3. Finally, having in mind 

that the densities of AlPO-18 and (Al2O3: P2O5) are 2.42 gcm-3 and 3.00 gcm-3, respectively 

1g of each substance occupies 0.41 cm3 and 0.33 cm3 respectively Thus the pore volume of 

AlPO-18 after incorporation in the photopolymer was estimated to be 0.08 gcm-3. 

Comparing this value with the value before incorporation, 0.21gcm-3, one can conclude that 

AlPO-18 pores do not remain empty after the particles are incorporated in the 

photopolymer. Due to the size of the pores (3.8 Å) only water has dimensions that allow 

them to enter which is likely to happen due to the hydrophilic nature of this material. 
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From the DLS and surface roughness data the AlPO-18 nanoparticles show a good 

compatibility with the polymeric matrix up to concentrations of 5%wt. At higher values 

there is a significant increase of surface roughness, which can be possibly explained by the 

expulsion of AlPO-18 nanoparticles to the photopolymer surface. Homogeneous coating 

suspensions can be obtained (see Fig. 6.10), homogeneous dry layers were prepared and an 

optically transparent material was obtained.  

 

 

Figure 6.10. Photopolymerizable AlPO-18 nanocomposites. From left to right: 0%, 

1%, 2.5%, 5%, 7.5% and 10%wt. 

 
 
6.4 GRATING PERFORMANCES OF ALPO-18 NANOCOMPOSITES 

 

6.4.1 AT DIFFERENT RECORDING INTENSITIES 

Gratings recorded in AlPO-18 nanocomposites for different recording intensities were 

studied. The work was divided in two parts and two independent experiments were carried 

out: one for higher recording intensities (2.5 to 15 mWcm-2) and another for lower 

intensities (0.1 to 1 mWcm-2). 

 

Firstly, the recording intensities used were 2.5, 5, 10 and 15 mWcm-2, for a time of 

exposure of 120s (data was collected up to 140s to observe if there are any dark processes 

taking place). Undoped photopolymer was compared to a nanocomposite material 

containing 1.5%wt. of AlPO-18. The reason behind the choice of AlPO-18 concentration is 
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that preliminary results showed that optimum redistribution conditions in AlPO-18 

nanocomposites occurs for a concentration of 1.5%wt. and a recording intensity of 

12mWcm-2. Briefly, these studies were made by investigating the surface relief formation 

in nanocomposites in transmission gratings with spatial frequency of 70 lmm-1. The main 

reason of relief formation at this spatial frequency is the monomer diffusion from dark to 

bright area. Since the nanoparticles are expected to diffuse in the opposite direction to the 

monomer diffusion, it can be expected that the formation of surface relief to be suppressed 

at some concentrations and intensities where redistribution occurs. As a result a decrease in 

the surface relief height may be expected and surface relief profile as a function of 

recording intensity and particles concentration were analyzed. 

 

Several samples for each experimental condition were used and a typical set of 

experimental data (three different samples, Nr. 1, 2 and 3)  is given in Figs. 6.11 and 6.12.  

 

Figure 6.11. Typical diffraction efficiency growth curves; recording intensity is 

2.5mWcm-2 and Nr. 1, 2 and 3 correspond to different gratings of either undoped 

photopolymer or AlPO-18 1.5%wt. nanocomposite. 
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Figure 6.12. Typical angular selectivity curves: (orange circles) undoped 

photopolymer; (blue squares) nanocomposite 1.5%wt. AlPO-18; Angles were 

measured inside the recording medium, recording intensity was of 2.5 mWcm-2; 

points are experimental data and lines are the corresponding fitting functions 

according to Kogelnik’s wave theory. 

 
In Fig. 6.11 one can see that the diffraction efficiency increases initially with time, reaching 

then a maximum value, which is the value of the maximum intensity peak seen in Fig. 6.12.  

 

In Figure 6.13 and Table 6.4 one can see the grating performances dependence on the 

recording intensity for several AlPO-18 doped nanocomposites. 

  A) 
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  B) 

Figure 6.13. Grating performances as a function of recording intensity (from 2.5 to 

15 mWcm-2) for undoped photopolymer (ABP) and 1.5%wt. AlPO-18 nanocomposite: 

(A) diffraction efficiency; (B) refractive index modulation (1000 lmm-1). 

 

Table 6.4. Thickness of gratings recorded in AlPO-18 1.5%wt. films presented in 

Fig. 6.13. 
 

Recording 

Intensity 

(mWcm-2) 

Thickness (µm) 

WLI Bragg Average 

Undoped AlPO-18  Undoped AlPO-18 Undoped AlPO-18 

2.5 53 ±4 65 ±4 64 ±1 57 ±6 59 ±3 61 ±5 

5 61 ±10 52 ±3 56 ±2 60 ±3 59 ±6 56 ±3 

7.5 64 ±5 57 ±5 70 ±5 58 ±2 67 ±5 58 ±4 

10 61 ±4 60 ±8 62 ±4 80 ±3 61 ±4 70 ±6 

15 52 ±7 55 ±7 62 ±2 65 ±3 57 ±5 60 ±5 

 

The undoped photopolymer shows an optimum recording intensity of 5 mWcm-2 and the 

material shows lower refractive index modulation for higher recording intensities. The 

1.5%wt. AlPO-18 nanocomposite shows no dependence of the refractive index modulation 

on the recording intensity.  
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Secondly, lower recording intensities were also studied (0.1, 0.5 and 1mWcm -2) and the 

results are presented in Fig. 6.15 and Table 6.5. The substrate used in this experiment was 

plastic (since this substrate could be useful in the fabrication of sensors) and a typical 

example of diffraction efficiency growth curves is shown in Fig. 6.14. 

 

Figure 6.14. Diffraction efficiency growth curves for recording intensities of 0.1 and 

0.5 mWcm-2. The dashed lines correspond to acrylamide based photopolymer (ABP) 

and the solid lines to AlPO-18 (1.5%wt.) nanocomposite. 

 

At low recording intensity (0.1mWcm-2), the gratings show slow grating-buildup behavior 

and lower diffraction efficiency due relatively slower polymerization speed of the 

monomers. Also, the introduction of AlPO-18 seems to slow the diffraction efficiency 

growth seen in the initial slopes of the curves. 
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 (A) 

  (B)  

Figure 6.15. Grating performances as a function of recording intensity (from 0.1 to 5 

mWcm-2) for undoped photopolymer (ABP) and 1.5%wt. AlPO-18 nanocomposite: 

(A) diffraction efficiency; (B) refractive index modulation (1000 lmm-1). 

 
Table 6.5. Thickness of gratings recorded in AlPO-18 films shown in Fig. 6.15 (fitting 

of the angular selectivity curve). 
 

Recording Intensity 

(mWcm-2) 

Thickness (µm) 

Undoped photopolymer AlPO-18 1.5%wt. 

0.1 49 ± 3 49 ± 4 

0.5 65 ± 13 68 ± 4 

1 70 ± 8 75 ± 4 
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Successful recording in photopolymer and AlPO-18 nanocomposite materials coated on 

plastic substrate can be obtained even using low recording intensities. This can be useful 

for the design of holographic sensors since one can design versatile sensor platforms. Also 

at very low recording intensity of 0.1 mWcm-2 the polymerization rate is slower than at 0.5 

and 1 mWcm-2. This may suggest that there is a minimum threshold value for the recording 

intensity.  

 

The refractive index modulation dependence in all the recording intensities was 

summarized in Fig.  6.16. 

 

Figure 6.16. Refractive index modulation as a function of recording intensity for 

undoped photopolymer (ABP) and 1.5%wt. AlPO-18 nanocomposite. 

 

For both materials, the refractive index modulation monotonically increases up to its 

maximum value at 5 mWcm-2. For higher recording intensities, there is a subsequent 

decrease in refractive index modulation in the case of acrylamide based photopolymer and 

a plateau in the case of AlPO-18 doped nanocomposite.  
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This intensity dependence observed for acrylamide based photopolymer is typical for other 

photopolymerizable holographic materials [7, 8], where the mechanisms of holographic 

recording are polymerization and diffusion. The low refractive index modulation at low 

recording intensities is due to the different rates of polymerization in bright and dark 

fringes that slow down the polymerization rate. As the intensity increases, the 

polymerization rate increases until it reaches an equilibrium value between processes of 

diffusion and polymerization. Then the limiting mass-transport effects are responsible for 

the lower refractive index at higher intensities. High intensity produces high termination 

rates and therefore short polymer chains which can more freely escape from bright to dark 

areas and in this way will decrease refractive index modulation to a greater extent. At high 

intensities, one can assume that the presence of nanoparticles slows down diffusion and 

restricts loss of short polymer chains into dark fringe areas thereby maintaining the 

optimum maximum value of refractive index modulation. Another possible explanation is 

that a large number of oligomers and/ or short polymer chains would diffuse and sweep the 

nanoparticles in the desired direction.  

 

6.4.2 AT DIFFERENT SPATIAL FREQUENCIES AND ALPO-18 CONCENTRATIONS 

The grating performances of undoped photopolymer and AlPO-18 nanocomposites were 

obtained for two different spatial frequencies (500 and 2000 lmm-1) using a constant 

recording intensity of 5mWcm-2 for a time of exposure of 70s (Fig. 6.17). The 

concentration of nanoparticles studied was from 0%wt. to 15%wt%. 



169 
 

A) 

 B) 

Figure 6.17. Grating performances of photopolymer as a function of AlPO-18 

concentration for different spatial frequencies: (A) diffraction efficiency; (B) 

refractive index modulation; recording intensity of 5 mWcm-2. 

 

 
At a spatial frequency of 500 lmm-1 there were observed higher-order diffractions and the 

diffraction efficiency was calculated using the first order intensity. 
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Table 6.6. Thickness of gratings recorded in AlPO-18 films presented in Fig. 6.17 

(fitting of the angular selectivity curve). 
 

AlPO-18 concentration 

 (% wt.) 

Thickness (µm) 

500 lmm-1 1000 lmm-1 

0 26 ±1 23 ±2 

1 23 ±2 24 ±2 

2.5 25 ±3 23 ±1 

5 26 ±3 25 ±0.7 

10 30 ±1 24 ±2 

15 40 ±4 29 ±2 

 

It was observed that all gratings recorded at spatial frequency of 2000 lmm-1 show 

consistently higher refractive modulation than the layers recorded at 500 lmm-1 spatial 

frequency. Such dependence can be easily explained in the doped layers because with the 

decrease in the grating period the distance required to be travelled by the photopolymer 

components decreases, thus more effective refractive index modulation occurs. The second 

observation is the absence of increased refractive index modulation with the increase of the 

concentration of nanoparticles. Possible reasons for this are that a very small amount of 

nanoparticles are redistributed or the difference between the nanoparticles refractive index 

and the photopolymer matrix is not high enough to improve the refractive index 

modulation. Since the refractive index of these nanoparticles filled with H2O is 1.414 at 

633nm (section 6.3) and the refractive index of the undoped photopolymer matrix at this 

wavelength is 1.499 (see Table 6.3) the difference is 0.085. The next step was to see if 

there is a redistribution of the nanoparticles during holographic recording in this 

nanocomposite as discussed in the next section. 
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6.5 REDISTRIBUTION OF ALPO-18 NANOPARTICLES 

The redistribution of AlPO-18 during holographic recording was studied by Raman 

spectroscopy. The Raman spectrum of the acrylamide based photopolymer doped with 

AlPO-18 nanoparticles (Fig. 6.18) shows one well isolated peak at 420.4 cm-1 originating 

from T-O-T vibrations of the rings of the AlPO-18-nanoparticles which are absent in the 

undoped polymer.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6.18. Raman spectra of (blue) NC - AlPO-18 photopolymer; (red) ABP - 

undoped photopolymer; and (green) AlPO-18; (200lmm-1, 5µm grating spacing). Inset 

depicts the T-O-T vibration present in the AlPO-18 sample. 

 

Gratings were recorded in AlPO-18 nanocomposites. The space fringing of the grating was 

chosen to be 5 µm (spatial frequency of 200 lmm-1). The reason to choose this space 

fringing was due to limitations of the spatial resolution of the confocal Raman 

spectrometer, which is 1µm. We monitored the spatial variation of the Raman peak 

intensity at 420.4 cm-1 in the direction of the grating vector firstly for a concentration of 

AlPO-18 7.5%wt. in gratings recorded at 1, 5 and 10 mWcm-2 (Fig. 6.19). 
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Figure 6.19. Raman spectra scan (grating vector direction, 1 µm steps) of 7.5%wt. 

AlPO-18 nanocomposite sample with recording intensities of (yellow) 1mWcm-2, (red) 

5 mWcm-2 and (blue) 10 mWcm-2 (200 lmm-1, 5 µm grating spacing). 

 
 
It was not possible by Raman spectroscopy to visualize the nanoparticle redistribution for 

the nanocomposite containing 7.5%wt. of AlPO-18 nanoparticles, so two different 

nanocomposites with lower concentrations of AlPO-18 were then tested, one containing 

1% and the other 2.5%wt. of AlPO-18, for three recording intensities: 1, 5 and 10 mWcm-2. 

For 1%wt., the Raman signal was too weak to be used in this type of experiment so results 

are only shown for concentration of 2.5%wt. From the results obtained for 2.5%wt AlPO-

18 nanocomposites for different recording intensities, the best data were for the recording 

intensity of 10 mWcm-2 (see Fig. 6.20).  
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Figure 6.20.  Raman spectra spatial scan (grating vector direction, 1 µm steps) of 

2.5%wt. AlPO-18 nanocomposite grating (200 lmm-1, 5µm grating spacing; recording 

intensity of 10 mWcm-2). 

 
 
As can be seen in Figure 6.20, the variation of the Raman peak at 420.4 cm-1 intensity in 

the grating vector direction is cyclic in conformity with the fringe spacing of 5 µm in the 

grating, indicating that there is indeed a redistribution of AlPO-18 nanoparticles. If one 

assumes that the Raman peak intensity is linearly proportional to the concentration of the 

nanoparticles, then the redistributed fraction of the nanoparticles is 31% of the total 

volume.   
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The contribution of the redistributed nanoparticles to the overall refractive index 

modulation can be estimated by [9]: 

 

)sin()(
2

hostnanodopant
snanodopant nn

f
n  (Eq. 6.1) 

where fnanodopants is the volume fraction of nanoparticles in the nanoparticle-rich region, 

nnanodopant is the refractive index of the nanodopants, nhost is the refractive index of the host 

organic matrix and  is the fraction of the grating rich in nanoparticles. By measuring the 

diffraction efficiency and determining the refractive index modulation one can estimate the 

volume fraction of redistributed nanoparticles, fnanodopants. 

 

The contribution to the refractive index modulation of the redistributed nanoparticles can 

be characterised by recording volume transmission phase gratings and estimating the 

difference in the refractive index modulation in doped and undoped materials. 

 

The density of the water filled nanoparticles is 2.42 gcm-3 (as seen in Section 6.3) and 

knowing the weight of the nanoparticles present in a single nanocomposite layer to be 

2.5%wt., one can calculate that the volume fraction of the nanoparticles in the layer is 

0.75%. Using Eq. 6.1 (with 0.5) we calculate the volume fraction of the redistributed 

nanoparticles to be 2.3x10-3. The difference between the refractive index of the host 

photopolymer and that of water filled nanoparticles is estimated to be 0.085. Thus the 

expected refractive index modulation contributed by the redistributed nanoparticles is 

calculated to be 1.3x10-4. This result explains why there was no improvement of the 

refractive index modulation through holographic recording in the layers doped with AlPO-

18 in comparison to the undoped layers.  
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6.6 HUMIDITY SENSING 

Humidity sensors reported in literature are usually based on reflection holograms [10, 11]. 

In this work, transmission holograms were tested. The operating principle of a holographic 

sensor based in a transmission hologram recorded in a nanocomposite material was 

previously shown in Fig. 4.35 and it is described by Eq. 4.4. 

 

Regarding adsorption properties, almost all of the molecular sieves (especially those with 

high Al content) show a type I water sorption isotherm, which indicates high affinity for 

water at low partial pressure. The isotherm type I represents materials with high water 

sorption capacity and saturation at low partial pressure (P/P0), followed by constant 

adsorption over a wide range of P/P0 due to the water saturation in the pores [3] . The 

framework density (14.8 T/ 1000 A°) of the AEI topology is among the lowest in the 

family of aluminophosphate microporous materials. The high hydrophilicity of this 

molecular sieve accounts for exceptionally high water sorption capacities (27.8%wt. at 22 

°C and 24 mbar), which make the material particularly interesting for heat storage, heat 

exchange and humidity sensing applications [3].  

 

As seen in the previous section the expected refractive index modulation contributed by the 

redistributed nanoparticles is small (1.38x10-4) due to the fact that most AlPO-18 pores are 

filled with water molecules. If one can expel the water from the pores of the nanoparticles, 

the difference in the refractive index between the host polymer matrix (1.499 ± 0.005) and 

the refractive index of the empty nanoparticles (1.239 ± 0.05) would be approximately 

three times greater. This effect can be useful for the design of irreversible humidity sensors.  
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Unslanted volume transmission holograms were recorded in both undoped photopolymer 

and in photopolymer containing AlPO-18 nanoparticles. To characterize the transmission 

holograms a controlled environment chamber with humidity control system Electro-Tech 

systems model 5503-20 was used. It consisted of a glove box, a microprocessor controller, 

a dehumidification system and an ultrasonic humidification system. The relative humidity 

in the chamber was varied from 15%–80% (± 1%). The optical test setup was assembled 

inside the chamber (see Figure 6.21). Light from a He-Ne laser (I0) was incident on the 

grating at the Bragg angle and the intensities of the diffracted (ID) and transmitted (IT) 

beams were measured.  

 

Figure 6.21. Experimental setup for measuring the humidity response of 

transmission holograms; the humidity in the chamber is controlled by a 

microprocessor.  

 

The diffraction efficiency was defined in two different ways. Firstly, η1, was defined as the 

ratio of the intensity of the diffraction beam to the incident beam intensity and secondly, η2, 

defined as the ratio of the first order diffracted intensity to the sum of the transmitted (zero 

order) and the first-order diffracted intensities (Equation 6.2). The use of Equation 6.2 

allows exclusion of reflected and scattered light due to condensation of moisture on the 

surface of the layer. 

TD

D

II
I

2   (Eq.  6.2) 
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Volume transmission holograms recorded in undoped photopolymer and containing 2% 

and 5%wt. of AlPO-18 nanoparticles were placed inside the humidity chamber where the 

humidity was changed from 15 to 80% and their diffraction efficiency responses were 

measured (Figure 6.22A). The samples were then baked (i.e. placed in an oven for 15 

minutes at 120 oC), placed in a box containing desiccant and their humidity response was 

again characterized (Figure 6.22B). The heating at this temperature allows the water to be 

released from the AlPO-18 pores. 

(A) 

(B) 

Figure 6.22.  Diffraction efficiency (η1) response to humidity for undoped (42 µm 

thickness) and doped with different concentrations of AlPO-18 nanoparticles (58 µm 

thickness); (A) unbaked; (B) baked at 120oC for 15 minutes. 
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When exposed to humidity, the water saturated layers (Fig. 6.22A) show no change in 

diffraction efficiency with the increase of relative humidity (RH) up to 80%RH for the 

undoped photopolymer and up to 70%RH in the case of AlPO-18 containing photopolymer. 

After baking (water absorbed in the materials was released), the decrease in diffraction 

efficiency is noticeable. It starts at 40%RH for undoped material and at 50%RH for AlPO-

18, 2%wt. and between 50 and 60%RH for AlPO-18 5%wt. (see Fig. 6.22B). At 5%wt. 

AlPO-18 more empty volume pore is expected to be available and it takes higher moisture 

contents to fill this empty pore volume.  

 

By calculating the quantities Δη= η initial - η at RH at point x, we can measure the amount of 

change in diffraction efficiency when compared to its initial values (see Fig. 6.23). The 

values of Δη were normalized to respect to the maximum value observed, in order to give 

the same initial diffraction efficiency to all gratings. 

 

A) 
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B) 

Figure 6.23.  Change in diffraction efficiency (Δη) response to humidity for undoped 

(42µm thickness) and doped with different concentrations of AlPO-18 nanoparticles 

(58µm thickness): (A) Δη1 (B) Δη2. 

 

One could visually observe the formation of a moisture film that decreases the diffraction 

efficiency in a similar way for both undoped and nanocomposite containing AlPO-18 (Fig. 

6.23A). By removing this effect, i.e., excluding the scattered and reflected light, one can 

see that the gratings recorded in 5%wt. AlPO-18 present a bigger increase in the change of 

diffraction efficiency for higher RH (RH> 70%) when compared to the gratings recorded in 

the other materials studied (Fig. 6.23B). It is also seen that a noticeable change of 

diffraction efficiency appears al lower values of RH for undoped photopolymer (RH of 

40%) than for AlPO-18 nanocomposites. 

 

The next step was to investigate the dynamics of the change in diffraction efficiency when 

the materials were exposed to high humidity. This was done by measuring the time for 

samples to reach stable diffraction efficiency. The materials were placed in the humidity 

chamber initially at 15%RH and then exposed to 60%RH (Fig. 6.24). The change in 
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humidity from 15 to 60%RH occurred within 9 minutes and the change in the diffraction 

efficiency was noted. The values of Δη were normalized to respect to the maximum value 

observed, in order to give the same initial diffraction efficiency to all gratings. 

(A) 

(B) 

Figure 6.24. Dynamics of the change in diffraction efficiency when exposed to high 

humidity; (A) Δη1 (B) Δη2. 

 

It is seen from Fig. 6.24, that the material containing 5%wt. AlPO-18 takes more time to 

reach stable diffraction efficiency. One possible explanation could be the fact that the 

materials had different initial diffraction efficiencies. The Δη values are determined and 

normalized the diffraction efficiencies to its maximum values, so that we could fairly 
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compare trends minimizing the influence of parameters such as initial diffraction 

efficiency, but this factor was also investigated. Therefore, the influence of the initial 

diffraction efficiencies on the humidity response of photopolymer containing 5%wt. AlPO-

18 was compared to that of the undoped photopolymer for two different initial diffraction 

efficiencies (see Fig. 6.25). 

A) 

B) 

Figure 6.25.  Diffraction efficiency response to humidity for undoped gratings and 

gratings doped with 5%wt. AlPO-18 nanoparticles for two different initial diffraction 

efficiencies; (A) η2 (B) Δη2. 
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From Fig. 6.25A one can see that the initial diffraction difference between the two undoped 

gratings is 15% while the two gratings recorded in AlPO-18 5%wt. nanocomposite is 23%. 

One can conclude that the initial diffraction efficiency has a bigger impact on the change of 

diffraction efficiency in the case of undoped photopolymer (see Fig. 6.25B). At high RH 

(80%RH), the difference Δη between the two gratings was of 16% for gratings recorded in 

undoped photopolymer and 4% for gratings recorded in the AlPO-18 nanocomposite. 

 

The reversibility was studied for an exposure of an 80%RH (see Fig. 6.26). The gratings 

were exposed to 80%RH and then brought back to 15%RH and its diffraction efficiency 

monitored over time. 

 

 

 

 

 

 

 

 

Figure 6.26. Study of the reversibility of the materials when exposed to 80%RH; 

initial diffraction value: (light blue) undoped photopolymer (orange) AlPO 5%wt. 

nanocomposite. 

 

The material containing 5 %wt. AlPO-18 shows a degree of irreversibility (13% difference 

between the final value and initial value of diffraction efficiency) when compared to the 

undoped photopolymer (2% difference). It is also faster to reach a plateau value of 
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diffraction efficiency. At this very high humidity the materials took several days to reach 

an equilibrium value of diffraction efficiency, which is not very practical in the design of 

sensors. 

 

Since not many applications require an exposure to such high humidity, the sensor was 

checked for changes of diffraction efficiency after exposure to high humidity of 60%RH. 

The materials were then brought back to low humidity of 15%RH (see Fig. 6.27) and its 

diffraction efficiency monitored over time. 

A) 

B) 

Figure 6.27. Reversibility of the materials when exposed to 60%RH; (A) η1 (B) η2. 
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The materials containing AlPO-18 nanoparticles recover faster from the high humidity 

(Fig. 6.27A) and present a degree of irreversibility (Fig. 6.27B), 6% for nanocomposite 

containing 2%wt. AlPO-18 and 4% for nanocomposite containing 5%wt. AlPO-18. As a 

reference, the acrylamide based photopolymer showed a difference to the initial value of 

diffraction efficiency of 1%. 

 

The biggest irreversibility effect was for the nanocomposite containing 2%wt. AlPO-18, 

which is in good agreement for the maximum redistribution effect observed in the previous 

section. If one repeats the calculations for the contribution to the refractive index 

modulation of the redistributed nanoparticles, this time for the empty pores of AlPO-18, 

one can estimate that the refractive index contribution of the redistributed nanoparticles is 

3.9x10-4. Since the initial diffraction efficiency (after baking) of the doped layer was 70%, 

the corresponding refractive index modulation at the start of the experiment can be 

estimated. After exposure to high humidity this refractive index modulation will decrease 

by 2.6x10-4 (the difference between the contribution of the redistributed nanoparticles with 

empty and water filled pores). Thus the final diffraction efficiency of the hologram was 

estimated to be 63.4%. The measured diffraction efficiency is 64%, which is in very good 

agreement with the value determined from the theoretical model. Although this is a 

relatively small irreversible change in the diffraction efficiency of the hologram, it is 

achieved by adding a modest volume of AlPO-18 nanoparticles (less than 1%).  
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6.7    CONCLUSIONS 

Colloidal solution of AlPO-18 was prepared and stabilized in water suspension. Good 

compatibility between the photopolymer and the AlPO-18 up to a doping concentration of 

5%wt. was shown by DLS, light scattering and surface roughness results.  

The grating performances of AlPO-18 nanocomposites were determined as a function of 

different parameters. The decrease of the refractive index modulation after its maximum 

value at intensity of 5 mWcm-2 occurs only in the undoped photopolymer and the presence 

of AlPO-18 nanoparticles suppresses this effect. One possible explanation is that the 

nanoparticles slow down the diffusion and restrict loss of short polymer chains into dark 

fringe areas thereby maintaining the optimum maximum value of refractive index 

modulation. Another possible explanation is that a large number of oligomers and/ or short 

polymer chains would diffuse and sweep the nanoparticles in the desired direction. It was 

observed that the highest refractive modulation was for gratings recorded at spatial 

frequency of 2000lmm-1, due to the fact that the distance required to be travelled by the 

photopolymer components compared to the distances for other spatial frequencies studied.  

 

With the increase of the concentration of nanoparticles there was a decrease of the 

refractive index modulation of the gratings recorded in AlPO-18 doped photopolymers 

when compared to the undoped photopolymer. This was observed despite the fact that 

about 31% redistribution of AlPO-18 nanoparticles effect during the holographic (studied 

by Raman spectroscopy) recording was achieved. 

 

The decrease of the refractive index modulation could be explained by the fact that many 

pores of AlPO-18 are filled with water (as shown by the calculation of the pore volume of 
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AlPO-18 incorporated in photopolymer) and therefore only a small contribution to the 

overall refractive index modulation has been made by redistributed nanoparticles. 

 

It was also found that the AlPO-18 nanocomposite can be deposited on plastic substrates 

and low recording intensities can be used to record gratings in this material, which allows 

versatility in the design of sensors. The fact that the AlPO-18 molecules can be 

redistributed during holographic recording and that their pores can be filled with water also 

shows potential for the fabrication of holographic sensors using this type of material.  

  

The humidity response for AlPO-18 nanocomposites was determined for potential 

development of holographic humidity sensors and a degree of irreversibility was observed 

with the introduction of AlPO-18 nanoparticles in the acrylamide based photopolymer. 
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CHAPTER 7: SILICALITE-1 (MFI-TYPE STRUCTURE) 

DOPED NANOCOMPOSITES 

7.1 INTRODUCTION 

In this chapter, information regarding the characterization of silicalite-1 (MFI-type 

framework) colloidal solutions is provided. Silicalite-1 is a pure siliceous MFI-type 

material with two sets of perpendicular, intersecting channels, one defined by 10-

membered rings and the other by 8-membered rings. Silicalite-1 doped photopolymerizable 

nanocomposites were prepared and the compatibility between the zeolite and the 

photopolymer was verified by DLS and measurements of the nanocomposite surface 

roughness. 

 

The grating performances of gratings recorded in silicalite-1 nanocomposites as a function 

of recording intensity and zeolite concentration were studied. It was found that an 

improvement of refractive index modulation occurs with the increasing the amount of 

silicalite-1 nanoparticles to the photopolymer for recording intensities of 5mWcm-2and 

higher. Refractive index determinations before and after incorporation in the photopolymer 

showed that the pores of this zeolite remain empty. This could be explained by the fact that 

being a pure silica material exhibits hydrophobic properties, unlike the previous studied 

nanocomposites, containing Beta and AlPO-18 particles. 

 

7.2 SILICALITE-1 NANOPARTICLES CHARACTERIZATION  

The MFI-type framework structure of silicalite-1 is shown in Figure 7.1.  
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A) B) 

Figure 7.1.  Periodic building unit of the silicalite-1 zeolite: (A) unit cell; (B) the 

pore structure.  

 

The DLS results showed particle sizes of  around 30nm (Fig. 7.2)   

 

Figure 7.2.  DLS curve of silicalite-1 suspension. 

The zeolite colloidal dispersion is characterized by a monomodal particle distribution. 

 

The crystalline nature was determined by XRD (Fig. 7.3). 
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Figure 7.3. X-ray diffraction pattern of silicalite-1. 

 

The XRD pattern in Fig. 7.3 showed the peaks characteristic of crystalline silicalite-1 [1].  

The zeolitic porosity is demonstrated by the nitrogen sorption isotherm shown in Fig. 7.4. 

 

Figure 7.4.  N2-sorption isotherm of silicalite-1 nanoparticles. 
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The nitrogen adsorption-desorption curves show the typical type IV isotherm in accordance 

with IUPAC classification [2]. The rise of sorption at P/P0 <0.05 corresponds to the filling 

of the micropores belonging to the zeolitic structures. The small increase of amount 

adsorbed at relative pressure P/P0 = 0.3-0.4 indicates the presence of mesopores. The 

hysteresis loop at P/P0 > 0.6 is related to the capillary condensation in the inter-particle 

voids [3]. The micropore volume was of 0.17 cm3g-1 (P/P0=0.05 and the apparent BET 

specific surface area was 390 m2g-1. According to literature these are typical values [4]. 

 

The zeolite morphology was characterized using SEM (Fig. 7.5). 

 

Figure 7.5. Morphology of silicalite-1 nanoparticles.  

From Fig. 7.5 we can see the silicalite-1 nanoparticles have a spherical shape and they tend 

to agglomerate during drying [3]. 

 

The Raman spectrum of silicalite-1 nanoparticles is shown in Fig. 7.6. The Raman bands to 

be considered (when compared with the template tetrapropylammonium – TPA) are: red-

shift of the C-H stretching mode from 2954 to 2937 cm-1 and splitting and change in the 

relative intensities of the CH2 modes in the range 1130-1370 cm-1[4].  
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Figure 7.6.  Raman spectrum of silicalite-1 nanoparticles. 

 

The prominent band in the Raman spectrum of e silicalite-1 in the fingerprint region (300-

600 cm-1) is found at 366 cm-1. This band is assigned to the motion of an oxygen atom in a 

plane perpendicular to the T-O-T bonds.  

 

Other prominent bonds observed were also assigned (see Table. 7.1). The split bands 

typical of MFI structure can be seen in the spectrum (between the 1101.7 and the 1455.2 

cm-1 peaks), but were not assigned due to their low intensity. 
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Table 7.1. Raman peak assignments of silicalite-1. 
 

Raman Peak (cm-1) Functional Group/ Vibration 

307.3 T-O-T stretching of zeolite 

366.0 T-O-T stretching of zeolite 

552.1 C-C-C-N (template) 

1101.7 Stretching of Si-O (zeolite) 

1455.2 Deformation of CH (template) 

2880.7 Stretching of CH2 (template) 

2933.71 Symmetric Stretching of CH3 (template) 

2980.7 Asymmetric Stretching of CH3 (template) 

 

 
7.3 SILICALITE-1 NANOCOMPOSITES OPTICAL PROPERTIES 

The compatibility of the zeolite particles suspensions with the photopolymer solutions was 

first characterized by DLS (Figure 7.7).  

 

Figure 7.7. DLS (number weighted) of: (orange) silicalite-1; (purple) photopolymer 

doped with silicalite-1 nanoparticles (freshly mixed); (green) photopolymer doped 

with silicalite-1 nanoparticles (24 hours stored at RT). 
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After 24 hours a shift in the peak maximum was observed. One possible explanation could 

be due to the hydrophobic nature of silicalite-1 zeolite, causing a small shell around the 

particle and thus increasing the hydrodynamic diameter of the nanoparticles. 

 

The optical losses (calculated as described before by Eq. 4.1) (thickness of layers of around 

40 m)were obtained as a function of concentration of silicalite-1 nanoparticles (see Figure 

7.8). 

 

Figure 7.8. Optical losses of silicalite-1 nanocomposites. 

 

As can be seen in Fig.7.8, the optical losses increase linearly from 2% (undoped 

photopolymer) to 7% when we introduce silicalite-1 10%wt. nanoparticles. This maximum 

value of 7% is lower than the values observed for zeolite A (40% optical losses for a 

doping of 10%wt.) and comparable with zeolite Beta nanocomposites (10% optical losses 

for the same level of doping). 

 

The surface morphology of several nanocomposites containing from 0 to 10%wt. of 

silicalite-1 zeolites were studied using a white light interferometric (WLI) surface profiler. 

In a recent publication [3] it was shown that silicalite-1 nanoparticles are distributed 
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randomly on the surface and that there is a correlation between the doping level and height 

and density of particles on the surface. The increase of zeolite concentration in the layers 

leads to increase of peak heights and a decrease of the distance between them. As described 

before, the surface roughness was quantified in five different locations across the sample 

and the results are summarized in Fig. 7.9 and Table 7.2. This method was used in the 

present work as a measure of how compatible the nanoparticles can be with the 

photopolymer, since if they are, for instance expelled to the surface of the photopolymer, 

the roughness will increase. 

 

 Table 7.2. Surface roughness measurements (RMS) for silicalite-1 

nanocomposites. 
 

Concentration of silicalite-1 (%) Surface roughness (nm) 

0 1.2 ± 0.1 

1 1.3 ± 0.3 

2.5 1.9 ± 0.3 

5 2.5 ± 0.4 

7.5 2.8 ± 0.3 

10 2.1 ± 0.3 

 

Figure 7.9. Surface roughness dependence on concentration of silicalite-1. 
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The undoped photopolymer had a surface roughness of 1nm that increased to 3nm in there 

case of 5%wt. nanocomposite. There was a decrease at 10%wt. concentration of zeolite 

silicalite-1 (2 nm). The literature [3] refers to an increase of roughness from 1nm to 7 nm 

for a concentration of silicalite-1 of 7%wt. The roughness values for silicalite-1 

nanocomposites are lower than the ones obtained for the previously studied 

nanocomposites, whose size was of 60nm. 

 

Finally the refractive index of the nanocomposites was determined as this parameter is 

useful in the calculations of the next section. This was done by Dr. T. Babeva. 

 

Table 7.3. Volume refractive index of silicalite-1 nanocomposites (633 nm). 
 

Silicalite-1 concentration (%wt.) Refractive Index 

0 1.499 ± 0.005 

1 1.494 ± 0.005 

3 1.483 ± 0.005 

7 1.447± 0.005 

 

If one considers silicalite-1 as an effective medium consisting of two phases – air and 

amorphous silica one can calculate the volume fraction of the two phases using the 

Bruggeman effective media approximation described in detail in [3]. The density of zeolite 

MFI (empty pores) was calculated as 1.74 gcm3, while the density of zeolite incorporated 

in the photopolymer (filled pores) was 1.78 gcm-3. On the other hand the pore volume in 

zeolites is estimated to be 0.11 cm3g-1. In that same study, the pore volume was found to be 

0.12 cm3g-1, while our determinations suggest a value of 0.17 cm3g-1 (see Fig. 7.4). This 

difference is probably due to differences in crystallinity in the materials. 
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The comparison between pore volume of the zeolite before and after addition to the 

photopolymer suggests that most probably silicalite-1 pores remain empty after the zeolite 

is added to photopolymer, due probably to their hydrophobic nature. 

 

By DLS and surface roughness measurements one could demonstrate that the silicalite-1 

zeolite nanoparticles are compatible with the photopolymer, thus homogeneous coating 

suspensions can be obtained and homogeneous dry layers of optically transparent material 

can be prepared.  

 

7.4 GRATING PERFORMANCES OF SILICALITE-1 NANOCOMPOSITES 

The grating performances recorded in silicalite-1 nanocomposites dependence on recording 

intensity and concentration of zeolite were studied. Four different recording intensities 

were used: 1.75, 5, 10 and 16.7 mWcm-2, for a time of exposure of 100 s.  

 

Three gratings were recorded for each of these recording intensities (Nr. 1, 2 and 3) and for 

each of the concentration of silicalite-1 added to the photopolymer, from 0% to 10%wt. 

(see fig. 7.10). The results are shown in Fig. 7.11. 
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Figure 7.10.  Typical angular selectivity curves for three different gratings recorded 

in 5%wt. silicalite-1 nanocomposite; recording intensity of 5 mWcm-2 and spatial 

frequency of 1000 lmm-1. 

 
 
  

 

 

 

 

 

 

 

 

Figure 7.11. Refractive index modulation as a function of recording intensity for 

gratings recorded in silicalite-1 nanocomposites (with concentrations as indicated in 

the figure); (1000 lmm-1). 
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The first conclusion is that silicalite-1nanoparticles improve the refractive index 

modulation (n1) for all the recording intensities. The refractive index modulation increases 

with the concentration of zeolite. This was previously observed in preliminary results 

obtained in [6]. In this study the addition of 60 nm silicalite-1 nanoparticles to the 

photopolymer doubled the refractive index modulation from 1.8x10−3 (undoped 

photopolymer) to 3.5x10−3 (nanocomposite containing 6%wt. concentration of 

nanoparticles). Except for the lowest intensity (1.75 mWcm-2), where an optimum 

concentration of zeolite was observed (7.5%wt. of zeolite) the refractive index modulation 

increases linearly with the zeolite concentration for all the other recording intensities. 

Calculating an average refractive index modulation for each concentration, we found a 

similar result to that previously reported for 60nm nanoparticles: the refractive index 

modulation doubled from 1.5x10−3 (undoped photopolymer) to 3.2x10−3 (nanocomposite 

containing 10 %wt. concentration of nanoparticles). For undoped photopolymer, the 

refractive index modulation decreases as the recording intensity increases. This is expected 

for material behavior under high intensity exposure. High intensity produces high 

termination rates and therefore short chains, and lower diffraction efficiency is obtained for 

the same exposure. This is also the case for a nanocomposite containing 2.5%wt. of 

silicalite-1. For higher concentrations of zeolite, we observe an improvement of the 

refractive index modulation with increasing recording intensity up to 10 mWcm-2. One 

explanation for the observed improvement of the diffraction efficiency of the nanoparticle-

containing photopolymers at high intensity of recording could be that at higher intensity the 

number of shorter polymer chains is expected to be higher and consequently a larger 

number of oligomers and/or short polymer chains would diffuse and sweep the 

nanoparticles in the desired direction. Another possible explanation could be that the 
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presence of porous silica nanoparticles slows down diffusion and restricts loss of short 

polymer chains into dark fringe areas thereby improving the diffraction efficiency 

 

Unlike Beta and AlPO-18 which have a hydrophilic nature, the silicalite-1 zeolite is made 

of pure silica and thus has a hydrophobic nature. We have seen in section 7.3 that 

calculations of pore volume of the zeolite before and after incorporation in the 

photopolymer showed that the zeolites are empty. Also, it was also observed that silicalite-

1 nanoparticles are able to undergo redistribution, being expelled from the bright fringes 

[7]. The fact that the nanoparticles were redistributed during holographic recording and that 

in the case of this nanocomposite, the difference in refractive index is higher due to the 

void pores of the zeolite results in a refractive index modulation increase observed, in 

contrast to the nanodopants studied previously. 

 

7.5 CONCLUSIONS 

 A good optical quality material is prepared in the case of the acrylamide-based 

photopolymer doped with silicalite-1 nanoparticles. The grating performances recorded in 

silicalite-1 nanocomposites were studied and it was found that there is an improvement of 

the refractive index modulation with the addition of silicalite-1 nanoparticles for the four 

recording intensities studied. It was found that on average the refractive index modulation 

doubled from 1.5x10−3 (undoped photopolymer) to 3.2x10−3 (nanocomposite containing 

10%wt. concentration of nanoparticles). The addition of silicalite-1 in concentrations 

higher than 5%wt. to the photopolymer also inverted the effect of decreased refractive 

index modulation at high intensities. The hydrophobic nature of this type of zeolite is 

probably the reason why zeolite pores are probably empty after its inclusion in the 
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photopolymer (as shown here by refractive index calculations) and this material could be 

further improved for use in the fabrication of holographic memories. 
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CHAPTER 8: INITIAL STUDIES OF INTERACTIONS 

BETWEEN SENSITIZING DYES AND ZEOLITE L 

8.1 INTRODUCTION 

In this chapter, the characterization of zeolite L (LTL-type structure) is presented. The 

interactions between several dye molecules (rose bengal, erythrosine B, rhodamine B, 

rodhamine 6G, acroflavin, safranin O and methylene blue) and the different zeolite 

molecules used in this project (zeolite Beta, zeolite A, AlPO-18, silicalite-1 and zeolite L) 

were studied. Particularly interesting were the effects of interactions between the cationic 

dye methylene blue and zeolite L, observed by visible spectroscopy. Because of the 

spectroscopic changes observed when the dye molecules and their aggregates are adsorbed 

in the zeolite L surface, one can expect to use them in optical materials for holographic 

recording, with tunable spectral sensitivity controlled by dye concentrations. The effect of 

pH on the spectroscopic changes of MB+ - zeolite L dispersion is discussed as well. 

 

8.2 ZEOLITE L NANOPARTICLES CHARACTERIZATION  

Nano-sized zeolite L crystals have LTL framework type structure and this is presented in 

Fig. 8.1.  

A)  B) C) 

Figure 8.1.  Periodic building unit of zeolite L: (A) top view perpendicular to the c-

axis; (B) pore structure of zeolite L (view normal to 001); (C) view along the c-axis. 
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Zeolite L crystals consist of cancrinite cages linked by double six-membered rings, thereby 

forming columns in the c-direction. Connection of these columns gives rise to 12-

membered rings with a free diameter of 7.1Å. As a consequence, zeolite L possesses one-

dimensional channels running parallel to the c-direction through the entire crystal. The free 

diameter varies from 7.1 Å (narrowest part) to 12.6 Å (widest part). The main channels are 

linked via non-planar eight-membered rings forming an additional two dimensional 

channel system with openings of about 1.5 Å [1]. 

 

The dynamic light scattering (DLS) results showed that the particle size of Zeolite L was 

65nm (Fig. 8.2).   

 

 

 

 

 

 

 

Figure 8.2.   DLS curve of zeolite L suspension. 

 

The zeolite colloidal dispersion shows a monomodal particle size distribution. 

 

The crystalline nature of the nanoporous zeolite L nanoparticles was investigated by the 

XRD (Figure 8.3). 
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Figure 8.3. X-ray diffraction pattern of zeolite L nanoparticles. 

The XRD pattern showed fully crystalline zeolite L-type material and the absence of an 

amorphous phase and the most intense (100) reflection peak appears at 5.54° 2 θ [2].   

 

The nitrogen sorption isotherm of zeolite L is shown in Fig. 8.4. 
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Figure 8.4.  N2-sorption isotherm of zeolite L nanoparticles. 
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The nitrogen adsorption-desorption curves possess the typical type IV isotherm [3]. The 

material has BET high surface area of 349 m2g-1 which is in good agreement with literature 

[4] values for specific pore volume of 0.205 cm3g-1 as synthesized and 0.163cm3g-1, lower 

values than the ones obtained in the present work, where the total specific pore volume was 

0.48 cm3g-1 (P/P0=0.98) and this means that there is more accessible pore volume (free 

space) available for species to enter the zeolite. 

 

The Raman spectrum of the nanoparticles is shown in Fig. 8.5.   

 

Figure 8.5.  Raman spectrum of zeolite L nanoparticles. 

 

The prominent band in the Raman spectrum of framework type materials are in the 

fingerprint region (300-600cm-1) and for zeolite L is at 499cm-1. This band is assigned to 

the motion of an oxygen atom in a plane perpendicular to the T-O-T bonds (framework 

vibration) and is the only strong feature.  
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8.3 GUEST- HOST SYSTEMS BASED ON ZEOLITES 

The channels and cavities of a zeolite framework provide ideal space for incorporation, 

stabilization and organization of complex species of organic, luminescent dyes, metal 

clusters or semiconductor materials [5]. Host-guest systems based on zeolite crystals have 

been under investigation and used in applications such as artificial antenna systems [6], 

microlasers [7] and optical sensors [8]. Materials such as AlPO-5 [9], zeolite L [10], 

zeolites Y, ZSM-5 and mesoporous material MCM-41 [11] have been used as hosts for the 

incorporation of neutral as well as cationic dyes inside their channels.  

 

Interestingly, it has been reported that AlPO-5 modified with methylene blue favors optical 

data storage through the effect of hole burning [9].   

 

The types of molecules that fit inside the channels are [10]: 

(1) Molecules that are small enough to fit inside a unit cell; 

(2) Molecules the size of which makes it hard to guess their position and orientation in 

the channel; 

(3) Molecules that are so large that they can only align along the c-axis. 

Dyes can be inserted into the cavities of zeolites from gas phase, by ion exchange (if 

cations are involved), by crystallization inclusion or by an in situ synthesis inside the 

zeolite cages [6].  

 

On the other hand all cationic and neutral dyes have the tendency to be adsorbed at the 

outer surface of the zeolite nanocrystals. Cationic dyes form aggregates at the surface of the 

zeolite as can be observed by UV-Vis spectroscopy [6]. 
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In the case of zeolite L, the efficient transport of electronic excitation energy by the chains 

of electronically non-interacting chromophores is the most prominent feature of this 

material [1]. 

 

8.4 INTERACTIONS BETWEEN DYES AND ZEOLITES 

Several sensitizing dyes commonly used in holographic recording (except for rhodamine 

dyes that were chosen for their size and cationic nature) are listed in table 8.3.  

 

Table 8.1. Dyes used in the present study (dye concentrations is 0.11%wt.). 
 

Name Formula  

Anionic dyes 

Rose Bengal 

 
 

Erythrosine B 

  

Cationic dyes 

Methylene Blue 
 

  

Rhodamine B 
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Name Formula  

Rhodamine 6G 

  

Acriflavine 

 
 

Safranin O 

 
 

 
 

Sensitizing dyes usually used in full color holography (methylene blue for recording in the 

red, erythrosine B for recording in the green and acroflavine for recording in the blue) were 

first investigated. Visible absorption spectra of aqueous solutions (3 mgl-1) are presented in 

Fig. 8.6. 

 

 

 

 

 

 

 

Figure 8.6. Visible spectra of aqueous dyes: (EB) erythrosine B; (MB) methylene 

Blue; (AF) acriflavine. 
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Then 0.5 mg of different zeolites studied in this work - zeolite A, L, Beta, silicalite-1 and 

AlPO-18 were added to each vial and the visible spectra were measured. Results are shown 

for two different solvents: water and photopolymer solution (see Fig. 8.7). 

 

Figure 8.7. Peak position of the maximum intensity absorption in the presence of 

several zeolites: water (empty symbols) and photopolymer (filled symbols). 

 

From Fig. 8.7 one can see that the shift of the maximum absorption peak position normally 

happens only in aqueous solutions. Only in the case of methylene blue in the presence of 

zeolite L and photopolymer solution does a noticeable shift in the absorption maximum 

occur. The large size anionic dye, erythrosine, did not show a spectral change in the 

presence of any zeolites. Both the other dyes (methylene blue and acriflavine) of smaller 

size and cationic type showed a change in shape of the spectral peak as well a blue shift of 

its maximum absorption peak. Interestingly, the bigger the zeolite pore size, the greater this 

shift, although one can suspect that due to their nature these dyes are adsorbed at the 

external surface of the zeolites. 
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The greater change in the maximum absorption peak was found for the pair MB+ - zeolite 

L, where one can immediately observe a purple color when we add the zeolite to the 

aqueous solution of MB (Fig. 8.8), most probably due to the formation of aggregates at the 

outer surface of the zeolite. 

 

 
Figure 8.8. Visible absorption spectra of methylene blue in water and in presence of 

zeolite L. 

 
Solutions with different concentrations of methylene blue were analyzed. The effect of 

different zeolite concentrations was also studied (see Fig. 8.9).  
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Figure 8.9. Influence of the concentration of zeolite L on the absorption intensity of 

the maximum absorption peak for several concentrations of methylene blue (0.05, 

0.08, 0.20 and 0.41 mmol); maximum absorption intensity peak position was found at 

566 ± 1 nm. 

 

From Figure 8.9 one can see that for the concentrations of methylene blue of 0.04, 0.08 and 

0.20 mmol there is initially a linear increase of the absorption maximum as the zeolite 

concentration increases and then the values remain fairly constant. For higher concentration 

of methylene blue (0.41 mmol) the zeolite concentration seems to have little no effect on 

the maximum absorption intensity peak position. 

 

Following these results, several other dyes were studied, this time only in the presence of 

zeolite L and different solvents (Fig. 8.10) of interest, namely water, acrylamide based 

photopolymer, NIPA based photopolymer (described in more detail in the next section) and 

PVA (polyvinyl alcohol).  

http://en.wikipedia.org/wiki/Polyvinyl_alcohol
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(A) (B) 

(C)  (D) 

(E)  (F) 

Figure 8.10. Visible absorption spectra of: (A) rose Bengal; (B) rhodamine B; (C) 

acroflavin; (D) safranin O; (E) methylene blue; (F) rhodamine 6G in different 

solvents (PP AA is acrylamide based photopolymer,  PP NIPA is NIPA based 

photopolymer and PVA is polyvinyl alcohol. 

 

http://en.wikipedia.org/wiki/Polyvinyl_alcohol
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In case of methylene blue and rodhamine 6G, there are different forms of the dye in the 

presence of the different solvents, since a different absorption spectra are recorded. For the 

most part, the position of the maximum absorption peak position changes in the different 

environments. These shifts are plotted in Fig. 8.11, where the shift observed in the 

maximum absorption intensity peak position for each dye in the different solvents was 

compared to its respective value in aqueous solution. 

 

 

 

 

 

 

 

 

 
Figure 8.11. Shift of the maximum absorption intensity peak position of each dye 

relative to respective position in aqueous solution for different solvents: PP AA 

(acrylamide based photopolymer); PP NIPA (NIPA based photopolymer) and PVA 

(Polyvinyl alcohol) for different dyes (MB is methylene blue, RS is rose bengal, RB is 

rodhamin B, R6 is rodhamin 6G, AF is acrofavin and SO is safranin O).   

 

In the particular cases of two dyes, methylene Blue (Fig. 8.12A) and rhodamine 6G (Fig. 

8.12B), a shift in the maximum absorption intensity peak position was also observed when 

we added zeolite L nanoparticles to the same solvent. 

http://en.wikipedia.org/wiki/Polyvinyl_alcohol
http://en.wikipedia.org/wiki/Polyvinyl_alcohol
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A) B) 

Figure 8.12. Visible absorption spectra of (A) methylene blue in water without and 

in the presence of zeolite L (water + Z); (B) rodhamine 6G in PVA without and in the 

presence of zeolite L (water + Z). 

 

The change in water is large because the MB+ ion is only adsorbed at the outer surface 

where it is surrounded by the water, under which conditions MB+ forms aggregates. The 

aggregates are readily formed as we can immediately observe the color change. A similar 

effect must happen in the case of rodhamine 6G in PVA. 

 

Acrylamide based photopolymer doped with zeolite L (sensitized for recording in red with 

methylene blue) was prepared for holographic recording. The aim was to fabricate 

materials with tunable spectral properties able to record in the red without zeolite 

nanoparticles and in the green in the presence of zeolite L. The samples were prepared as 

previously described. After evaporation of the solvent (drying process) however the 

changes in wavelength were reversed (see Fig. 8.13). 
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Figure 8.13. Visible absorption spectra of acrylamide based photopolymer (0%) and 

in the presence of 5%wt. zeolite L nanocomposite sensitized with methylene blue; in 

liquid solutions and after drying for 24 hours. 

 
 
The fact that the spectral change disappears after evaporation of solvent not desirable and 

we were not able to record gratings using a green laser. 

 

The pH of the photopolymer solution is around 8. In order to investigate if the wavelength 

change could be caused by pH, visible absorption spectra of aqueous solutions of 

methylene blue at different pH were taken. First only solutions of methylene blue were 

tested, after which 0.5mg of zeolite were added to each vial (Fig. 8.15). 
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A) 

  B) 

Figure 8.14. Visible absorption spectra of methylene blue solutions at several pH: 

(A) in water; (B) with the addition of zeolite L. 

 
From Fig. 8.14, several species of methylene blue were identified. At very low pH, the 

protonated monomer of methylene blue (MBH2+) occurs, where the vibronic components 

show absorption maximum at 745±1nm, a second maximum at 669nm and a shoulder at 

~610nm. In pH range from 5 to 10,  aqueous solutions of monomer methylene blue (MB+) 

exists with spectra showing the characteristic features of the equilibrium monomer-dimer 
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(Fig. 8.16) with a maximum absorption at 665nm (monomer) and a shoulder at ~615-625 

nm (dimer). For a pH of 14 there is a broad peak at ~570-620 nm possibly due to the 

formation of aggregates of the dye. 

 

Figure 8.15. Monomer-Dimer equilibrium of methylene blue [reproduced from Ref. 

13]. 

 

In the presence of zeolite L in the range of pH 7 to 10, there is a formation of aggregates 

trimers with one band at 566±1 nm. In the pH range of 5-10, the formation of methylene 

blue aggregates is not dependent on the pH of the solution but occurs due to the presence of 

zeolite L. When we add zeolites to the solution, methylene blue can be adsorbed on the 

surface of the nanoparticles. In the extreme values of pH it seems the adsorption is very 

little.  
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8.5 CONCLUSIONS 

Colloidal LTL suspensions are characterized in detail. The host-guest interactions between 

several sensitizing dyes (erythrosine B, methylene blue, acroflavine, rhodamine B, 

rhodamine 6G, rose bengal and safranin O) and several types of zeolite used in this project 

(zeolites Beta, A, AlPO-18, silicalite-1 and L) were studied.  

 

The concentration and pH dependences on the methylene blue –Zeolite L visible absorption 

spectra were studied. It was found that the presence of zeolite L promotes the formation of 

dye aggregates in the range of pH 7 to10 (band at 566±1 nm). In the pH range of 5-10, the 

formation of methylene blue aggregates is not dependent on the pH of the solution but 

occurs due to the presence of zeolite L. When we add zeolites to the solution, methylene 

blue can be adsorbed on the surface of the nanoparticles. In the extreme values of pH it 

seems there seems to be very little adsorption. 

 

The aim was to fabricate tunable optical materials, but further work is needed to achieve 

this since the spectral change is reversible when the photopolymer doped with zeolite L 

dries. 
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CHAPTER 9: INITIAL STUDIES IN THE DESIGN OF NEW 

NIPA BASED PHOTOPOLYMER  

9.1 INTRODUCTION 

In this chapter we present a new photopolymer with holographic features similar to the 

standard photopolymer - acrylamide based photopolymer – but with reduced toxicity.  

 

The acrylamide monomer was replaced by N-isopropylacrylamide (NIPA), and the 

composition was optimized in terms of monomer and co-monomer (N,N‟-methylene  

bisacrylamide) concentrations for holographic recording. The refractive index before and 

after polymerization was obtained and it was found that a bigger differences exists in the 

case of NIPA photopolymer when compared to acrylamide based photopolymer. Besides a 

lower toxicity, the choice of NIPA was also justified because this hydrogel is known to be 

sensitive to external stimuli such as temperature [1], which could be useful in the design of 

sensors. 
 

Initial studies in using NIPA photopolymer in holographic sensing were made. NIPA 

photopolymer sensitized with methylene blue were used to record reflection holograms. 

The temperature response of this material at three different relative humidities (RH) was 

recorded in a controlled environment and its spectral changes recorded. It was found that 

the swelling of the photopolymer induces a wavelength shift that depends on the 

temperature. 

 

9.2 THE NIPA BASED PHOTOPOLYMER 

The main drawback of the acrylamide based photopolymer is the toxicity of its main 

monomer, acrylamide. Acrylamide is a known neurotoxicant, reproductive toxicant, and 

carcinogenic substance [2].  N,N‟-methylene bisacrylamide, a larger molecule that is not as 

readily absorbed through the skin or vaporized into the air, is a suspected mutagen and 
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teratogen, but is not nearly as dangerous as acrylamide [3]. After acrylamide and 

bisacrylamide are polymerized, the polymer is safe to handle and use, as long as there is no 

residual unreacted monomer [3]. Acrylamide substitutions have been made [4] using 

sodium acrylate with toxicity of lower than that of acrylamide and comparable grating 

performances were obtained, i.e maximum diffraction efficiency  and energetic sensitivity 

for these two types of photopolymer. 

 

In our work, we have chosen N-Isopropylacrylamide (NIPA) to replace acrylamide as a 

monomer. This compound presents less danger for health than acrylamide [5, 6]. Results 

from these studies have shown that the NIPA monomer may have some toxic effects, 

thought the resulting polymer is biocompatible.  

 

One of the main reasons for studying this monomer is that fact that it is a thermosensitive 

material. Thermosensitive hydrogels can be classified as positive or negative temperature-

sensitive systems. A positive temperature-sensitive hydrogel has an upper critical solution 

temperature (UCST). Such hydrogels contract upon cooling below the UCST. Most 

hydrogels belong to this category. In the other hand, negative temperature-sensitive 

hydrogels have a lower critical solution temperature (LCST). These hydrogels contract 

upon heating above the LCST, and are known as thermoreversible hydrogels as the 

contraction is totally reversible upon cooling [7]. Poly(N-isopropylacrylamide) 

demonstrates a lower  LCST  at about 32 °C [8], i.e. it shrinks with increasing temperature. 

Poly (N-isopropyl acrylamide) forms swollen hydrogels of crosslinked species due to the 

presence of both hydrophilic amide groups and hydrophobic isopropyl groups in its 

sidechains. The PNIPA hydrogel in an aqueous solution exhibits a rapid and reversible 

hydration–dehydration change in response to small temperature changes around its LCST. 
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Below this temperature the hydrogel is swollen, hydrated and hydrophilic, whereas above 

the LCST, the hydrogel shrinks and forms a collapsed, dehydrated and hydrophobic state 

due to the breakdown of the delicate hydrophilic/hydrophobic balance in the network 

structure [9]. 

 

9.3 INITIAL STUDIES IN NIPA PHOTOPOLYMER OPTIMIZATION 

9.3.1 COMPOSITION OF THE PHOTOPOLYMER 

In initial investigations concerning the suitability of the NIPA monomer for holographic 

recording we have studied compositions with different monomer quantities.  

 

Firstly, several compositions containing different amounts of the monomer – NIPA while 

maintaining the other components concentrations constant were prepared (see Table 9.1). 

The amount of co-monomer (bisacrylamide) in each composition was 0.2 g.  

 

Table 9.1. Composition of samples prepared with different concentrations of 

NIPA. 
 

Sample Nr. Monomer (g) Monomer (mmol) 

1 0.2 1.8 

2 0.4 3.5 

3 0.6 5.3 

4 0.8 7.1 

5 1.6 14.2 

6 2.4 21.2 

 

The samples were used to record transmission gratings and were compared against gratings 

recorded in a material with the standard composition (monomer acrylamide is 0.6 g or 8.4 

mmol). The results for the grating performances (Nr. 1 to 6 of Table 9.1) are shown in 

Figure 9.1. 
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A) 

B) 

Figure 9.1. Grating performances obtained for different NIPA monomer quantities 

- Table 9.1 where “aa” represents the standard composition with acrylamide: (A) 

growth curves; (B) angular selectivity curves (1000 lmm-1 and 5 mWcm-2). 

 
 
The diffraction efficiency for NIPA photopolymer increases with time until a plateau is 

reached. This is the same kinetics as acrylamide based photopolymer. The angular 

selectivity curves for the gratings recorded in this material showed that the gratings are in a 

typical non overmodulated regime. 
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Although one deposited the same amount of solution in the substrate (0.6 ml) the thickness 

of the dry layers varied and a better comparison is to observe their refractive index 

modulation (See Fig. 9.2), calculated with  thicknesses measured by WLI. 

 

Figure 9.2. Refractive index modulation for photopolymers where monomer is:  

(blue diamonds) NIPA or (red square) acrylamide (1000 lmm-1 and 5 mWcm-2). 

 
It is seen that the highest refractive index modulation value was observed for 3.5 mmol of 

NIPA (0.4 g) and that this value is 11% lower than the one obtained for the standard 

composition containing acrylamide. 

 

The next step was to vary the co-monomer concentration. We have prepared several 

compositions containing different amounts of the co-monomer, N,N‟-methylene bis 

acrylamide, while maintaining the other photopolymer components concentrations constant 

(see Table 9.2). The amount of monomer NIPA in each composition was 0.4  g.  
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Table 9.2. Composition of samples made with different concentrations of N,N’-

methylene bisacrylamide (co-monomer) and NIPA (monomer). 
 

Sample Nr. Co-Monomer (g) Ratio to monomer 

1 0.05 8 

2 0.1 4 

3 0.2 2 

4 0.25 1.6 

5 0.3 1.3 

6 0.4 1 

 

The samples were used to record transmission gratings and were compared against gratings 

recorded in a material with the standard composition, where 0.6g of acryamide and 0.2g of 

N,N‟-methylene bisacrylamide (ratio of monomer/ co-monomer of 3) was used. The results 

for the grating performances (Nr. 1 to 6 of Table 9.2)  are shown in Figure 9.3. 

A)  
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B) 

Figure 9.3. Gratinng performances obtained for different NIPA monomer/N,N’-

methylene bisacrylamide co-monomer ratios - Table 9.2, where “aa” represents the 

standard composition with acrylamide: (A) growth curves; (B)  angular selectivity 

curves ( 1000 lmm-1 and 5 mWcm-2). 

 

The diffraction efficiency for grating 1 (ratio between monomer/co-monomer of 8) is very 

low (0.8%) and that for grating 2 (ratio between monomer/ co-monomr of 4), the 

diffraction efficiency decreases when the laser is off (at 90s). We can also observe that the 

initial slopes of the growth curves increase as the quantity of comonomer increases. This 

can be explained by the fact that when the concentration of N,N‟-methylene bisacrylamide 

is increased, the quantity of double bonds in the system increases  and thus the 

polymerization rate is larger. The gratings are in a typical non overmodulated regime 

 

The maximum diffraction efficiencies obtained are shown in figure 9.4. In this case, the 

thicknesses of the gratings were very similar.  
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Figure 9.4. Maximum diffraction efficiency as a function of monomer / bis 

acrylamide co-monomer ratio where monomer is: (blue diamonds) NIPA or (red 

square) acrylamid; (1000 lmm-1 and 5 mWcm-2). 

 

It is seen that the monomer// co-monomer ratio has a large influence on the diffraction 

efficiency, the best performance observed being for the pair NIPA 0.4g/ Bisacrylamide 

0.3g, where we can observe a final diffraction efficiency of around 83%. Layers were 

prepared containing only NIPA and no bisacrylamide but they didn‟t dry and hence were 

not recorded.  

 

The final composition used to record volume gratings in NIPA photopolymer is presented 

in Table 9.3. 
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Table 9.3. Composition of NIPA Photoplymer. 
 

Component Molecular Structure Quantity 

PVA Stock solution  

(10%wt.) 
 

18 ml 

TEA 

 

2 ml 

N-Isopropylarylamide 

 

0.4 g 

N,N‟-methylne 

Bisacrylamide  
0.3 g 

Dye Solution Stock 

Solution (0.11%wt). 
 

4 ml (Transmission) 

or  

3 ml (Reflection) 

 
* 1 - Stock solution of 10%wt. polyvinyl alcohol (PVA) solution is prepared by dissolving 10 g of PVA in 

100 ml of water under heating and stirring 

* 2 - Stock Dye Solution is prepared by dissolving 0.11 g of Dye in 100 ml of water under stirring; For 

transmission mode Erythrosine B is use, while for reflection mode Methylene Blue was used 

 

9.3.2 REFRACTIVE INDEX MEASUREMENTS 

Refractive index data of polymer films at different wavelengths were measured with the 

help of Dr. Yovcheva by critical angle determination using diffraction pattern 

disappearance. The polymer films examined contained acrylamide (0.6 g) and NIPA (0.4 g) 

photopolymers   with 0.2 g of N,N‟-methylne bisacrylamide. 
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The method was described earlier in detail in [10, 11]. Briefly, the determination of the 

critical angle is carried out with the help of a metal grating allowing observation if total 

internal reflection at the prism/photopolymer layer interface occurs. The photopolymer 

layer is located between a prism of high refractive index and the grating. At lower angles of 

incidence, the laser beam is transmitted through the sample and the grating, and a 

diffraction pattern is observed. At a critical angle of incidence, total internal reflection 

occurs, the beam does not pass to the grating and the diffraction pattern disappears.  

 

The refractive indices of the materials were measured before polymerization. Then gratings 

were recorded using a 532 nm laser (spatial frequency of 1000 lmm-1, 5 mWcm-2 for 100 s) 

and their refractive indices measured again. The results for the difference in refractive 

index (before and after polymerization) – d(RI) are presented in Fig.9.5.  

 

Figure 9.5. Difference in the refractive index for NIPA and Acrylamide (AA) 

photopolymers before and after polymerization (1000 lmm-1; 5 mWcm-2 at 532 nm). 

 

One can observe from fig. 9.5 that the difference in the refractive index before and after 

polymerization is higher in the case of NIPA photopolymer. This is promising for obtaining 

higher refractive index modulations, but more optimization of this photopolymer needs to 

be done. 
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9.4 NIPA PHOTOPOLYMER FOR HOLOGRAPHIC SENSING  

Our approach was based in the hydrogel (water-swollen polymer networks) characteristics 

of PNIPA that undergoes a thermal transition at LCST (32 °C). At temperatures around 35-

40ºC this polymer collapses into a denser, more compact structure due to a switch in the 

balance of solvation and hydrophobic forces. Through the hydrogel volume change in 

response to external physical or chemical stimuli, reflection gratings can optically sense the 

variation as observable changes or shifts in its wavelength (color) shift. The hologram acts 

both as a sensing element and as a transducer.  

 

The general principle of a holographic sensor is that the volume change alters the fringe 

spacing. This causes a change in the wavelength of the reflected light according to the 

Bragg equation (Eq. 9.1): 

sin2n
  (Eq. 9.1) 

where  is spatial period of the grating, n is the average refractive index of the recording 

medium, λ is the recording wavelength and θ is the half of the angle between the two 

recording beams.  

 

When the grating is illuminated with white light, the diffracted light in a specific direction 

will be of wavelength λ given by Eq. 9.1 and a single colour will be observed. The 

principle of operation of such sensor can be given by differentiation of Eq. 9.1: 

 

 cos2)n    (sin2 nn   (Eq. 9.2) 

A change of the wavelength of the diffracted light could be caused by change of the 

average refractive index, change in the grating period or when observing at different angle.  
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The optical setup for measuring the spectral characteristics of the light diffracted from the 

hologram was assembled in the humidity chamber (see Fig. 9.6). The probe light from a 

broad band light source (AvaLight-HAL-S) was fiber guided into the humidity chamber. 

The diffracted light was then coupled into a second fiber by a lens and guided to a spectral 

analyser, AvaSpec-2048. In order to obtain the humidity or temperature response of a 

specific hologram the relationship between the peak wavelength of the light diffracted from 

the hologram and the RH or the temperature was determined. The light from the white light 

source (WLS) is guided through optical fibers (OF) and collimated by mean of collimating 

lenses (CL) to a spectrum analyser (SA). 

 

 

Figure 9.6. Experimental setup for measuring the humidity and temperature 

response of reflection holograms. The humidity and temperature in the chamber are 

controlled by a microprocessor.  

 

Two reflection holograms were recorded in methylene blue sensitized NIPA recording 

material, for two different exposure times – 15 and 40s. For both, the change of the spectral 

response of the hologram as function of temperature was studied at three different levels of 

humidity– 20, 40 and 60% RH. The results are presented in Fig. 9.7. 
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Figure 9.7. Wavelength selectivity curves for reflection holograms (sensitized with 

mthylene blue) for different temperatures (T) at: (A)&(B) 20% RH; (C)&(D) 40% 

RH and (E)&(F) 60% RH. 
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For both holograms (recorded during 15 and 40s) it can be seen that there is little 

temperature dependence of the spectral response of the holograms when the HR is 20%.  

For higher RH (40% and 60%), there is a dependence of the position of maximum peak 

with the increasing temperature. These results are plotted in Fig. 9.8.  

A) 

B) 

Figure 9.8 Temperature response at constant humidity of reflection holograms 

recorded in NIPA photopolymer during (A) 15 s; (B) 40 s. 
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The hologram recorded during 15 s exposure time shows a maximum at ~600 nm and a 

shoulder around 20 nm higher wavelength values.  This spectral feature does not change 

with temperature increase or RH change. For the hologram recorded during 40s exposure 

time there is an inversion of the absorption bands intensity (see Fig. 9.7D) after the 

polymer LCST for RH of 40%.  

 

When the grating is exposed to low RH again (see Fig. 9.7F), this band absorption pattern 

is still present at T=30 °C and is reversed when the temperature is raised above the LCST. 

The differences between the two gratings spectral response to temperature could be 

explained by differences in PNIPA degree of polymerization. For the sample recorded for 

40s more polymerization of the NIPA is expected to occur. In the case of the hologram 

recorded during 15s, the difference between the  initial position of the maximum absorption 

peak  (around 20°C) and its final position (around 40°C) is 5, 18 and 24nm for 20, 40 and 

60% RH, respectively. For the sample recorded at 40s, this difference is of 4, 15 and 39 nm 

for 20, 40 and 60% RH, respectively. There seems to be liitle effect of the exposure time in 

terms of the difference between initial position and final position of the maximum 

absorption peak position. For an initial temperature of 15 °C and a final temperature of 40 

°C the values obtained for acrylamide based photopolymer [13] were of around 5, 5, 15 and 

15 nm for 15, 30 and 45% RH. For the same photopolymer at 60%RH the initial 

temperature was of 15 °C and a final temperature of 25 °C and the shift of the maximum 

absorption peak position was around 15 nm.  
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9.5 CONCLUSIONS 

A new photopolymer with thermo responsive properties was fabricated using N-

isopropylacrylamide (NIPA) cross linked with bisacrylamide (BA). The monomer/ co-

monomer best ratio was studied by studying the grating performances and it was found that 

the composition containing 0.4 g of NIPA and 0.3 g of BA resulted in comparable 

diffraction efficiencies to the acrylamide based photopolymer.  

   

Two reflection holograms were recorded in this material, one for 15 s and another for 40 s 

and were tested for holographic sensing applications. The temperature response of the 

hologram spectral feautures (from around 20 to 40 °C) at three constant relative humidities 

20, 40 and 60% RH was characterized. In was seen that at 20% RH the spectral response of 

the hologram was not temperature dependent. At higher values of RH (40% and 60%) 

spectral changes did occur and the maximum absorption peak position increasingly shifted 

to higher wavelengths. For the more polymerized sample (40 s) at higher RH one could 

observe a conformational change in the peak shape above the polymer characteristic LCST.  
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CHAPTER 10: FINAL CONSIDERATIONS 

10.1 CONCLUSIONS 

The main challenge of the present work was to find compatible nanoparticles that would 

disperse in the polymer matrix with causing high optical losses due to the scattering of the 

light. 

 

 Five different microporous nanoparticles (zeolite Beta, A, AlPO-18, MFI and L) were used 

to fabricate novel photopolymerizable nanocomposites for holographic applications. We 

have learned that the inclusion of these nanoporous crystals in photopolymers with the right 

choice of zeolite optical and physico-chemical properties is a flexible tool to design 

versatile holographic recording materials to be used in applications such as holographic 

sensing. Each colloidal suspension was characterized by means of several analytical 

techniques such as DLS, XRD, Nitrogen adsorption, SEM and Raman spectroscopy.  

 

We found that the incorporation of different types of zeolites into acrylamide-based 

photopolymer produces optical transparent dry layers that can be holographically recorded. 

The compatibility of the nanoparticles and the acrylamide based photopolymer was 

investigated by DLS which showed no aggregation of the nanoparticles after incorporation 

in the photopolymeric matrix. Both the heterogeneity of the whole layer (by light scattering 

measurements) and the surface roughness of the photopoymers (by interferometric 

techniques measrurements) were used to characterize the nanocomposites.  

 

To understand the influence of the zeolite properties on the grating performances recorded 

in the materials developed in the present work, three nanocomposites were compared 

containing zeolite Beta (BEA), silicalite-1 (MFI) and AlPO-18 (AEI). These nanoparticles 
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differ in their chemical composition and structure, hydrophobic/hydrophilic nature and 

dimensions of pores. It was found that although all nanoparticles were partially 

redistributed during the holographic recording (as verified by means of Raman 

spectroscopy and also by SEM-EDX in the case of Beta nanocomposites), this effect 

improves the refractive index modulation only in the case of the silicalite-1 nanoparticles, 

while no improvement is observed in AlPO-18 and Beta doped layers. The results can be 

explained by the hydrophobic/hydrophilic nature of the nanoparticles and their 

interactions/absence of interactions with the host photopolymer. In terms of pore sizes, 

zeolite Beta is a large pore, zeolite silicalite-1 is a medium pore size while AlPO-18 is a 

small pore material. This allowed us to distinguish between two situations – when the 

acrylamide monomer molecules can be trapped inside the nanoparticles (Beta) and when 

they are larger than the nanoparticles‟ pore size (silicalite-1, AlPO-18). By Raman 

spectroscopy, it was indeed proved that the acrylamide molecules bonded with zeolite Beta. 

Moreover, by means of 13C NMR it was found that interactions also occur with other 

components of the photopolymer, such as TEA molecules. In this study, zeolite A was used 

for comparison. Zeolite A has similar chemical composition and structure to zeolite Beta, 

but smaller pore size. 

 

AlPO-18 material unlike zolite Beta can‟t accommodate molecules of the photopolymer 

inside its pores due to small pore size also showed no improvement of the refractive index 

modulation of gratings recorded in the respective nanocomposites. The explanation for  this 

was given by the hydrophilic nature of the structure.  

 

Gratings recorded in photopolymers doped with AlPO-18, known for its hydrophilic nature 

and its ability to retain water molecules inside its pores unless heated above a given 
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temperature were compared with gratings recorded in photopolymer doped with silicalite-1 

nanoparticles, a pure silica zeolite whose pores are expected to remain empty due to their 

hydrophobic nature, i.e, not having affinity to water. By refractive index calculations 

before and after incorporation of zeolites in the photopolymer (see Table 10.1) it was 

shown that only hydrophobic silicalite-1 pores remain empty after being added to the 

photopoymer, as indicated by the small difference between the pore volume before 

(0.12cm3g-1) and after addition to the photopolymer (0.11cm3g-1). 

 

Table 10.1. Comparison of pore volume of nanoparticles before and after addition to 

the acrylamide based photopolymer. 

 

 

 Greater diferences in the refractive index of empty pores (air) and photopolymer vs. filled 

pores and photopolymer are responsible for the improvement of the refractive index 

modulation (n1) in the presence of silicalite-1. This is according with the predicted values 

(see Table 10.2). 
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Table 10.2. volume fraction of rdistributed nanoparticles and predicted and measured 

refractive index modulation contributed by the nanoparticles. 

 

Nano 

particles 

(NP) 

%wt. 

Vol. 

fraction in 

the solid 

layer (%) 

Vol. 

fraction 

Raman 

% 

fredistributed 

% 

nNP - 

nphotopolymer 

n1expected n1measured 

BEA 5 5.6 40 2.3 0.043 
6.34x10

-4 

6.1x10-4 

±  8x10-5 

AEI 2.5 0.75 31 0.23 0.085 1.3x10-4 
1.3x10-4 

±  1x10-5 

MFI 5 4.6 38 1.75 0.133 2.3x10-3 
1x10-3 

±   1x10-4 

 

 

With this work we contributed to a deeper understanding of the role of porous 

nanoparticles during the holographic recording in photopolymerizable nanocomposites. 

The modulation of the refractive index n1 is caused by: 1) polymerization by conversion of 

the monomer into polymer; 2) density variation due to concentration driven monomer 

diffusion from dark to bright fringe areas; 3) density variation due to concentration driven 

short/mobile polymer chains diffusing from bright to dark fringe areas; 4) spatial patterning 

of the nanosized particles. The latter phenomenon is observed only if the refractive index of 

the nanoparticles is significantly different from that of the photopolymer matrix and if the 

volume fraction of the redistributed particles is sufficiently large.  
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The development of these new materials for use in sensing platforms is demonstrated. An 

irreversible humidity sensor (i.e. the diffraction efficiency of the sensor changes 

permanently after exposure to high humidity) based on a transmission holographic grating 

recorded in AlPO-18 nanocomposite was fabricated. This is important for instance in 

situations where, regardless of current (potentially lower) humidity levels, one would like 

to know if higher levels of humidity were ever present. The larger pore Beta zeolite could 

also be useful in the detection of larger molecules such as volatile orgaic compounds - 

VOC, demonstrated here for the detection of toluene, where the addition of 5% Beta 

nanoparticles yielded an increase of 20% in the diffraction efficiency difference on 

exposure to toluene when compared with the undoped photopolymer.  

 

Finally a photopolymer containing NIPA, a monomer less toxic than acrylamide and with 

interesting thermo sensitive properties, showed potential as holographic sensor and initial 

studies characterized spectral features response of reflection gratings recorded in this 

material to both humidity and temperature. 

 

10.2 SUGGESTIONS FOR FUTURE WORK 

Following the preliminary investigations described in this thesis, a number of projects 

could be taken up in the future: 

1. Develop the studies regarding the interactions between sensitizing dyes and 

nanozeolite L. It would be interesting to investigate how and where molecules such 

as dyes and water are adsorbed/ absorbed in the zeolite structure. Neutron 

diffraction could be used, since neutrons are particularly suited for studying organic 

molecules in the voids and channels of zeolite frameworks due to their sensitivity to 

hydrogen. These results could be complemented by further NMR experiments.  
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2. Performing further studies in chemical sensing, particularly by controlling the 

concentrations of chemicals delivered to the polymer and study the response of the 

nanocomposites to the exposure to increasing concentrations of chemicals, such as 

different VOCs of interest 

3. Continue the optimization of NIPA photopolymer by finding the composition that 

gives highest diffraction efficiency and by finding the best experimental conditions 

(such as recording intensity and exposure time) to record reflection holograms. 

Explore further this formulation as a sensor, for instance as potential biosensor. 
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