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Abstract: In this paper microwave thermal ablation is numerically evaluated in the context of a 

treatment for Conn’s Syndrome. This condition is caused by a benign shallow tumour in the cortex 

of adrenal gland. The modelling and design of microwave applicator to deliver thermal ablation to 

the adrenal gland requires accurate tissue characterisation. Measuring the dielectric properties of the 

constituent tissues in the adrenal gland, i.e. cortex and medulla, enables more accurate numerical 

modelling for electromagnetic and thermal simulations. This study presents an anatomically and 

dielectrically realistic numerical model of the adrenal gland, and investigates the feasibility of 

applying controlled heating to small targets in the adrenal cortex. In addition, the use of dielectric 

contrast between the fat and the cortex of the adrenal gland to focus the thermal energy in the gland 

has also been studied. Being conscious of limitations of numerical simulation of complex multi-

physics problems like the microwave ablative treatment, calculated results provide a preliminary 

description of the electromagnetic and thermal phenomena involved. 
 
 

1. INTRODUCTION 
 

High blood pressure, also known as hypertension, is a global health problem that accounts for more 

than 9.4 million deaths every year, and affects over 1 billion people worldwide [1]. Hypertension 

directly causes approximately 25% of heart attacks in Europe and, in its progressed form of 

cardiovascular disease, is responsible for 42% of all deaths across Europe annually. One of the most 

common curable cause of secondary hypertension is Primary Aldosteronism (PA, also known as 

Conn’s Syndrome) [2, 3]. PA is thought to account for up to 18% of all cases of hypertension 

within the hypertensive population [3, 4]. It is caused by benign, shallow, hormone-eluding 

adenomas on the cortex of the adrenal gland. A simplified anatomical model of the adrenal gland is 
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shown in Fig. 1. Adrenal adenomas can vary in size considerably, but are typically less than 1 cm in 

diameter, and are usually identified incidentally during radiologic examinations [5].  

 

 

Figure 1: Constituent tissues of the adrenal gland. 

 

 

PA and associated hypertension can be cured by eliminating these adenomas, however existing 

treatment options are limited. Currently the most commonly performed treatment for PA is an 

adrenalectomy, which involves the complete removal of the diseased adrenal gland [3, 6, 7]. This 

approach has been shown to be effective in treatment of PA where it is confined to one gland [7], 

with biochemical levels and blood pressure returning to normal [6]. However, PA often reoccurs in 

the remaining contralateral adrenal gland. In such cases the disease must be managed medically, but 

available drug treatments are poorly tolerated by patients due to their significant side-effects [7]. 

These challenges provide a clear motivation for a less invasive treatment that can be used to 

precisely target the hormone-eluding adenomas in the adrenal gland. It should spare healthy tissue 

to ensure that the function of the gland is preserved, and eliminate the requirement for surgical 

resection.  

 

Thermal ablation is accepted as a safe and effective alternative to surgical resection for elimination 

of lesions in a range of organs including the liver, kidneys and lungs [8]. Early thermal ablation 

systems used Radio Frequency Ablation (RFA), and were designed primarily for ablation of liver 

tumours. However, RFA systems have also been used in other clinical applications, such as kidney, 

lung, bone, and adrenal glands [9, 10, 11].  RFA produces resistive heating by applying electric 

current in the targeted lesion. The heat is dissipated into the surrounding tissue by thermal 
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conduction. This makes it susceptible to heat sinks or changes to tissue impedance which can result 

in an undesirable elliptical or non-uniform ablation zone [9].  

 

The emergence of Microwave Ablation (MWA) has addressed some of the problems in RFA, 

providing a means to achieve a faster and more controlled ablation and with less critical dose of 

anaesthetics [11, 12, 13]. This makes MWA well suited for treatment of lesions in the adrenal gland 

where a precise ablation zone is required to spare healthy tissue [14]. 

 

The rate of heating during MWA is a function of the dielectric properties of the target tissue, which 

are a function of the water content of the target tissue [12]. The adrenal gland is composed of three 

principal tissue layers: an outer fatty capsule, the cortex where the hormone-eluding adenomas are 

located, and the medulla (see Figure 1). Each tissue type in the adrenal gland has different dielectric 

properties which will affect the rate of heating and the characteristics of the ablation zone. 

Therefore, the knowledge of accurate dielectric properties and anatomy of the gland is critical in 

designing a MWA system for treatment of adrenal tumours.   

 

This paper presents an anatomically realistic and dielectrically accurate numerical model of the 

adrenal gland for MWA at 2.45 GHz. The effect of gland structure, ablation power, and therapy 

duration on the ablation zone is investigated through numerical simulations performed by using the 

3-D Computer Simulation Technology Microwave Studio (CST MWS Suite 2017, Darmstadt, 

Germany). In addition, the feasibility of using the differential in tissue properties to control the 

ablation zone is investigated. To the best of our knowledge, this is the first numerical evaluation of 

the microwave ablation in the adrenal gland that models the dielectric properties of fat, cortex and 

medulla components.  

 

The remainder of this paper is organized as follows: Section 2 describes the numerical model and 

details the dielectric and thermal properties of the tissues. The multi-physics electromagnetic 

thermal ablative problem is discussed in Section 3 and conclusions are presented in Section 4. 
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2. NUMERICAL MODELLING   

The adrenal gland represents a complex scenario to model, both in terms of tissue heterogeneity and 

morphology. Figure 2 shows an anatomical model of a typical adrenal gland site in adult human 

based on the data in [15].  

 

 

Figure 2: Anatomical model of a typical adrenal gland in adult human 

 

The adrenal gland sits on top of the kidney and it is surrounded by an infiltrated fat capsule. The fat 

tissue is then covered in a thin film of connective tissue. Accurate modelling of the adrenal site for 

electromagnetic/thermal multi-physics simulations requires a realistic characterization of each 

tissue in terms of dielectric and thermal properties at the target frequency and temperature operating 

range. 

 

A recent study on the dielectric properties of the adrenal gland reported anatomically realistic 

dielectric model of the gland across the frequency range 0.5 – 20 GHZ [15]. This study overcomes 

the issues with incorrect modelling of tissue in most of the recent literature [17, 18] where a 

homogeneous dielectric model was introduced for the adrenal gland. In [16] a slim-form dielectric 

probe (Keysight 85070E, Santa Rosa, CA, USA)  was used for measurements in conjunction with a 

vector network analyser (Keysight E8362B) to record the reflection coefficient (S11) at 101 linearly 

spaced discrete frequency points over 0.5 to 20 GHz. The S11 parameters were converted to 

complex permittivity using Keysight material measurement software suite (Keysight N1500A). 
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Dielectric properties are generally expressed in the form of a parametric model. Cole-Cole model is 

commonly used to represent the frequency dependent permittivity of biological tissues. In the Cole-

Cole mode, the frequency dependent complex permittivity is represented as:  

 

���� = 	 �� + � ∆��
1 + ���������� + 	�����

�

�	�

 

 

(1) 

where ε∞ is the permittivity at highest frequency; ∆εn is the magnitude of nth relaxation; ω is the 

angular frequency in radians per second; τn is the relaxation time of the nth relaxation; αn is an 

empirical parameter that accounts for broadening of the nth relaxation; σs is the static conductivity; 

and ε0 is absolute permittivity. The measured dielectric properties were fitted to the two-pole Cole-

Cole models for the cortex and medulla tissues of bovine adrenal gland described by the parameters 

in Table I.  

 

TABLE I 

Parameters of the two pole Cole-Cole model of bovine adrenal tissues [16] 

Parameter Adrenal Cortex Adrenal Medulla 

ε∞ 3.57 3.88 

∆ε1 47.08 52.95 

τ1 8.33 ps 7.01 ps 

α1 0.16 0.17 

∆ε2 52.31 62.05 

τ2 1.69 ns 4.28 ns 

α2 0.03 0.14 

σs 0.46 0.62 

 

The sets of dielectric properties shown in Table I are slightly different, with the medulla being 

electromagnetically denser than the cortex. This contrast suggests that the microwave radiation will 

travel more rapidly in the cortex than in the medulla. In ablative treatments with short durations 

(less than a minute) direct heating due to microwave radiation will dominate conductive heating. 

Therefore, an improved dielectric characterisation of the targeted tissues allows more realistic 

numerical simulation of the temperature profiles [12]. 

 

The adrenal gland rests on the top portion of the kidney (see Figure 1). The lower surface of the 

adrenal gland is in direct contact with the kidney cortex tissue and its remaining free surfaces 

surrounded by fat. Figure 3 provides dielectric properties for the kidney cortex and fat tissue 
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component in terms of permittivity and electric conductivity as reported in [19]. The thermal 

properties of the tissues are shown in Table II.  

The numerical model generated for the multi-physics simulations discussed below does not include 

blood perfusion as this aspect is considered secondary for the size of the targeted region and the 

duration of the ablative treatment. Open boundary conditions were adopted to solve both the 

electromagnetic and thermal problems. Finally, the multilayer structure of the model was adaptively 

meshed to be denser in regions with higher permittivity. The size of meshing tetrahedrons spans 

between minimum and maximum edge lengths of 0.019 mm and 0.99 mm, respectively. 

 

It is proposed to position the ablation needle (applicator) at the interface between the fat and adrenal 

cortex layers, where the fat layer will act as an insulator due to significantly lower dielectric and 

thermal conductivity properties than the surrounding tissue. This placement of the needle should 

result in an ablation zone that primarily targets the cortex where hormone-eluding adenomas are 

located. The fat / cortex interface appears distinctly clear in CT imaging [20] and may provide a 

practical approach for targeting the cortex whilst sparing the medulla and preserving gland function.  

 

 

Figure 3: Permittivity and Electric conductivity of  tissues adjacent to the adrenal site [19] 

 

 

 

 

 

 

 

 

TABLE II 
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Thermal properties of tissues in the adrenal site [19] 

Tissue Heat capacity [Kj/Kg/°C] 
Thermal conductivity 

[W/m/°C] 

Adrenal medulla 3.745 0.54 

Adrenal cortex 3.587 0.53 

Infiltrated fat 2.348 0.21 

Kidney cortex 3.763 0.53 

 

 

 

A numerical multilayer planar model was developed to validate this approach. It also sought to 

identify treatment durations and power settings where the ablation was confined by the fat layer to 

the cortex and did not reach the medulla. The ablation antenna was positioned parallel to the 

interface between the fat and the adrenal cortex layer in a simplified, planar geometry shown in 

Figure 4. The cortex and medulla were represented by two 5 mm thick layers corresponding a 

typical human adrenal gland structure. The fat capsule was modelled by a 15 mm thick layer, which 

is larger than that seen in vivo, but provided a simple and robust boundary condition for the 

preliminary analysis. The ablation antenna used in this paper is a 17 gauge omni-directional 

monopole applicator. The antenna is a coaxial monopole which is obtained by exposing a 6-mm 

length of the inner conductor of the feed cable when this is immerged in the water of the cooling 

system. The applicator presents an S11 performance better than -12 dB in all working conditions 

under investigation. While more complex antenna solutions such as slot and directive antennas were 

explored, a simple coaxial monopole was adopted in this preliminary study to stress the attention on 

the complex multi-tissue model here proposed. 
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Figure 4: Planar multilayer model of the adrenal site 

 

The planar model formed the basis for a more complex three dimensional (3D) simulation that 

included an anatomically realistic geometry. Figure 5 details the gland structure intended to 

represent a typical human adrenal. It was situated with the lower surfaces contacting the kidney 

cortex and the remainder surrounded by the fat capsule. The thickness of the adrenal cortex ranged 

from approximately 5 to 10 mm. The ablation needle was positioned at the interface between the 

cortex and fat layer where the cortex is thinner as shown in Figure 5. The background medium in 

the model was set as blood to provide a stable boundary condition. The target ablation temperature 

was 60° C in all cases under investigation. 

 

  

(a) (b) 

 

Figure 5: 3D multilayer model of the adrenal site and section view of the gland with needle 

inserted: (a) 3D view; (b) cross-section. 
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3. RESULTS   

 

This section details the results of the planar and 3D simulations. Three power levels (i.e. 30, 60 and 

90 W delivered at the distal tip) and three treatment durations (i.e. 15, 30 and 45 s) were considered.  

 

Figure 6 displays the thermal distribution for each power and duration setting obtained from the 

planar model. As expected, limited interaction with the adipose layer was observed compared to the 

heat generated in the targeted cortex region at each power and time duration setting. The results also 

indicate that the ablation zone is confined to the cortex in the ablations at low duration (30 s), even 

with high power. Direct heating will dominate at treatment with low durations, when there is 

limited time for conductive heating.  

  

 15 s 30 s 45 s 

 

Colour ramp 

30 W 

    

60 W 

   

90W 

   

Figure 6: Ablation zone in planar multilayer model of the adrenal site for different power and 

time settings. 
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Similar shielding effects by the fat capsule were observed in the results obtained from the 

simulation on the 3D geometry. The fat layer functioned to confine heating to the cortex at short 

treatment durations and low/medium input powers (see Figure 7). At all settings, the ablation zone 

is focussed towards the adrenal cortex and medulla; however at higher power and durations it 

extended beyond the thin fatty capsule, posing a risk of damage to surrounding structures (e.g. 

blood vessels, nerves, connective tissue, etc.). This demonstrates that the thickness and integrity of 

the fat capsule as well as accurate placement of the ablation probe is critical to maximising the 

shielding effect.  

 

Analysis of the results shown in Figure 6 also indicate insufficient heating (< 60 oC) for tissue 

ablation occurred at 30 W input power, even at the high duration (45 s). Longer durations were not 

considered because they would favour conductive heating which does not differentiate between the 

tissue types as effectively as direct heating. The results of this analysis suggest that the optimum 

treatment may use a high power (e.g. 60 or 90 W) for a short duration to maximise direct heating of 

the cortex whilst sparing the medulla.  

The 3D model also provided a more realistic representation of the needle placement. Its location is 

complicated by the curvature of this fat / cortex interface. This resulted in discrepancies between 

the characteristics of the ablation zones observed from the planar model shown in Figure 6 where 

the needle was perfectly aligned to the fat/cortex interface. The heat maps of the 3D simulations are 

shown in Figure 7. In the 3D model the antenna is fully embedded into the fat tissue, which resulted 

in attenuation. This further highlights the importance of accurate probe placement to successfully 

target the cortex whilst sparing the surrounding tissues.  

 

 

 

 

 

 

 

 

 

 

 

 



 11 

 15 s 30 s 45 s 

 

Colour map 

30 W 

   

 

60 W 

   

90W 

   

 

Figure 7: Ablation zone in 3D multilayer model of the adrenal site for different power/time 

settings. 

The numerical analysis presented in the paper sought to carry out a realistic simulation of 

microwave ablation in the adrenal gland. However, the following limitations to the scope of the 

analysis are noted. Only one needle location and orientation was considered. Moreover, the 

properties of the hormone-eluding adenomas were not modelled as not yet fully characterized.  

 

 

4. CONCLUSIONS 

 

A multiphysics simulation of MWA in the adrenal gland including constituent tissues was 

presented.  Planar and 3D models were used to analysis the effects of MW thermal ablation at 2.45 

GHz, performed with a 17 gauge omni-directional needle. It was demonstrated that placement of 



 12 

the needle at the interface between the cortex and fat capsule results in an ablation zone which 

targets the cortex. Furthermore, the use of high power with a short duration can maximise the direct 

heating in the targeted cortex of the gland. The results generated by this analysis suggest that 

treatments with a power of 60 or 90 W for 15 s result in ablation of a 5-mm thick adrenal cortex 

region while sparing surrounding medulla. 
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