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Abstract. In this paper we discuss how the innate ability of mobile phone 

speakers to produce ultrasound can be used for accurate indoor positioning. The 

frequencies in question are in a range between 20 and 22 KHz, which is high 

enough to be inaudible by humans but still low enough to be generated by 

today’s mobile phone sound hardware. Our tests indicate that it is possible to 

generate the given range of frequencies without significant distortions, provided 

the signal volume is not turned excessively high. In this paper we present and 

evaluate the accuracy of our asynchronous trilateration method (Lok8) for 

mobile positioning without requiring knowledge of the time the ultrasonic 

signal was sent. This approach shows that only the differences in time of arrival 

to multiple microphones (control points) placed throughout the indoor 

environment is sufficient. Consequently, any timing issues with client and 

server synchronization are avoided. 

Keywords: Indoor Mobile Positioning, Ultrasonic Trilateration, LBS 

1 Introduction 

The role of mobile phones in society has changed dramatically in the past few years 

as for many people their SmartPhone is an omnipresent gateway to information.  The 

mobile nature of the device is of key importance.  Users have come to expect constant 

access to the phone’s information facilities in many different circumstances and 

environments that take into account location and personal preference when providing 

useful and timely decision support services.  

Currently outdoor Location Based Services (LBS) have the advantage of relatively 

reliable positioning via GPS (also Wi-Fi and GSM) and a defined business model for 

the delivery of content to the user. This has led to applications of outdoor LBS greatly 

expanding in recent years, leaving indoor locationing technologies and services on 

mobile devices to yet fully mature. The current state-of-the-art of merging accurate 

(i.e. sub-metre) indoor positioning and context-sensitive services for indoor LBS 

therefore is still an open problem.  

The following factors make indoor positioning challenging: 

1. Generally indoor environments require higher accuracy to be useful for practical 

LBS purposes. This is because when indoors we are dealing with objects and 
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distances on a smaller scale. While accuracy of +/- 10 meters may be good enough 

to direct someone to a cafe or a bus stop, indoors it could mean we are unsure in 

which room the user currently is located. 

 

2. Locationing services that rely on satellite signals such as GPS for positioning do 

not work indoors at all because these signals require a direct line-of-sight to the 

receiver. 

 

3. When used indoors, electromagnetic fields and sound signals can suffer from 

fading and multipath propagation when they encounter walls, windows, and other 

structures.  This requires implementations of a robust solution that can effectively 

overcome the positioning difficulties typically found in cluttered, complex indoor 

environments.  

Under these circumstances it is understandable that very specialized hardware may 

be required unless we are willing to sacrifice accuracy.  However, given the role of 

commercial off-the-shelf (COTS) SmartPhones in today’s society, they have by 

default become the platform of choice for implementations of indoor positioning and 

therefore the standard hw platform we have developed our Lok8 (locate) indoor 

positioning solution to work on. 

While many mobile positioning approaches are erroneously described in the press 

as triangulation, where angles between mobile devices to various receivers (control 

points) would be required, what is in fact being described is trilateration, where 

distances to known control points or beacons are instead used in the positioning 

calculation.  Significantly, what is often common among these solutions is some sort 

of timing synchronisation requirement between transmitter and receiver to provide a 

full measure of distance as inputs to the trilateration process.   

The main contribution of our Lok8 approach is that we remove this often delicate 

synchronisation problem between transmitter and receiver by instead requiring that 

receivers (i.e. 3 or more microphones) be connected to a central server that starts a 

timer once an ultrasonic signal is detected by any of the mics.  By making the time the 

original signal was sent irrelevant, only the differences in time between when the 

signal reaches each of the remaining microphones is needed in our solution. The 

result is a more robust mobile trilateration method.   

As comprehensive explanation of mobile trilateration procedure is all too rare in 

indoor LBS literature, another worthwhile contribution of this paper is to describe in 

detail our subtle but significant modification to standard least squares trilateration in 

Section 3. Where standard trilateration assumes that distances from an unknown 

position to all control points are known a-priori, instead we only know the differences 

between these distances - not the distances themselves.  So while our asynchronous 

trilateration derivation is similar to the standard case, the initial conditions are 

different and therefore the standard trilateration solution requires modification.  

Before this we first discuss some background work in Section 2, and follow this with 

a summary of our principal contributions to the field of indoor mobile positioning and 

plans for future work in Section 4.    
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2 Indoor Positioning Background 

There are many different methods and reported accuracies for locating a mobile 

device indoors (see Table 1). Methods that use propagation of Radio Frequency (RF) 

signals are prevalent in this field, with the exception of computer vision, where 

simultaneous localization and mapping (SLAM) appears to be the most promising but 

considered by many an operational technology still in its infancy [1]. Computer vision 

techniques, while potentially very accurate, is characterized by high computational 

load, complicated procedures of recovery from tracking failures and susceptibility to 

camera shake and motion blur. These problems are addressed in the studies done by 

Williams et al. [2] and Wagner et al. [3]. Another difficulty associated with computer 

vision is that the user is supposed to be looking through the display screen when using 

the device. 

Table 1: Comparison of Indoor Positioning Implementations 

 Best Accuracy Underlying Technology 
Available on 

SmartPhones 

Wide Signal Strength 

Fingerprinting 
2.48m GSM no 

Skyhook(GSM) 200m GSM yes 

Navizon(GSM) 50m GSM yes 

Skyhook(Wi-Fi) 10m Wi-Fi yes 

Navizon(Wi-Fi) 20m Wi-Fi yes 

RADAR 2m WaveLan no 

GP for Signal 

Strength-Based 

Location Estimation 

2m Wi-Fi yes 

Ekahau 1m Wi-Fi no 

The Bat 3cm Ultrasound no 

The Cricket 3cm Ultrasound no 

Lok8 Sub-metre Ultrasound yes 

 

RF-based transceivers such as GSM, Wi-Fi and Bluetooth can be found on every 

modern SmartPhone. Five meter accuracy, one of the best results for indoor GSM 

positioning, was displayed by Otsason et al. with the help of wide signal-strength 

fingerprinting [4]. Unfortunately wide signal-strength fingerprinting is impossible on 

many modern phones due to OS restrictions. Other GSM positioning methods are 

generally impractical for indoor use due to poor accuracy. Wi-Fi positioning is on 

average better than twice as accurate as GSM. A method proposed by Ferris et al. 

where Gaussian processes are used to mathematically predict signal strength in areas 

outside the exact spots where fingerprints were taken seems to promising [5]. The 

best accuracy among commercial solutions using this approach was shown by 

Ekahau: 1-3 meters [6].  
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Bluetooth has the shortest range among the three wireless technologies but there 

are two major problems that make Bluetooth positioning particularly difficult. First of 

all it is designed to adjust signal strength when signals become too strong or too weak 

making any subsequent distance measurements based on signal strength unreliable. 

Disabling this feedback loop is discussed by Zhou et al. [7]. Another problem is that it 

takes a lot of time for a new device to be fully discovered. Very often it means that 

the user has already left the area [8]. This makes Bluetooth trilateration impractical; 

however coarser room-level positioning can be done relatively quickly as device 

pairing is not required. 

Notably, it is not reported possible to achieve accuracy below one meter [9] using 

RF-based technologies present in mobile phones [4, 5, 10]. However, sound travels at 

significantly slower speeds than radio waves and can therefore be easily localised to a 

few centimetres due to this much longer time of flight.  Other useful features of sound 

show that it is possible to emit a 21 KHz (just above the human hearing range) signal 

from a mobile phone speaker and successfully receive it with a conventional 

microphone [11].  In a separate study, Peng et al. [12] showed that it is possible to 

utilize sound in order to measure the distance between two mobile phones using 

synchronized time-of-arrival techniques. 

In previous work [16], we tested the useable range of SmartPhone ultrasound to 

find that these signals can indeed be successfully detected up to distances of 20m or 

more (Figure 1).  In this experiment, two values below 10 dB were registered but this 

is still well above the 21.5 KHz component of background noise, which is around 1 

dB. However there is no guarantee that the maximum value belongs to a signal that 

arrived by direct path and not via a longer deflected path.  In any case, it can be seen 

from the shape of the graph that even with speaker and microphone pointing directly 

at each other, signal strength can’t be relied on alone to accurately measure distance. 

 

 

Fig. 1. Relationship between signal strength and distance for conditions where SmartPhone 

speaker and microphone point at each other. 
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Therefore, in our Lok8 trilateration method we endeavour to make use of the useful 

characteristics of inaudible mobile ultrasound by exploiting the differences in signal 

time-of-arrival at a static microphone array for accurate mobile positioning.  An 

accuracy comparison of our method compared to other reported indoor positioning 

methods, together with their availability for implementation on today’s SmartPhones, 

is also given in Table 1.   

3 Time Difference of Arrival (TDOA) Trilateration 

Sound is a mechanical wave which travels at speeds much slower than the speed of 

light. In dry air at a temperature of 25ºC the speed of sound is only 346 m/s. At such 

propagation speeds, one sample of a standard 44.1 KHz stream (44100 cycles/second)  

accounts for 0.8cm of distance [4, 13]. In other words a signal will travel only 0.8 

centimeters in the duration of the smallest time grain. Technically it is possible to 

work with sound even at 384 KHz, which can give much finer accuracy.  

As discussed previously, by using trilateration it is possible to calculate one’s 

position based on the distance to several other (control) points with known positions 

[14, 15]. To find one’s position in 2 dimensions the number of required known points 

is 3; for position in 3 dimensions the number of known points is 4. Given that the 

speed of sound propagation is constant under the same temperature and humidity 

conditions, the time it takes a signal to travel between the phone to each known 

microphone control point can be directly converted into distance between the phone 

and microphones. This is the TOA (Time of Arrival) approach.  In general, the main 

problem with this approach is that both the time the signal was sent and the time it 

was received are required in order to get the time of flight.  

In our scenario of quickly and accurately locating a mobile phone indoors, TOA 

requires that times from two separate systems with two separate clocks will have to be 

synchronised - a major source of error. As such it is desirable to compare only the 

time of arrival at each of the microphones and ignore completely the time the signal 

was originally sent from the phone, making Lok8 a TDOA (Time Difference of 

Arrival) approach. The problem is illustrated in Figure 2 and the detailed solution 

follows. 

 

Problem: 

 Mobile phone (P) has unknown position (XP,YP). 

 4 microphones (M1, M2, M3, M4) have known positions (XM1,YM1), (XM2,YM2), 

(XM3,YM3), (XM4,YM4) 

 4 distances (d1, d2, d3, d4) from P to M1, M2, M3, M4 are unknown but the 

differences between them (m2, m3, m4) are measured ultrasonically; these are the 

observations. 

 Find coordinates of P=(XP,YP) by solving a system of equations (mathematical 

model) that relates the m = 3 observations (m2, m3, m4) to the n = 2 unknown 

parameters (XP,YP). 
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M2 M3 

M1 M4 

P 

(XM3,YM3) 

 

 

(XM2,YM2) 

 

(XM1,YM1) 

 

 

(XM4,YM4) 

 

 

(XP,YP) 

d2=d1+m2 
d3=d1+m3 

 

d4=d1+m4 

 d1 

Solution: 

Although the coordinates of P could be found using readings from only 3 

microphones (2 observations), 4 or more readings can be effectively used in the 

method of Least Squares to determine the Most Probable Value (MPV) for the 

coordinates of P, plus a Standard Deviation for the MPV. 

 

Fig. 2. Time Difference of Arrival. Control points M1, M2, M3 and M4 are known microphone 

positions.  Point P is the unknown mobile phone’s position, coordinates of which we are trying 

to find. Lines d1, d2, d3 and d4 are unknown distances between the phone and each 

microphone. However, what are known are the differences between the three measurements: 

m2, m3 and m4. 

 

Least Squares Method for TDOA Trilateration: 

 

From Pythagoras we derive the following mathematical model to describe the 

ultrasonic relationships between phone P and microphones M1, M2, M3, M4: 
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2
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However, we can re-write 2d , 3d , 4d  in terms of 1d :  
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212 mdd    

313 mdd    

414 mdd   

 

And then substitute above 1d  expressions back into the mathematical model: 

 

2
2

2
221 )()( MPMP YYXXmd   or 1
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Then replace 1d  in 2m , 3m , 4m equations above with equivalent 1d  expression 

from mathematical model to give: 

 

2
1
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2
1
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1
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3

2
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4
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Re-write above three mathematical model equations as observation equations by 

adding a residual vm to each measurement: 

 

F: 2
1

2
1

2
2

2
222 )()()()( MPMPMPMPm YYXXYYXXvm   

G: 2
1

2
1

2
3

2
333 )()()()( MPMPMPMPm YYXXYYXXvm   

H: 2
1

2
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2
4

2
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Because number of measurements (m = 3) is greater than number of unknowns     

(n = 2), use Least Squares to determine the MPV of the unknowns (XP,YP).  Since the 

observation equations are non-linear in the unknowns (XP,YP), a first-order Taylor 

Series is needed to approximate a set of linear observation equations before taking 

partial derivatives. 

 

Considering function F above (describing ultrasonic relationship between M2 and P): 

 

F:   2
1

2
1

2
2

2
222 )()()()( MPMPMPMPm YYXXYYXXvm   

 

This non-linear function can be written as: 
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22),( mPP vmYXF   

 

Where 

 

2
1

2
1

2
2

2
2 )()()()(),( MPMPMPMPPP YYXXYYXXYXF   

 

The above function is linearized using a first-order Taylor Series approximation: 
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Where  

 PoX and PoY are initial estimates of SmartPhone position in the environment 

calculated by taking average of all known microphone positions.  

 ),( PoPo YXF is the non-linear function evaluated with these estimates. 

 pdX and pdY are corrections to the initial estimates such that ppp dXXX
o
  

and ppp dYYY
o
   
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are found by first re-writing function F: 
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and then take partial derivative with respect to XP: 
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and then with respect to YP: 
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Where d1 is always (re)evaluated using Pythagoras at current estimates for (XP,YP). 
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So the linearized observation equation for 2m , describing the ultrasonic 

relationship between microphone M2 and phone P becomes: 
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Likewise for function G (between M3 and P): 
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and function H (between M4 and P): 
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When using Matrix Methods for Least Squares, the observation equations are 

represented in matrix form as: 

 

111 VLXA mmnnm     

 

Where in our case: 

 m = 3, n = 2  
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 nm A  contains the coefficients of the unknowns ),( PP YX  

 1Xn contains the corrections to be applied to the initial estimates for the 

unknowns ),( PP dYdX  

 1Lm   contains the measurements ),,( 432 mmm  

 1Vm   contains the residuals (one for each measurement) 

Solving for X gives the solution: 

 

  LAAAX TT 1
   where: 
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Matrix X contains the corrections to be applied to the original estimates 

for ),( PP YX .  These new ),( PP YX coordinates are then used to recalculate updated 

distances for ),,,(
000 4321 mmmd . The process is repeated until coordinates of 

),( PP YX don’t change significantly (e.g. in the 3rd decimal place for mm precision). 

After a solution has been reached, the residuals V for each measurement and 

Standard Deviation of unit weight o  for the overall least squares adjustment can be 

calculated with: 

LAXV   and 
 

r

VV T

o   

Where degrees of freedom  r = m–n  and the Standard Deviation of each adjusted 

unknown is then given by: 

 

 XiXioXi Q   

 

In our case 
1X  is the Standard Deviation for PX , and 

2X  is the Standard 

Deviation for PY . These standard deviations imply that there is a 68% probability that 

the adjusted values for PX  and PY  are within   of this amount.   
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  1
AAT  is called the variance-covariance matrix or  XXQ  matrix and  XiXiQ  is 

the variance of unknown i, or the element in the ith row and ith column of the   1
AAT  

matrix.   

Practical Example: 

 

To test the accuracy of our TDOA Trilateration method, we used it to calculate the 

position of several random SmartPhone locations and compare the results to their 

actual positions in Figure 3. We used four control points (microphones) arranged in 

the corners of a rectangular room to locate the phone’s position at 6 different 

locations within the room. 

 

 
Fig. 3. TDOA Trilateration experiment with four microphones and six different smartphone 

positions. Control points M1, M2, M3 and M4 are microphones. Points P1, P2, P3, P4, P5 and 

P6 are actual SmartPhone locations. Each square of the grid represents 1 unit in length. 

 

Regarding input data for testing the Lok8 trilateration algorithm, the locations of 

M1(0,0), M2(0,20), M3(30,20), M4(30,0) were used and the initial distances between 

the mics and the various phone positions were measured manually.  Although we 

could have used Pythagoras in Figure 3 to calculate exactly the measurements 

representing the ultrasonic distances between the microphones and various phone 

positions, we wanted to introduce some error in the measurements so chose instead to 

simply use a ruler to measure these distances on paper to one decimal point precision. 

After that we subtracted the shortest measured distance for any given phone position 

from each of the remaining three mic distances. The resulting 3 distance differences 

were then used as “ultrasonic” input to the asynchronous trilateration procedure in 

addition to the known microphone locations. 

d3 

d3 

d3 

d3 

m1 
m4 

m2 
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For example, for phone position P1 the measured distance to M1 was 20.2, to M2 

19.2, M3 15.8, and M4 17.0. The shortest distance is to M3, therefore it is subtracted 

from the other 3 distances to leave; m1= 4.4, m2= 3.4, m4= 1.2. These values simulate 

time measurements translated to distance for the ultrasonic signal to reach these 3 

mics after first triggering the server clock at M3.  The input data is summarised in 

Table 2 and the trilateration results for the phone’s position relative to the 4 

microphones are compiled in Table 3.  Notice that if we assumed metres for units in 

this example, the standard deviations for the phone positions are of sub-metre 

accuracy. 

Table 2: Sample TDOA Trilateration input. Second and third columns contain coordinates of a 

microphone and fourth column contains differences between distance to mic and closest mic. In 

this example microphone M3 is closest to phone position P1 so its corresponding distance 

difference equals zero. 

Mic X Y Distance Difference (mi) 

M1 0 0 4.4 

M2 0 20 3.4 

M3 30 20 0 

M4 30 0 1.2 

Table 3: Comparison of TDOA output and expected results. Second column contains X and Y 

coordinates of a given phone position, third column contains coordinates of the phone as 

calculated by our TDOA trilateration procedure. Fourth and fifth columns contain the Standard 

Deviations  YX  ,  for each trilaterated phone positon and number of iterations to get there.  

Phone 

Point 

Actual 

Location  

TDOA  

Trilateration  

Standard 

Deviation  

Number of 

Iterations 

P1 17 , 11 16.987, 10.986 0.0002, 0.0003 3 

P2 8 , 13 7.978, 12.966 0.0158, 0.019 3 

P3 3 , 10 2.96, 10.0 0 , 0 4 

P4 20 , 3 20.002, 2.996 0.011, 0.0195 3 

P5 15 , 20 15.0, 20.0 0 , 0 4 

P6 26 , 18 25.999, 18.031 0.0144, 0.0214 4 

4 Conclusions and Future Work 

In this paper we demonstrated an asynchronous trilateration method that can be 

reliably used to accurately locate an ultrasonic signal source without knowing the 

time the signal was sent. This eliminates the need to synchronize clocks between 

signal source and receivers.  

An advantage of using a Least Squares approach for trilateration is its ability to 

tolerate errors in measurements; with more measurements provided, less is the impact 

from a single erroneous measurement. Also, due to the iterative nature of this 

approach allowing for a large pull-in range, initial approximations for a phone’s 

position in a room can be simply taken as the average of all microphone (control 

point) positions.  While the algorithm can work with only three receivers (mics), at 
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least four or more are recommended for scenarios where measurements are likely to 

be contaminated with signal noise caused by multipath propagation. 

For future work we plan to implement our TDOA Trilateration method in a real-

time indoor positioning system on COTS SmartPhones and interconnected mics.  We 

will then evaluate how well Lok8 manages with unavoidable measurement errors due 

to background noise, obstructions, and uncertainty due to the presence of multiple 

ultrasonic source devices.  
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