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Abstract

Stock forecasting is an enticing and well-studied problem in both finance and machine
learning literature with linear-based models such as ARIMA and ARCH to non-linear
Artificial Neural Networks (ANN) and Support Vector Machines (SVM). However, these
forecasting techniques also use very different input features, some of which are seen by
economists as irrational and theoretically unjustified. In this comparative study using
ANNs and SVMs for 12 publicly traded companies, derivative price “technicals” are
evaluated against macro- and microeconomic fundamentals to evaluate the efficacy of
model performance. Despite the efficient market hypothesis positing the ill-suitability of
technicals as model inputs, this study finds technical indicators to be nearly as performant
as fundamentals at forecasting the future prices of a security. Additionally, all model
predictions were fed into an automated trading machine and evaluated against a simple
Buy-and-Hold, finding model performance at par with the passive Buy-and-Hold

investment strategy.

Key Words: Stock Forecasting, Feature Selection, Support Vector Machine, Artificial

Neural Networks
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1. Introduction

Financial security exchange markets, “stock markets,” are large, volatile and seemingly
chaotic (Huang, Nakamori and Wang, 2005; Wang, Wang, Zhang and Guo, 2011; Vui,
Soon, On, and Alfred, 2013). The allure of identifying inflection points, being able to time
the market, and to reduce risk yet maintain or increase profitability through participation
in stock markets has generated immense interest among investors and researchers alike.
The presence of the financial markets can be felt in nearly every sector of the economy, in
nearly every corner of the world, attracting researchers from finance and economic
interests and also from statistics and machine learning practitioners. The
event-horizon-like nature of the financial markets, pulling all economic and social actors
into its gravitational force is even examined in social justice and ecology research (Galaz,
Gars, Moberg, Nykvist and Repinski, 2015). In 2013, according to Galaz, Gars, Moberg,
Nykvist and Repinski (2015), the total wealth under professional management (investment
firms, sovereign wealth funds, hedge funds, mutual funds, etc) reached 68.7 trillion USD,
or approximately 18 times the national GDP of Germany for 2015 and approximately
three times the total 2014 GDP for the entire EuroZone (CIA; TradingEconomics).

Indeed, the financial markets permeate every facet of contemporary life, and as a
consequence of this pervasiveness, locating the opportunities for entering and exiting a
position using advanced statistical and machine learning techniques has garnered much
research and investment attention. While this paper does not seek to provide a specific
answer to whether stock markets might be predicted or to evaluate every facet through
which a security might be valued, the research intent is to provide a single answer to a
simple question: do historical prices conveyed through technical factors such as moving

averages allow a machine-based algorithm to accurately forecast stock prices?

1.1. Project Background

There are markets around the world where securities are exchanged daily between

investors. The primary goal with these exchanges is to extract a profit, often through price



arbitrage, a process of seeking a price differential between what one investor is willing to
pay and what another perceives as the intrinsic value of the security (Refenes, Zapranis
and Francis, 1994). However, determining the intrinsic value of a security is non-trivial,
subject to extensive research and heated debate (Fama, 1965; Fama and French, 1988;
Shleifer and Summers, 1990; Mankiw, Romer and Shapiro, 1991). Because of the
complex, time-variant, non-trivial nature of security price forecasting, as well as the profit
motive, security price forecasting is extensively present in machine learning literature
(Atsalakis and Valavanis, 2009). Security forecasting is an alluring problem space for
multiple reasons, mostly notably the promise for investment profit with reduced risk
exposure. From a research perspective, security price forecasting is also an exciting area
due to its inherent complexity--to accurately predict the movement of a stock or
commodity is to not just “see the future” but to instill a structure to what frequently
manifests itself as an erratic maelstrom of randomness.
As explored in more detail in the Literature Review many models rely extensively upon
the use of historically derivative technical features--that is, model input features
extrapolated from past security closing prices. Examples of these derivative features are
frequently classified as Moving Averages. These, among other derivative technical
features, are explained in more detail in chapter three, 'Design/Methodology.' In brief,
however, it is worth noting that this class of features, from the perspective of economic
theory, is “non-rational” because stock prices show a non-time dependency, or a "Random
Walk" (Fama, 1965; Fama and French, 1988). It is from this perspective that the research
question is posed.
The following research will seek to forecast the closing price of publicly traded companies
by creating contrasted models of feature inputs:

1. One model will rely exclusively upon technical features derived from historical

closing prices;

2. Another will utilize micro- and macroeconomic data to forecast the closing price;



3. Finally, a third model will use a combination of the two previous models’ features
to ascertain whether a combination of fundamental and technical features predicts
future closing with reduced error than the previous “pure” models.

The desired goal for the three input feature types is to assess the validity and the
predictive power of the so-called “irrational” technical factors while also assessing
additive fundamental features.

For each of the three models, the forecasted prices are fed to a lightweight trading
machine which makes buy, hold and sell decisions. This layer is included in the
experiment for two purposes: 1) recent soft computing research attempts to operationalize
machine learning by stepping beyond theoretical evaluations of model efficacy using
traditional statistical tools such as Root Mean Square Error (RMSE) by mimicking the
decision to buy, sell or hold in conditions of uncertainty (Thawornwong, Enke and Dagli,
2003; Kara, Boyacioglu and Baykan, 2011; Teixeira, Indcio de Oliveira, 2010); 2) by
inducing a trading machine to make purchase and sell decisions based on the forecast, the
models are easily contrasted to the more traditional investment strategy of "buy and hold,"
which seeks to make investment profits over a long period by avoiding "market timing."
Investment giant Warren Buffett is one example of a vocal proponent of buy and hold,
having once wrote that "our favorite holding period is forever" (Buffett, 1989). In other
words, if machine learning algorithms have the potential to identify the pattern within the
highly volatile, time-variant, noise-riddled security exchanges then market timing is of
less concern and investors equipped with sufficient models can enter and exit positions as

conditions indicate by their models.

1.2. Research Aims and Objectives

Succinctly, the aim of this research is to evaluate the validity of using technical features as
an input to algorithmic forecasting and, subsequently, making trading decisions. In this
regard, and in light of the existing literature explored below (Chapter 2), the effective
Null Hypothesis is that technical features, on the basis of being reflections of past

information disclosure only, provide no predictive power for future security prices.
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A myriad of studies in security price forecasting use technical indicators as the primary
inputs to the learning problem (Thawornwong, Enke and Dagli, 2003; Teixeira and Inacio
de Oliveira, 2010; Wen, Yang, Song, and Jia, 2010; Kara, Boyacioglu and Baykan, 2011;
Chang, Fan and Lin, 2011; Ni, Ni and Gao, 2011; Ticknor, 2013); however, the economic
theory for their use is hotly debated (Fama and French, 1988; Shleifer and Summers,
1990; DeLong, Shleifer, Summers and Waldmann, 1990; Verma, Baklaci and Soydemir,
2008). Indeed, much research into the use of technical features concerns itself with
confirmation bias (Sullivan, Timmermann and White, 2001)--that is, it is presumed that
because an investor's or data mining researcher’s choices were validated by the market (or
the data analysis), either by a price increase or decrease, the investor continues to use and
laud the efficacy of technical features. This experiment will effectively treat the indicators
as a black box, not looking for chart-based trends such as "head and shoulders" or
"double-tops"2 (Gifford, 1995; Murphy, 1999; Schulmeister, 2009; Friesen, Weller and
Dunham, 2009; Bako and Sechel, 2013). All that is available to the algorithm are the
inputs, from which a next-day forecast is derived and a trading decision determined.

However, rather than simply stop at an evaluation of the technical features as "rational
model inputs," it seems prudent to understand both the micro- and macroeconomic factors
at play in investment decisions -- that is, by assuming that investors are at least marginally
rational and use the changes in economic conditions as additional inputs to their models,
one can then evaluate whether a combination of economic features ("fundamentals")
provides a more accurate depiction of security prices than a purely technical model based

upon moving averages and historical “patterns”.

1.3. Research Methods

This experiment consists of secondary, empirical research and seeks to provide an
inductive basis for future work by comparing three non-dependent models. As with most
secondary research, the data were obtained from external sources (Google and Yahoo!

Finance sites and the Federal Reserve Bank, St Louis). The research is empirical because

! Historical price pattern consisting of three maxima reminiscent of a bust used for directional forecasting
2 Another price pattern used to signal a developing contraction period
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it is direct and measureable. The use of empirical evaluation techniques establishes an
inductive basis for understanding and selecting feature inputs for future security

forecasting problems.

1.4. Scope and Limitations

To scope the experiment, 12 companies were selected for inclusion. Each of the
companies is contained within the Standard & Poor’s 500 index (“S&P500”), an
internationally recognized index tracking the largest 500 companies on US exchanges. To
qualify for the study, each company needed to be listed as part of the S&P500 for the
duration of the experiment period.

The research uses nine years of daily trade data, beginning January 2006, ending
December 2015. Model training data spans the first eight years of this 9-year period (2006
- 2014), with 2015 reserved for security forecasting. Generally, the data for each company
is a matrix of 38 features by a total of 2450 observations (range 2407 to 2485, mean
2454).

To further constrain the experiment's scope and limit confounds, the companies could
have no share splits or entered into major mergers with other companies during the 9-year
period. Further, careful attention also was paid in company selection in an attempt to pull
from a variety of economic sectors.

A full list of the companies, their sector and ticker symbol are available in Chapter 3,
"Design / Methodology". The full qualification criteria are also outlined in Chapter 3,

“Selection Criteria.”

1.5. Organization of Dissertation

The remainder of this dissertation is organized as follows:
e Chapter 2 ("Literature Review") is dedicated to an exploration of the previous
research in security forecasting, inclusive of perspectives in finance, econometrics
and machine learning. There is special attention paid to the motivation of this

study's principal examination of technical indicators as inputs to security
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forecasting with machine learning. There is also an outline of similar studies
utilizing the forecasted price as inputs to simple trading machines, which this
researcher finds compelling as a model validation method.

Chapter 3 ("Design / Methodology'") will explore the selection of the
participating companies in more detail. The section titled "Data Preparation" will
provide details on the data transformation necessary to create valid inputs.
Subsequent sections in chapter 3 will clarify the models for both the neural
network, the support vector machine and the trading algorithm used in the final
evaluation phase.

Chapter 4 ("Implementation / Results'") provides a run-down of the three
experimental phases applied to each of the participating company share prices. To
help with data exploration, a visual guide is provided in chapter 4, section 2.
Model development and model tuning are outlined in detail in Chapter 4 as well.
Chapter 4 concludes with a sample of visualizations of the experiments’ results.
The first section in chapter 4 ("Software") provides a detailed overview of the
program developed to support the experiment and its evaluation.

Evaluation of the experiments is reserved for Chapter 5 ("Evaluation /
Analysis"). In addition to a digest of the three-phased experiments' results,
observations of the experiment are provided. The limitations of this research, both
of model inclusion and in rational extrapolation, are expanded in detailed in 5.3.
Chapter 6 (""Conclusions and Future Work") provides a summary of the entire
research project, clarifies the contribution to the general body of research within

security forecasting research as well as points to areas for further investigation.
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2. Literature Review

The following literature review, organized into two parts (“Finance & Econometrics” and
“Machine Learning & Forecasting”) acts as a guide through a portion of the existing
research into the expansive and complex field of security forecasting. There are two main

topics of prior research evaluated, with Figure 1 outlining each branch:

Security Price Forecasting with Support Vector Machines and Artificial Neural Networks

Security Efficient Market [

France | (R ] Efdeiumet —— ] Teemncalimvestng ]
Support Vector
f Machine Feature Inputs &
Machine [ Arificial Neural %
Leaming / Soft il Network

Computing 1 Madel
Fuzzy Systems ' -

Figure 2.1 provides a hierarchy of existing research used to guide the overall research question regarding
the use of historical prices, and their derivatives, as valid inputs (“features”) for machine learning based

security price forecasting.

First, the overarching research question is focused on exploring the validity and
"rationality” of using historic prices for security forecasting and is therefore
heavily influenced by previous researchers in economics, finance and behavioral
psychology.

Second, the project is deeply rooted in machine learning and as such will examine
previous research conducted using machine learning algorithms for security price

forecasting. In particular, the Support Vector Machine (SVM) and Artificial

14



Neural Network (ANN) are evaluated as the primary tools for regression

forecasting.
While every effort will be made to expose the historical research of each topic separately,
where appropriate or unavoidable, references will be made from one topic branch to
another. Perhaps somewhat outside the scope of this particular research experiment,
tangentially related subtopics of research such as feature selection techniques in security
forecasting will be provided to help contextualize the experiment within its general
vicinity to these pre-existing soft computing applications.
As a guiding assumption, it is assumed the reader has a full understanding of the
mechanics and underlying algorithmic design of SVMs and ANNs and no space in this
literature review is devoted to explaining their origins or presenting their mathematical
properties. An excellent primer on SVMs and ANNSs is Vapnik’s The Nature of Statistical
Learning Theory, Second Edition (Vapnik, 1999). In a similar manner, the forecasting of
security prices is an inherently time series-based analysis. While this literature review
touches upon the expansive amount of research on time series data mining techniques, a
survey of best practices are available in Fu (2011) and Cao (2003).
Note on the lexicon:
In the literature, there is a varying mix of terminology for the Artificial Neural Network
(ANN). Some researchers simply use the ANN while others use Multi-layer Perceptron
(MLP). As far as this researcher can see, the two terms are interchangeable with some bias
toward one over another, depending on application field. For the purpose of this research,
ANN is used. In a similar manner, one will see a divergence in language used to describe
model inputs: computer science and machine learning literature frequently use "feature" to
be synonymous with "expert" whereas economics refer to "states" or “factors” and
statisticians use "components". This paper uses features to denote the numerical inputs to
all models. Last in this regard is a mix use of machine learning and statistical learning,
which are synonymous, with differences in use typically stemming from a researcher's
background in statistics (statistical learning) or computer science (machine learning). This

article opts to use machine learning.
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2.1. Financial Security Forecasting

As a quick reminder, this research seeks to understand what feature inputs are
important and empirically legitimate for forecasting security prices. To begin to
address this gap in existing computer science literature, an examination of finance and

economics was in order.

2.1.1. Origins of Financial Forecasting

With such tantalizing upside, there is a considerable body of research into security price
forecasting, exhibiting a wide range of creative approaches, perspectives and motivations
for security exchange. Much of this research, as one might imagine, originates in finance
departments, typified by efforts to seek out fundamental justification for security prices,
with monikers such as arbitrage pricing theory (APT), efficient market hypothesis (EMH)
and asset pricing models (Fama, 1965, 1976; Refenes, Zapranis and Francis, 1994; Ron
and Ross, 1980). One might also look to game theory, in particular bargaining games, to
being understanding the forces at work in the exchange of securities (Nash, 1950). Indeed,
research in security forecasting also extends to evolutionary game theory (Parke and
Waters, 2007). Beyond these pure economic models, there is the hotly debated method of
“technical analysis” or “charting” which seeks to find patterns in historical price changes

in order to ascertain future prices and market movement (Gifford, 1995; Murphy, 1999).

2.1.2. Security Valuation -- An Economist Perspective

Investigation into the economic theory of security forecasting began for this researcher
with an examination of the efficient market hypothesis (EMH) due to a high-frequency of
citing the EMH’s primary author Eugene Fama in machine learning literature (Fama,
1965; Fama, 1976). The EMH appeared to be one of a short list of economic models
dominating the finance landscape for decades. However, despite the research of
economists such as Fama showing ‘“conclusively” that future security prices were
uncoupled (“independent”) from historical prices, a school of “chartist” forecasters

developed, citing Charles Dow as the principal founder due to his observation of a cyclical
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nature in security prices (Gifford, 1995; Bako and Sechel, 2013). Within the pursuit of
identifying patterns which the cognizant investor might exploit, additional research into
the seasonality--or the predictable timing factor based on the month of the year, day of the
week, etc--have also been examined. For example, Sullivan, Timmermann and White
(2001) show a moderate seasonal effect. Their conclusion and evaluation of corporate
need -- ie having to sell to make profits or write down losses--is compelling but they
researchers clearly communicate the seasonality effects are moderate at best, further
buttressing the notion that security pricing is more akin to a Random Walk (Fama, 1965;
Fama and French, 1988).

Debate surrounding the validity of using charts to forecast security prices heated into the
1990s between Fama and an opposing set of economists such as DelLong, Shleifer,
Summers, and Waldmann (DeLong, Shleifer, Summers, and Waldmann, 1990; Shleifer
and Summers, 1990). This second group found that while “noise traders”--another
pejorative name given to the investors relying upon “irrational” chart reading—may not
economically possess a strong foundation, the effects of the “irrationality” on the market
can be protracted, due to interaction effects with arbitrage-based investors (DeLong,
Shleifer, Summers and Waldmann, 1990). Verma, Baklaci, and Soydemir (2008) even
sought to understand the degree to which investor sentiment (i.e. “irrational noise™)
influences stock prices. Mankiw, Romer and Shapiro (1991) cite earlier work by Shapiro
showing that market volatility is indeed too high--so high, in fact, that the valuations

cannot be based upon fundamental values af all.

2.1.3. Efficient Market Hypothesis and the Random Walk

To help resolve this debate, at least in the hopes of seeing justifiable input features for a
security forecasting experiment, the following section examines the EMH and Random
Walk in more detail.

The EMH consists of three forms: weak, semi-strong, and strong (Fama, 1970; Tsai and
Hsiao, 2010). The weak form of the EMH simply examines whether future prices are a
mere reflection of past prices, and in regard fall within the examination of the random

walk (Fama, 1965; Fama, 1970; Tsai and Hsiao, 2010; Vui, Soon, On and Alfred, 2013).
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The semi-strong form of EMH posits that markets adjust rationally to publically available
information such as splits, earnings announcements and adjustments to interest rates,
whereas the strong form is an examination into potential monopolistic access to
information on the part of select investors or groups of investors (Fama, 1970). Despite
some researchers concluding the EMH is an inaccurate depection of market behavior
(Cao, Leggio and Schniederjans, 2005) or that the price movements of securities perceived
to be random (in the sense of a "temporily independent random walk") is instead a noisy,
non-linear process (Huang, Nakamori and Wang, 2005; Lee, 2009), machine-based
security forecasting researchers frequently cite Fama's EMH (Thawornwong, Enke and
Dagli, 2003; Enke and Thawornwong, 2005; Huang, Nakamori and Wang, 2005;
Schulmeister, 2009; Verma, Baklaci and Soydemir, 2008; Teixeira and Inacio de Oliveira,
2010; Tsai, Hsiao, 2010; Vui, Soon, On and Alfred, 2013). This is important because
under a semi-strong efficient market hypothesis, as a liberal democracy with a functionally
free media and securities oversight regulatory board (such as the Securities Exchange
Commission), the past prices will effectively reflect all information pertinent to the
valuation of a security in the past but not in the future. Yet, many of those same
researchers previously cited use historical prices to forecast future prices.

However, under the EMH, the primary inputs could be economic in nature--in a
semi-strong EMH, historical prices would merely reflect all historically available
information, relying upon new information to alter the base valuations. And, as such, it
was here that the researcher identified one set of configurations for input features: micro-

and macroeconomic factors.

2.1.4. Econometric Forecasting: (G)ARCH

Almost as a response to the EMH and its primacy as a model for security pricing,
researchers began examining the evidence of what appeared to be autocorrelated events in
security prices: that is, that specific patterns of price movement were followed by similar
patterns, though the magnitude (positive or negative) were unknown. It was here that the

Autoregressive conditional heteroscedasticity (ARCH) model, and derivatives such as
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generalized autoregressive conditional heteroscedasticity model (GARCH), was
developed (Engle, 1982; Bollerslev, Chou, and Kroner, 1992). The ARCH model
developed by Engle (1982) was proposed to forecast inflation rates in the UK and,
pertinent to the EMH, depended upon past prices to arrive at the future forecast. The
ARCH model was developed to help explain the clustering behavior of securities--that
large (or small) price changes will likely be followed by similarly large (or small) price
changes but of an unknown sign (i.e. positive or negative) (Bollerslev, Chou, and Kroner,
1992).

The novelty of the (G)ARCH-models is that it uses a non-stationary variance--a variance
in prices that changes depending on the time period evaluated within the time-series--and
as such acts as a strong counter-argument to Fama’s EMH which used a (single) stable
variance throughout the time-series. Because of the clustering and repetitive nature of the
ARCH model, this may be a pattern intuited by technical "chartists," though that is
speculation as there was no specific literature reviewed by this researcher to indicate that
intuited behavior on the part of technical investors. As illustrated in the survey of ARCH
and GARCH research, contemporary finance assumes that time series are continuous
stochastic equations but data are typically in discrete intervals (Bollerslev, Chou and
Kroner, 1992). However, this seeming gap appears to be negligible when the time series is
of small enough intervals. Another appeal of ARCH-models is the ability to examine the
interaction effects of various markets, macroeconomic indicators and/or securities on other
markets and securities and if so to what extent because it is an inherently linear model
(Bauwens, Laurent, Rombouts, 2006).

Another counter-model to the EMH, is the Autoregressive and Moving Average (ARMA)
model: autoregressive (AR) and moving average (MA) (Mondal, Shit and Goswami,
2014). Autoregressive Integrated Moving Average (ARIMA) is based on ARMA Model,
in which ARIMA converts non-stationary data to stationary data (ibid).

Though considerable research is conducted using the machine learning algorithms covered
thus far in an effort to examine their potential improvements over (G)ARCH and ARIMA

models, this is not to imply that econometric research has ceased using the aforementioned
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models as recent studies have shown the continued efficacy of ARIMA to forecast security
prices (Mondal, Shit and Goswami, 2014; Rounaghi, Zadeh, 2016). Zhang and Frey
(2015) used a combination ARMA-GARCH model for high-frequency data, though the
model itself pushes the limit of linear statistical models as it uses a hidden markov to
control regime switching (between ARMA and GARCH)

Despite the strong appeal of ARCH (and derivatives such as GARCH and EGARCH), the
general models developed are linear in nature. The appeal of the SVM and ANN is the
ability to capture nonlinear relationships. Morefore, the process is simplified in that there
is no longer a need to model variance over time. Rather than creating ever-increasing
complexity to linear models, the SVM and ANN might simply skip to more elegant
nonlinear models that capture the same relationships (past prices containing pertinent t+1
information) while being more comprehensible.

The important take-away for the research into (G)ARCH and ARIMA pricing models is
that they do rely upon past prices as inputs, and it is here that one finds the justification for
a second experimental model using historically derivative “technical” inputs to the

forecasting model.

2.1.5. Investment Decisions -- A Human Behavioral Constraint

As a short primer on the behavioral economics of security forecasting, particularly in
context of selecting legitimate, justifiable and rational model inputs, one must consider an
examination of De Bondt and Thaler (1985) whose work in human psychological
tendencies engaging in economic decision making evaluate the response of investors to
information. In addition to pointing to prior work by Kahneman and Tversky work in 1982
in which they (Kahneman and Tversky) concluded that Bayes' rule is not an entirely
accurate model for characterizing individual's response to the acquisition of new
information, De Bondt and Thaler show that individuals tend to overweight recent
information and undervalue prior, "base rate," data. In the realm of securities, this means
that there is too great a discount of dividends and that stock price movements are closely
tied to the changes in prior year earnings. One is left to ask, as De Bondt and Thaler do,

how is it that the over-reaction to new information is a reflection of price arbitrage?
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The De Bondt and Thaler research fits in nicely with a vein of research into the rationality
of markets with a notable mention to work conducted by Verma, Baklaci and Soydemir
(2008) in which the researchers found that short-term responses are swift and severe,
particularly to bad news and that the reaction extends beyond what would be rationally
justified by pre-existing models. One can likely understand this intuitively but it is also
backed by behavioral research conducted by Loewenstein (2000) where he states that
visceral factors, those emotional states controlling preferences such as hunger, sexual
drive, etc, can change rapidly because these visceral factors are themselves affected by the
changes in bodily and exfernal stimuli. Loewenstein further concludes that it is the myriad
of ever-shifting visceral states within the human which cause people who would otherwise
appear “normal” to engage in extreme discounting of the future. So far as investment
decisions, a discounting of the future would be an irrational mistake. For example, a
“stumble” one quarter where growth was slower than expected or a merger was blocked
by antitrust regulators may cause investors to “flee” irrationally, causing an unjustifiable
drop in a security. This statement is also backed by Loewenstein’s (2000) investigation
into decision making where he concludes that though visceral factors are transient, they
can cause individuals to take extreme action and that important decisions such as
investments induce powerful emotions, and as such many of life’s inflection points are
heavily influenced by intense visceral states.

Friesen, Weller, and Dunham’s 2009 work plays an important role in the further
investigation of trading rules as well as the role of confirmation bias, particularly in light
of bias, autocorrelation and the justification for interpreting the past to posit the future.
Friesen, Weller, and Dunham find there is indeed indication of momentum in stock prices
over the short-term, which provides the evidence to support trading rules designed to
detect these short-term trends. Aligning well again with the work from Verma et al.
(2008), the researchers point to large, infrequent signals (market news including economic
changes) as rationally interpreted while shorter-term, higher-frequency signals (war,

supply constraints) may be interpreted in a biased manner.
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While economists frequently characterize the actors within the economy as rational, with
investors lauded as a special class within the general body of economic actors, this may be
an oversimplification. Fama himself stated that his finance models assumed actors
assessed the universe of alternatives but that, “[it is] completely unrealistic to presume that
when market prices are determined, they result from a conscious assessment...by all or
even most or even many investors” (Fama, 1976).

So, when one uses machine learning to forecast prices, the machine algorithms base their
learning in historical reactions (by individuals) to new market stimuli. It is for this
purpose, the third set of experimental inputs consists of a blend of purely technical and
purely fundamental inputs is formed. In a sense, it becomes a question of whether the
machine algorithms effectively “learn” how individuals might respond to both historical

patterns (technicals) and the change in economic conditions (fundamentals).

2.2. Machine Learning and Forecasting

The forecasting problem, due to the constant variability of prices and the differing
motivations of the actors prompting these exchanges, constitutes non-trivial knowledge
discovery (Fayyad, Piatetsky-Shapiro and Smyth, 1996). As such, the data mining and
machine learning research communities were quick to pick up the mantel of examining the
nonlinear problem of price changes with over two decades of research into a variety of
nuanced approaches (Atsalakis and Valavanis, 2009; Vui et al., 2013). Beyond simply
security prices, machine learning has been applied to other nonlinear problems, including
wind forecasting, sunspot location, bankruptcy candidates and corporate (financial)

distress (Liu, Tian, and Li, 2012; Cao, 2003; Tsai, 2009; Li, Wang, and Chen,2015).

2.2.1. Artificial Neural Networks

Beginning in the early 1990s, researchers focused on comparisons of neural networks with
traditional statistical approaches, allured by the ability to provide better forecasting under
non-parametric conditions (Wang, Wang, Zhang, and Guo, 2011). As one might expect,

researchers began by trying to show the power of advanced algorithms such as the
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Artificial Neural Network (ANN) to outperform generally established forecasting
benchmarks such as [Generalized] Autoregressive Conditional Heteroskedasticity
([GJARCH) (Refenes, Zapranis and Francis, 1994; Guresen, Kayakutlu, and Daim, 2011).

After a flurry of research with ANN designs ranging from Multi-Layer Perceptron (MLP)
with general forward feed (FF-NN) (Refenes, Zapranis and Francis, 1994; Atsalakis and
Valavanis, 2009) and slightly more complex backpropagation (BP-NN) (Wang, Wang,
Zhang, and Guo, 2011), the field saw further innovation and advancement with a myriad
of different flavors of backpropagation error-regulating algorithms ranging from Bayesian
regulators (Ticknor, 2013) to artificial bee colonies (Hsieha, Hsiao, and Yeh, 2011) to
genetic algorithm (GA) (Wang et al., 2012). Results with ANN have been consistently
promising but the improved forecasting with advanced machine algorithms such as ANN
and GA should not be used to conclude the models do not rely upon the assumption of
linear correlations as previous statistical models do (Wang et al., 2012). According to the
survey work conducted by Vui, Soon, On and Alfred (2013), the forward feed neural
network (FF-NN) is most common and outperforms probabilistic ANN (though not
conclusively), with strong evidence also pointing to the viability of genetic algorithms for

the backpropagation (BP) portion of a BP-NN.

2.2.2. Support Vector Machines

In tandem to the work with ANN, data mining and machine learning researchers began
applying other algorithms to the nonlinear problem, including Support Vector Machines
(SVM), now a mainstay in contemporary machine algorithm research (Tay and Cao, 2001;
Huang, Nakamori and Wang, 2005; Li, Wang and Chen, 2015). The primary difference
between the SVM and the ANN is the optimization strategy. Whereas the ANN seeks to
minimize the (empirical) error rate and find a global minimum, the SVM seeks to reduce
structural risk, minimizing an upper bound of generalization and so is, by its nature, less
prone to being “stuck” in a local minimum (Cao, 2003; Tay and Cao, 2005; Lee, 2009;
Wen, Yang, Song, and Jia, 2010; Chai, Du, Lai, and Lee, 2015; Li, Wang and Chen,
2015).
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Researchers have also lauded the simplicity of the algorithm itself, which has fewer
parameters to concern researchers, unlike an ANN which worries about depth and breadth
of architecture as well as learning rates and penalty weights (Refenes, Zapranis and
Francis, 1994; Cao, 2003; Kara, Boyacioglu and Baykan, 2011; Vui, Soon, On and Alfred,
2013).

2.2.3. Fuzzy Logic

While some research may be mired in an attempt to forecast the market exactly, a fuzzy
logic approach seeks to simplify the problem. Some researchers simply choose to forecast
the direction of the market (Kim, 2003; Lee, 2009; Huang, Nakamori, and Wang, 2005;
Kara, Boyacioglu and Baykan, 2011) while others have created simple algorithmic rules
for buying and selling securities (Kim and Han, 2001; Thawornwong, Enke, and Dagli,
2003; Enke, Thawornwong, 2005; Teixeira and Inacio de Oliveira, 2010; Chang, Fan and
Lin, 2011).

Despite the depth of literature available for the evaluation of ANNs applied to forecasting,
one should not conclude the ANN is the out-right best model. Indeed, the SVM model
constructed by Ni, Ni and Gao (2011) was provacoative while the trading system
constructed by Teixeira, L.A. and Inacio de Oliveira (2010) relied upon the Nearest
Neighbor algorithm and performed well, relative to general literature benchmarks which
used profit comparisions to “buy and hold” strategies. Further, the fuzzy rule model
proposed by Kim and Han (2001) did not rely on any advanced algorithms for making
trading decisions, instead constructed simple buy-, sell-, and hold-conditions (i.e. simple
“if-then-else” clauses) and also showed promising results.

There is a strong affinity between “fuzzy” logic and security forecasting because of the
volatile and imprecise nature of security prices. By generalizing away from the specifics
of an exact price and focusing model development on general trends (such as gain or loss),
researchers are better equipped to make significant progress without burdening themselves
with the need to find the “single true model,” which may not exist for all securities.

To provide a concrete example, the researchers Enke and Thawornwong (2005)

constructed a novel trading algorithm for purchasing the S&P500 or 10-year Treasury
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Bills. The inputs to the system relied upon fundamental variables and fed into an ANN.
They found the trading system was able to outperform against simple Buy-and-Hold
strategies. Nonetheless, the authors were also careful to point out that better performance
does not necessarily equate to being more profitable as asset allocation is of paramount
importance with investment decisions.

The paradigm of using fuzzy logic rules or fuzzy models plays a large role in the design of
the overall experiment, in particular the development of a buy-sell machine to make
comparisons to “buy-and-hold” strategies. For this researcher, the use of fuzzy systems to
operationalize the forecasts of a precise machine algorithm, be that ANN or SVM, is
exceptionally compelling because the fuzzy system is able to step outside traditional

statistical metrics for something more tangible: profit or loss.

2.2.4. Feature Selection and Inputs for Machine Algorithms

When approaching a machine learning problem, an important decision to make is what
feature inputs are relevant to solving the problem--as the saying goes, “garbage in,
garbage out.” In fact, the very motivation of the research question herein is to locate
legitimate, rational and justifiable model inputs.

In the literature there is an expansive set of inputs employed. Atsalakis and Valavanis
(2009) summarize the results showing a huge diversity of inputs, not just with a simple
dichotomy of “technical versus fundamental indicators” but with a large diversity within
those selections, too. For security forecasting, understanding the difference and role of
fundamental and technical indicators appears to be a key issue.

Whereas fundamental factors are the macro- and microeconomic restrictions to a business
(interest rates, cash flow, product margins, dividends, and general costs of doing
business), technical indicators are values derived from historical trade information, such as
Open and Close prices and total volume of securities exchanged (Fama, 1976; Shleifer and
Summers, 1990; Gifford, 1995; Murphy, 1999; Tsai and Hsiao, 2010). Of note is that
many of the features described as “fundamentals” might equally be classified as
technicals--volume is an interesting example, frequently cited as a fundamental under the

justification of it representing one of the economic conditions under which a security is
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traded (Ticknor, 2013). Volume, as a proxy indicator for the Efficient Market Hypothesis,
appears to be a stretch of the definition. For the purposes of our evaluation, we will make
a clear delineation between economic factors such as interest rates, currency exchanges
and natural gas prices as fundamentals and volume and price or price derivatives (Moving
Average, Relative Strength Indicator) as technical features.

One method to resolve the input problem by researchers is simply to aggregate a large set
of feature inputs, ranging from variously derived technical values to a selection of
economic fundamentals, and then to implement feature reduction. Stepwise Regression
Analysis is one such technique, as implemented by Chang, Fan, and Lin (2011). Principal
Component Analysis (PCA) is another common selection (Tsai, and Hsiao, 2010).

Tsai and Hsiao (2010) took a creative approach of applying a pseudo-ensemble of three
feature reduction techniques, PCA, GA and Classification and Regression Trees (CART),
and applying them as single model evaluations, “joins” and “intersects” of selected
features, ultimately concluding that an intersection of selected features between PCA and
GA as inputs to a BP-ANN provided the best results while GA was the most effective of
the individual feature reduction techniques in their model.

The literature appears to be predominantly comprised of technical input variables,
particularly derivatives values such as Simple Moving Average (and variations),
Commodity Channel Index and Moving Average Convergence Divergence (MACD), to
name but a few. It’s unclear if this is a conscious choice over the selection of
fundamentals as the motivation for selecting one set of inputs over another is not
frequently explored in detail, if at all. Notable exceptions to this are Thawornwong, Enke
and Dagli (2003) and Enke and Thawornwong (2005) who in the two studies, exclusively
examined the role of technicals and fundamentals (respectively) on price forecasting.
Nonetheless, the choice of technicals almost implies the “noise trader” approach as a bias,
since technicals use historical price data to establish a pattern. That is, the technical
variables themselves are derivatives of the price movements over time, establishing to
some degree a picture of momentum--Momentum and Moving Average being two

commonly used technical indicators. Table 2.1 provides a small example of the technical
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variables used as inputs into both traditional statistical and machine algorithm based

models.

Indicator Name Abbreviation Description

Moving Average MA Shows the average price of a security over a specified
time period, such as 5, 30 or 100 days

Relative Strength Indicator | RSI Provides an indication of the strength of a security’s
average of gains over the average losses, as a
comparison of closing prices above (or below)
previous closes

Commodity Channel Index | CCI A measurement of a security’s price from its statistical
mean based on historical price metrics

Moving Average | MACD Makes a comparison of (exponential) moving averages

Convergence/Divergence to a “signal line” to provide insight into whether a
market is moving in the same or divergent direction to
the previous periods

Table 2.1 provides a small example of historically derivative metrics used both by investment practitioners

and machine learning researchers as feature inputs to their models.

While much of the existing literature reviewed here focuses on the use of technical
indicators as proxies for available information -- that is, as a method of expressing the
Efficient Market Hypothesis -- there are no reviewed models relying upon the daily news
as a component of feature inputs. Indeed, with the findings from Verma et al. (2008)
indicating the at-times voraciously salient impact of sentiment on security prices, one
would expect a set of sentiment analyses to be more routine. One interesting model which
does make use of text mining techniques (of company management’s “discussions” within
quarterly and annual reports) as an input to security forecast is presented by Wang, Huang
and Wang (2012). Their text mining approaches improved the predictive efficacy of a
traditional Autoregressive Interval Moving Average (ARIMA) model.
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2.2.5. The “What” of Security Forecasting

When evaluating the securities forecasting literature, it becomes evident that many
researchers chose, rather than specific company share prices, to forecast stock indicies
such as the Dow Jones Industrial Average (DJIA) (Wang, Wang, Zhang and Guo, 2011),
the S&P 500 (S&P), the London FTSE 100 (Hsieh, Hsiao and Yeh, 2011) and emerging
market indices including the Sao Palo Stock Exchange (SPSE) (Teixeira and Inacio de
Oliveira, 2010) and the Istanbul Stock Exchange (ISE) (Kara, Boyacioglu and Baykan,
2011). Perhaps it is simply precedent as much of the early research was done in this
regard. However, there are some researchers who focused on specific shares for their
forecasting (Thawornwong, Enke and Dagli, 2003). Others yet, create a basket of shares in
order to approximate indices (Guresen, Kayakutlu and Daim, 2011), the index itself or
even significantly large portions of the index component shares (Huang, Nakamori and
Wang, 2005; Wen, Yang, Song and Jia, 2010).

When reading research on the forecasting of an index, one has to wonder why the index
was chosen--this reason and motivation for the selection of an index goes frequently
unstated, leaving one only to speculate: perhaps the index has a smoothing effect, allowing
the researchers to more easily apply a model in a pre-generalized method with a built-in
bias for momentum where the aggregate “herd” of stocks moves cohesively, thereby
lending itself well to the machine learning algorithms. Moreover, the studies forecasting
the index often seek to forecast the direction of the index (Kim, 2003) and so are able to
report significantly higher accuracy rates, even though the base rate for a boolean is
essentially 50% (under “random” conditions).

In this manner, one is left to suspect some form bias, perhaps even unconscious, but
nonetheless providing ground for Keogh and Kasetty’s (2003) call for better
benchmarking in data mining: choosing test candidates that will create more impactful
model results than if applied to a more complex scenario. To balance the last statement,
one should note the challenges of forecasting a specific value for a single time
observation when the ratio of signal-to-noise is low and so directional prediction is an

arguably valid simplification mechanism. Others have sought to forecast the probability

28



distributions of an index-at-close as another simplification process (Weigend and Shi,

2000).

2.2.6. Data Pre-Processing

Not to be confused with the somewhat pejorative moniker “noise trader,” an emerging
body of research now takes to applying wavelet algorithms to the price inputs in an
attempt to “denoise” the variable inputs. An early example of pre-training data
transformation is Tay and Cao (2001) in which they transformed the prices into a relative
difference in percentage of price, which makes the data more symmetrical. After this
transformation, the authors went a step further by replacing all values that were more than
two standard deviations with the next closest value. The goal with the replacements was to
remove the major shocks in the learning algorithm's training set, under the presumption
that those events were rare and simply added to the overall noise in the system. This
transformation was unique to the reviewed literature but might be considered a precursor,
in some ways, to future wavelet transformations which sought to reduce noise and
variance by applying smoothing functions.

Hsieh, Hsiao and Yeh (2011), for example, applied the Haar wavelet transform to
decompose the price feature before conducting stepwise regression analysis for feature
selection--their model ultimately fed into an artificial bee colony-driven BP-ANN.
Another compelling example of wavelet transforms applied to price inputs was conducted
by Wang, Wang, Zhang and Guo (2011) in which a threefold Discrete Fourier Transform
(DFT) was applied, in an attempt at separating the noise from the signal. In this study,
Wang et al. found two passes with the DFT into a ANN outperformed the third
transformation pass, in which too much signal flattening had occurred.

Another common pre-processing step is to normalize the feature values so that they range
from 0 to 1 or -1 to 1 (Lee, 2009; Wen, Yang, Song, and Jia, 2010). This is done so that
none of the features carry too large a weight. That is, if a feature input such as Volume is
used, it may be measured in millions of units but another input feature such as a moving

average may only be measured in tens (or hundreds) or dollars.

29



2.2.7. Ensembles: Multiple Predictors are Greater than One

A theme noteworthy within the literature is the inclusion of ensembles. An ensemble is the
combination of multiple prediction models or model pipelines combined, often through a
weighting or ‘voting’ mechanism, that through the blending of the forecasts, is able to
make better predictions. (Dietterich, 2000) The rational thought exercise leading to an
ensemble technique is that if there is a complex task for which a learning expertise is
required to perform, then multiple experts will perform better than one. (Huang, Nakamori
and Wang, 2005) Bagging, an ensembling technique, takes different samples from the
overall training set (with replacement for each removed sample) and uses these subsets as
inputs to the learning algorithm. The outputs are then blended to arrive at a final model
prediction. (West, Dellana and Qian, 2005) Another ensembling technique Adaptive
Boosting (or ‘AdaBoosting’ or, simply, ‘Boosting) is an iterative, resampling technique in
which the misclassified classes are given a higher distribution in the new sample, and
correctly classified are given a lower distribution. (West, Dellana and Qian, 2005) After
the resample is complete, the algorithms are retrained and new forecasts provided. This
process may be completed multiple times.

While there is some evidence of ensemble in the literature, ensembling does not appear as
a standard technique, rather a single "best model" is still the frequent reporting tool. This
may not necessarily be due to researcher bias but simply the result of a complex field still
seeking to homogenize around general single-model best practices. It was the reliance
upon a single model which motivated West, Dellana and Qian (2005) to evaluate
cross-validation, bagging and boosting as possible ensemble techniques--ultimately
concluding that an ensemble of ANN models outperformed the single best model.
Examples of ensembles in security forecasting literature include Huang, Nakamori, and
Wang (2005), Tsai and Hsiao (2010), Wang, Wang, Zhang, and Guo (2012), Wang,
Wang, Zhang, and Guo (2011), and Wu, Luo and Li (2015).

When implementing ensembling techniques, experimenters should be wary of the findings

from Zhou, Wu and Tang (2002) who found that ensembling some (or many) of the
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predicted models may perform better than an across-the-board aggregation of all models,

particularly when measuring for a generalized model.

2.2.8. Model Evaluation

The last major research area pertinent to this experiment is the method of model
evaluation. As Keogh and Kasetty (2003) illustrate, there is a need for creating a rigorous
method of evaluating a model’s efficacy, an area according to Keogh and Kasetty (ibid)
the data mining community has been prone to positing exaggerated results. Despite a lack
of clear-cut benchmarks, the literature for model evaluation is as diverse as the predictive
models.

In terms of statistical measures, many researchers chose to use measures such as root
mean square error (RMSE) (Kara, Boyacioglu and Baykan, 2011), mean absolute percent
error (MAPE) (Ticknor, 2013), mean squared error (MSE) (Wen, Yang, Song, and Jia,
2010) and normalized mean square error (Tay and Cao, 2002). As stated previously, some
researchers elected to forecast the direction of the market--for example whether the next
day movement of the market will be higher or lower than the previous day. In these
instances, the researchers chose classification metrics such as F1 scores (Lee, 2009).
Others yet chose to compare their models based on profitabilty (Kim and Han, 2001;
Thawornwong, Enke and Dagli, 2003; Teixeira and Inéacio de Oliveira, 2010; Wen, Yang,
Song and Jia, 2010) and in some cases developing trading algorithms for comparision with
the less active investement strategy of “buying and holding” (Kim and Han, 2001;
Thawornwong, Enke and Dagli, 2003; Enke and Thawornwong, 2005). From a the
100-plus survey conducted by Atsalakis and Valavanis (2009), it is clear that researchers
use varying evaluation techniques for their models. However, the standard statistical
measures are used, namely root mean square error (RMSE), mean absolute error (MAE)
and mean squared error (MSE), with perhaps a skew toward using RMSE. One advantage
of RMSE is that the results are reported in the same form as the predicted variable--for
example “dollars” for a stock price.

As one might expect, there is a mixed set of results regarding the comparison of various

algorithmic approaches to security forecasting, with some researchers claiming
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outperformance with SVMs while others illustrate "conclusively" the superior efficacy of
ANNs (Huang, Nakamori and Wang, 2005; Kara, Boyacioglu, and Baykan, 2011).
Moverover, the detailed meta-study of over 100 research studies, many of which included
internal comparisons themselves, conducted by Atsalakis and Valavanis (2009) did not
conclude with a single-best model archetype, but the rather conservative notion that ANN

and neuro-fuzzy models are appropriate soft computing techniques for stock forecasting.

2.3. Summary

2.3.1. Summary of Literature

A common thread in security forecasting model inputs is a citation of Fama's Efficient
Market Hypothesis (EMH), which effectively states that an efficient market is one in
which information freely disseminates and is therefore fully reflected in a security price
(Fama, 1965; Fama, 1970; Cao, Leggio and Schniederjans, 2005). That is, security prices
fully reflect all public information pertinent to a security, with no information “advantage”
that some arbitrage investors have over others. The market is informationally efficient and
so security prices fully reflect all information. As such, the use of historical prices to
forecast future prices is invalid because it is only new information not reflected in
security prices (new innovations, new market growth, new profitability, etc) that will
impact future prices. Nonetheless, there are dozens and dozens of studies which rely
upon technical indicators to forecast the future—and claims of successfully doing so

while citing the Efficient Market Hypothesis as relevant.

2.3.2. Gaps in Literature and Open Problems

So perhaps ironically, these researchers cite the EMH from an act of precedent in prior
influential work but then use tools which would seemingly contradict the EMH. In any
case, one is left to ask, “are technical values reliably useful as inputs to a security
forecasting model?” and if so, to “what extent do they impact a model in contrast with
traditional fundamental values?” As far as this author is aware, aside from work

completed by Thawornwong, Enke and Dagli (2003) little research has been conducted
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that is focused exclusively on the validity of using technical variables as inputs to security
forecasting.

The machine learning literature focused on financial security forecasting relies extensively
on historic price derivatives. These same studies frequently cite Fama's Efficient Market
Hypothesis as a basis for the use of historical information to reflect the intrinsic value of a
security. However, a careful reading of Fama's work, including his seminal work “The
Behavior of Stock-Market Prices” (1965), would indicate that Fama himself sees the
market response to information as swift—and so there is very little information in historic
prices to indicate the direction of future stock prices.

It is by no means intended to position this research question as entirely novel, as other
researchers have also noted the tension between academia's reluctance toward the use of
technical features. Zhu and Zhou (2009), for example, see the skepticism around technical
analysis as originating from research methods which use technical analysis as "all or
nothing," which in their opinion is too simplistic to adequately represent the actual use of
technicals within industry. Their take, and research, is compelling in that allowing for an
asset allocation mechanism which is more fluid allows for general models to leverage the
value of technicals as an a variance approximator since the "True Model" is unknown.
This in many ways fits in nicely with the work by DelLong, Shleifer, Summers and
Waldmann (1990) who found that a market may experience protracted, irrational
valuations from noise traders until the effects of arbitrage are able to rebalance security
valuation. Thier research also maps well to the subsequent work by Verma, Baklaci and
Soydemir (2008) as well as the psychological or “behavioral economic” basis for
understanding the interplay between market participants and visceral factors (De Bondt,

and Thaler, 1985; Loewenstein, 2000).

2.3.3. The Research Question

It was through a review of the conflicting notions of legitimate model inputs used in
literature, of which were too frequently left unjustified outside a few notable examples

(Thawornwong,Enke and Dagli, 2003) that the primary impetus for the research at hand
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was generated: are technical indicators a valid input for machine learning algorithms

and do they perform at or near the level of fundamentals-only models?

3. Design / Methodology

3.1. Introduction

The following chapter will explore the data required to satisfy the research and

experimentation indicated by the overriding research question:

1.

Are technical indicators a valid input for machine learning security
forecasting and whether a) fundamental economic indicators perform better than
the technical model or b) does a blend of technical and fundamental indicators
prove more effectual for the learning algorithms.

In addition to an overview of the input data for the experiment and the selection
criteria for the included companies, this chapter clarifies the nuances of data
treatment -- this is an important consideration because, for example, some
fundamental data is released at different regularities than daily values such as
High, Low, and Close.

This chapter concludes with an explanation of the model development, the
tools implemented to evaluate model performance and the limitations and strengths

of the design.

Figure 3.1 provides an overview of the following sections, each outlining the design,

methodologies, and considerations pertinent to the execution of this research endeavour.
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Figure 3.1 provides an overview of the design architecture for evaluating the efficacy of technical indicators
used in Support Vector Machines and Artificial Neural Networks. In addition to addressing the company
selection process, the macro- and microeconomic indicators and the process for deriving technical features,
data modeling and trading machine algorithms are addressed in detail.

3.2. Studied Companies

From a larger body of 50 securities, an initial candidate list of 22 were identified. This
group was then pair-down again to 12 companies traded on the S&P 500, listed in Table
3.1. To arrive at this final group, the company was required to meet a number of selection

criteria outlined in the following section.
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Company Ticker Exchange Industry Market Capitalization,
Billions USD+

AT&T Inc. T NYSE Telecommunication 269.23
Services

Boeing Co BA NYSE Industrials, Aviation 82.50

Capital One | COF NYSE Financials, = Consumer | 31.96

Financial Credit

Corp.

Chevron CVX NYSE Oil & Gas Refining 195.02

Corporation

Ford Motor | F NYSE Automotive 51.14

Company

General GE NYSE Industrials, Industrial | 289.66

Electric Conglomerates

Company

McDonald's | MCD NYSE Consumer Goods and | 105.75

Corporation Services

Microsoft MSFT Nasdaq Technology, Software 402.06

Corporation

Oracle ORCL NYSE Technology, Enterprise | 168.17

Corporation Software

Target TGT NYSE Consumer Goods and | 41.41

Corporation Services

Wal-Mart WMT NYSE Consumer Goods and | 226.27

Stores, Inc. Services

ExxonMobil | XOM NYSE Oil & Gas Refining 389.53

Corporation

Table 3.1 provides a summary of the studied companies, along with the exchange ticker symbol.

Due to the designed-in restrictiveness of the study, only one company (Microsoft) from the Nasdaq

was able to meet all study-inclusion requirements. tValues as of July 1, 2016, obtained from

Google Finance.
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3.2.1. Selection Criteria

3.2.1.a. US Exchange

In order to be included in the study, each company must be listed on a US exchange (i.e.
New York Stock Exchange, "NYSE," or Nasdaq) as a normal, non-ADR (American
Depositary Receipt). This criteria were implemented in order to normalize currency
exchange rates -- that is, all company shares are valued in the same currency (USD)
thereby eliminating concern for currency arbitrage reflected in the security prices. Further,
the securities were exchanged in the same time zone (EST, GMT+4), allowing for any
major news to equally affect all shares. Moreover, "crises" as experienced by the US circa
2008 - 2009 ("the Great Recession") were equally present in the studied securities as they
were all US-based while effectively normalizing for non-US crises such as the Eurozone's

"Grexit" (2015).

3.2.1.b. Capitalization, Liquidity, and Visibility

Each company must be listed on the S&P500 for the duration of the study. The S&P500 is
an index of the largest 500 companies listed on either the NYSE or Nasdaq managed by
Standard & Poor's Financial Services LLC ("S&P"), a division of McGraw Hill Financial.
The purpose of this constraint was to limit the range of possible companies in the
experiment.

Because companies in the S&P500 constitute the largest companies on US exchanges, the
experiment attempts to reduce volatility restricted to smaller firms which may be less
established than larger, more stable companies in the S&P500. Moreover, the largest
companies are also actively traded, often with large volume of shares exchanged daily.
This is important because smaller company shares may experience high-volatility due to a
lack of liquidity in the underlying shares--that is, if a company share is not traded
frequently, the market exchange of a share may inflect a high rate of change from previous
trades. By limiting the study to companies to the S&P500, this low-volume trade risk can

be minimized.
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Finally, the S&P500 companies will be exposed to a high degree of scrutiny by the
investment community and so, in light of Fama's Efficient Market Hypothesis,
should be good candidates for evaluating the validity of information availability as
reflected in historical prices. That is to say, because the companies are tracked not just
by a myriad of third-party investment advisors but also by innumerable individual
investors and investment firms, technical indicators should, according to Fama’s EMH,
carry no worthwhile information and only new changes in company performance should
impact shares (Fama, 1965; Fama and French, 1988).

This is a nuanced point of the study so a moment of attention is worthwhile here: the
rationality of technical indicators is called into question because the purpose of a
technical indicator is to provide a historical price pattern from which investors might
extrapolate trade inflection points in the future but the Random Walk would indicate
there is no temporal dependency of future prices on historical prices (Fama, 1965).
However, if technical indicators are able to provide a rubric for price forecasting, as
illustrated by a low mean squared error (MSE) or root mean squared error (RMSE),
then contrary to economic theory, derivative technical indicators are valid inputs to

security forecasts.

3.2.1.c. Security Stability -- Splits and Mergers

Stock splits (and reverse splits) are another possible confound this study attempted to
control for. A stock split is when a share is divided from a single unit into multiple units.
For example, in June of 2014, Apple Corporation's shares were split 7-to-1. This means
that for every share an investor possesses, the share was divided into 7 equal allotments.
The new exchange price is then reflected by this further dilution as a directly divisible
portion of the pre-split price. Following the example of Apple’s 7-to-1 split, the new price
was it’s pre-split price divided by 7 ($700 / 7 = $70 per post-split share).

There are numerous reasons a firm may enter a split, though often it is to provide a higher
degree of liquidity to the underlying security. A reverse split occurs when two or more
shares of a company are "combined" into a new single share. While the study could have

attempted to account for splits by tracking an "adjusted share price," it was determined
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early that this would simply constitute another confound to the study itself. This

constraint, for example, excludes Apple, Google and Coca-Cola from the study.

3.2.1.d. Sector Variance

It was intuited that some company shares may be more easily modeled than others--for
example shares of an oil and gas extraction company such as Exxon due to the tangibility
of its underlying commodity (oil and gas). As such, the study's included companies
attempted to pull from a variety of sectors. It is worth noting, particularly in the context of
the experiment's goal to operationalize the forecasted security prices, that the purpose of
diversifying the included securities by sector also creates a semi-realistic investor portfolio
without being too general, as with previous work forecasting a major index itself (Kim,
2003; Enke and Thawornwong, 2005; Huang, Nakamori and Wang, 2005; Kara,
Boyacioglu and Baykan, 2011).

3.2.1.e. Data Availability

The last major constraint was availability of data. Because much of the included data goes
beyond simply open/close prices, it was important that specific information be available.
Larger companies with a longer track record of presence on the exchanges increased the
odds that the desired data could be gathered. Data availability notwithstanding, the data
were gathered from a variety of disparate sources, often requiring multiple sources to

complete a single company profile.

3.3. Data

Daily exchange data span a 9-year period. The first eight years were reserved for training
and the final ninth year used as the test year--the "forecast period." For each company,
there consists approximately 2500 daily observations over the 9-year period. The period
selected was purposefully intended to capture the 2007 - 2009 market collapse in the US
equities market. Due to slight variance in available data on each company and an
implementation of complete cases only, the total data vary slightly by company. There is

a mean daily observations of 2454, corresponding with approximately 272 trading days
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per year (range 2407 to 2485). In total the companies have up to 38 input features,

depending on experiment type (Technicals, Fundamentals, Blended).

Equities Markets, 2006 - 2015: S&P500

2000 -

1500 -

usD

1000 -

2006 2008 2010 2012 2014 2016

Figure 3.2 provides a historical view of the S&P500, a frequently used index for conceptualizing the growth
or diminishment of the US economy as represented by the increase or decrease in the valuation of its largest
corporate entities. Data span from 2006 to 2016 and include the sharp decline in the S&P500 which began
at the end of 2007 and accelerated its decline into 2008, finally reaching its lowest point in the first quarter
of 2009.
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3.3.1. Daily Values

For each security in the study, the daily Open, High, Low and Close price were gathered.
The transactional data was sourced from Yahoo! Finance, a frequently used source for
security data. The raw data included the Volume of shares exchanged as well as an
Adjusted Close. These two latter values were excluded from the study, the former because
most prior research makes little use of Volume--likely because high volume can indicate
both positive and negative news and so constitutes needless noise. The last value
(Adjusted Close) was excluded because, as outlined within the "Selection Criteria," any
security which would carry an adjusted close (due to splits) for the experiment’s
examination window (2006-2015) were excluded from the study.

For the derivative technical features, please referenced Chapter 3 "Data Preparation /

Feature Extraction” below.

3.3.2. Fundamentals

In order to model the economic factors impacting a business, two general sets of data were
gathered: Macro- and Microeconomic Indicators.

1. The Macroeconomic Indicators are defined herein as values external to the
enterprise itself. That is, economic changes outside the direct control of the
company itself. Examples include currency exchange rates, unemployment and
new housing construction starts.

2. In contrast to the macroeconomic indicators, this study includes a number of
microeconomic indicators, those features more directly within the control of the
company itself. These include free cash flow, net profit (or loss) and gross margins.
These features are included within the study to make each trained model
company-specific.

So whereas the macroeconomic features provide a generalized environment in which a
company is operating--and provide a general context in which investors are presumably
evaluating a company's underlying stock value--the microeconomic indicators provide

company-specific constraints used in the formulation of a company's value.

41



3.3.2.1. Fundamentals - Macroeconomic Indicators

These fundamentals are meant to act as proxies for the general health of the economy. As
conducted by Huang, Nakamori, and Wang (2005), the S&P500's closing price was used
as a proxy (“indirect”) feature to represent a market assessment of the economy as a whole
as well as to capture potential information not directly represented within the
macro-economic feature set. Explained succinctly in the Huang et al. study (2005), the
S&P500 is a collection of the 500 largest US traded companies, effectively spanning every
industry and as such can be used as a proxy-feature representing a general litmus for the
economy at large. This same study also provides an excellent example of relevant
macroeconomic inputs such as industrial production, interest rates and gross domestic
product (GDP).

Macroeconomic data were gathered from the United States Federal Reserve Economic
Data, St Louis Fed ("FRED"). Ininial "proof of concept" data were gathered in the fall of
2015. Finalized data were gathered in the Spring of 2016. All data from FRED were
updated at this time as noticeable revisions of the economic data were present. While there
was concern that these revised figures were not representative of data available to
investors at the time of reporting--because they investors were operating on non-revised
data--Pierdzioch, Dopke and Hartmann (2008) showed that investment outcomes showed
little change when accounting for revised figures. In all instances, the revisions were less

than 1% change from previously gathered values.
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as a “signal” for investor confidence

Indicator Abbrev. Definition Frequenc
y

Civilian Labor Force Participation | CIVPART Percentage of individuals 16+ employed or seeking Monthly

Rate employment

Civilian Unemployment Rate UNRATE Jobless individuals as percentage of total workforce Monthly

Consumer Price Index, All Urban | CPIAUCSL A measurement of changes in average price for a basket Monthly

Consumers, All Items goods and services, restricted to urban residents, approx.
88% of US populationt

Federal Debt to GDP GFDEGDQ188S A ratio between Federal Gross Debt and Gross Domestic Annually
Product

Initial Jobless Claims, 4-Week | IC4WSA A moving average of all new jobless claims Weekly

Moving Average

London Interbank Offered Rate | USDIMTDI156N An average interest rate banks borrow funds from other Daily

(LIBOR) banks, acting as a reference rate for short term interest
rates

New Housing Starts HOUSTNSA The total of new home construction projects started in Monthly
us

Personal Consumption | PCE A measure accounting for approx two-thirds of final US Monthly

Expenditures household expenditures

Personal Savings Rate PSAVERT A percentage of household saving to disposable personal Monthly
income

% Change Real Gross Domestic | A191RL1Q225SB | Measure in the percentage change in economic output Quarterly

Product EA adjusted for inflation

S&P500 Closing spClose An index of the 500 largest companies traded on US Daily
exchanges

USD / Euro Exchange DEXUSEU The exchange rate between a US Dollar and the Daily
Eurozone Euro

USD per Barrel Oil (Brent Crude) | DCOILBRENTEU | A crude produced in the North Sea, used as a reference Daily
price for other crude types

10-year  Treasury, Constant | DFII10 A yield on US-backed treasury bonds, frequently used as Daily

Maturity a benchmark for other interest rates such as mortgages or

Table 3.2 provides a summary of each macroeconomic indicator included in the study and a short

explanation for its inclusion and, if available, a citation of prior work using a similar feature.
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3.3.2.2. Fundamentals - Microeconomic Indicators

Microeconomic indicators are included, as mentioned above, to provide company-specific

context for the learning algorithms. These features include the free cash flow, net profit,

margins and earnings per share. These data were largely gathered from YCharts, a

subscription-based data repository for company financials. Data were gathered during a

free seven-day trial, so no monetary value was exchanged for the study's data. Table 3.3

summarizes the included micro-economic indicators and includes a justification for the

metric.

Indicator Abbrev. Definition Frequency

Total Revenue total revenue The gross receipts received by | Quarterly
company, before interest, taxes,
depreciation and amortization

Net Income net_income Total revenue after expenses Quarterly

Earnings per Share, | EPS The net income divided by the total | Annual-to-Date

Annual outstanding shares (“float”)
aggregated as the prior 4 quarters

Total Assets total assets Total cash / cash-equivalents and | Quarterly
receivables presented on balance
sheet

Total Liabilities total liabilities Total debt and financial obligations | Quarterly
owed to individuals or businesses

Free Cash Flow free cash flow Net change in cash for a period | Quarterly
minus cash outlays for expenditures
and dividends

Profit Margin profit_margin Cash available after accounting for | Quarterly
expenditures as a percentage of total
gross revenue

Price per Earnings PE The ratio between a stock price and | Daily

the company's earnings per share

Table 3.3 shows the microeconomic features used for training on each company-specific model. If available,

prior work using the same indicators is also provided.
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3.4. Data Preparation / Feature Extraction

3.4.1. Derivative Technicals

Due to the nature of technical features, their values are all derivative of past price changes
and, for the most part, may be summarized as variations of moving averages. The
following section will provide an explanation for each of the technical values included in

the study and the motivation for its inclusion.

3.4.1.1. Moving Averages

The study included two main types of Moving Average: Simple and Weighted. The simple
moving average is a strict mean price over a given period, whereas the weighted moving
average gives more impact to the near-term periods within the overall averaged period.
For example, "yesterday" would carry more influence to the average than a close price
from "last Thursday." The study included four moving averages of each type. The intent
was to capture different pricing trends while also representing what appear to be
commonly used moving averages by both prior researchers and technical trading
practitioners (Gifford, 1995; Thawornwong, Enke and Dagli, 2003; Teixeira and Inacio de
Oliveira, 2010; Kara, Boyacioglu and Baykan, 2011; Chang, Fan and Lin, 2011; Ticknor,
2013). The simple moving average spanned from the previous 5 trading days to a
maximum of 200 days. The weighted moving average spanned the previous 10 days to a
maximum of 200 trading days. Note that for both SMA and WMA, the security's closing

price was used for the calculation.

3.4.1.2. Relative Strength Indicator

The relative strength indicator (RSI) is largely to buttress "trading rules" which, according
to technical traders, illustrates inflection points and market "signals" for when a security
is “Overbought” or “Oversold” by tracking the magnitude of gains over the magnitude of
declines in a security over an examination period, such as 10 days (Gifford, 1995;

Murphy, 1999; Thawornwong, Enke and Dagli, 2003). The motivation for the RSI feature
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was to provide an indicator frequently used both in machine learning literature and by
technical practitioners (Thawornwong, Enke and Dagli, 2003; Teixeira and Inacio de
Oliveira, 2010; Wen, Yang, Song, and Jia, 2010; Kara, Boyacioglu and Baykan, 2011; Ni,
Ni and Gao, 2011; Chang, Fan and Lin, 2011; Ticknor, 2013).

3.4.1.3. Commodity Channel Index

Originally proposed by Donald Lambert in 1980 to track the cyclical valuations of
tangible industrial commodities such as copper, the CCI has been applied by investors and
traders across a number of security types (Harrington, 2005). The CCI value typically
ranges from -100 to 100 with market entry signals initiated when the CCI cross zero. In
addition to being a strong metric used by technical trading practitioners, the CCI is used in
a number of existing research configurations such as Kim and Han (2001) and Kara,

Boyacioglu and Baykan (2011).
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Variable Name Frequency Definition

Open Daily The price of the first exchange when markets open

High Daily The highest exchanged price on a given day

Low Daily The lowest exchanged price on a given day

Close Daily The price of the security for the last exchange before markets close
Volume Daily The total number of shares exchanged on the market

Simple  Moving | Daily An average of all | _ é C /i

Average (SMA) observations over a number 5

of periods. Here, 8 previous
Closing prices

Weighted Moving | Daily Similar to  SMA  but (Zt: W C)/ Zt: W
Average (WMA) weighting oldest periods less = B
than most recent. Here uses
12 previous Closing prices

Relative Strength | Daily Compares magnitudes of 100 —100/(1 +RS)
Indicator gains and losses, resulting in | RS = AvgGain / AvgLoss
t

from 0 to 100
range from 0 to AvgGain = (Y Gains)/ t
i=1

t
AvgLoss = (Y Losses) / t
i=1

Commodity Daily A measurement of a | = (TP — SMA,y)/(.015 * MD)
Channel Index security’s price from its ! )/3
statistical mean based on
historical price metrics

close

TP = ; (PifhithrPi*/oerP

Table 3.4 defines the type of technical feature used in this study as well as the formulas for calculating the
feature itself. In the formulas, C is the closing price, W is a weight for a specific periodf, P is a price,
denoted as “close” or “high” (at time period i). RS is “relative strength,” TP is “typical price” and is
calculated for each period over a measured timeframe (20 used here). For the purpose of this study,
Secondary variables have been excluded. We include them here in order to provide transparency. 1As a
weight, one has flexibility in this adjustment parameter, allocating variable weights per period or a constant
decrement for each period prior to time t, such that, for example, time t-1 might carry half as much weight
as time t; time t-2 would carry half again the weight of time t-1, etc.

3.4.1.4. Non-daily Data

Worth mention is the treatment of Earnings Dates and underlying quarterly (or annually)

reported data.
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While a company's fiscal quarter (or annual operation) will cease on specific dates (e.g.
December 31st), the actual results for that quarter or year are not known for a number of
weeks afterward. As such, there is an offset of time, specific to each company, delineating
the actual end of the quarter and the pragmatic end of a quarter. In other words, while the
fiscal quarter may have ended on December 31st or September 31st of each year, the
investors do not have access to actual performance until afterward and as such are
operating on "old information." For example, the reporting date for most company
prior-year data occurs in late January. This means investors are unaware of the actual
fiscal performance for holdings they possess. If a company experienced lower (or higher)
than expected performance, investors as a class are unaware of this performance until after
the "earnings release date" (and earnings call). This experiment attempts to account for the
information black-out period by propagating prior-quarter's data forward up until the new
quarterly (or annual) data is made available. This is a subtle point in the data and
constitutes an assumption. If one were to simply pull the raw financial data, one might
mistakenly attribute that data as publicly available at the quarter-end date. Financial
release data were gathered based on the earnings call dates, as collated by both
ConferenceCall.org and verified on Etrade.com.

As is likely evident, the quarterly (and annual) data are reported as single values for a
specified period. As such, for both company microeconomic indicators as well as general
macroeconomic indicators, the factors are treated as constants for the duration of the
reporting period. In other words, if the four-week unemployment new claims data reported
300,000 new claimants for the prior four-week period, that 300,000 is generated as a daily
value of 300,000 until the next new claimant data are released. The same process is
followed for all micro- and macro-economic data. A research justification for this decision
was based upon Pierdzioch, Dopke and Hartmann (2008) who found that despite any noise
present in the real-time data, investors can use current macroeconomic information and
achieve the same average utility. That is, even if the macroeconomic data were
subsequently corrected, the investment decisions used to determine the overall market

volatility based upon (somewhat) incorrect figures resulted in nearly the same overall
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results as using the actual (subsequently corrected) macroeconomic data. This resulted in
the final two assumptions to non-daily values: 1) to propagate macro-economic figures as
constants for an entire period and 2) to use the currently available macroeconomic figures
and effectively ignore that some data might have been updated since their original release.
Indeed from the time data gathering began in the Fall of 2015 until mid-Spring 2016, there

were updates and slight modifications to macroeconomic figures.

3.5. Data Modeling

3.5.1. Model Evaluation

Depicted by Figure 3.3 (left), this

Foecanting experiment uses two methods to
VM ANN evaluate the performance of the
i input indicators and the predictive
1 L‘l algorithms:

1
=———— The first method relies upon the

Pnoe - Learning Curves
L SRS 100-plus survey conducted by
Atsalakis and Valavanis (2009)

which illustrates that researchers

(

\

Buy, Hold, Sell
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Buy, Hold, Sell
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Mean Squared
Error,
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Comparison:
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Vs
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Figure 3.3 illustrates the model pipeline for training, testing

and evaluating model performance.

use varying evaluation techniques
for their models. However, the
standard statistical measures used
are root mean square error
(RMSE), mean absolute error
(MAE) and mean squared error
(MSE). RMSE and MSE are also
used by Refenes Zapranis and
(1994); Enke and
(2005);  Hsieha,

Francis

Thawornwong
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Hsiao and Yeh (2011); and Ticknor
(2013).

The second method uses the operationalized trading machine which makes a comparison
of the profit generated by the model itself, also mimicking prior work (Thawornwong,
Enke and Dagli, 2003; Enke and Thawornwong, 2005; Wen, Yang, Song, and Jia, 2010;
Chang, Fan and Lin, 2011; Ticknor, 2013). Though the former statistical evaluation is
likely adequate from a theory-based research perspective, the later is able to bridge the
gulf between theory and praxis by operationalizing the regression. From this researcher's
perspective, rather than reporting a theoretical regression error, the trading machine is able
to simulate what a trader utilizing the models might have experienced. Further, it is a
seemingly trivial matter to compare the profit of a machine-based algorithmic buying
scheme to buy-and-hold and this marginal increase in labor dramatically improves the

compelling nature of the overall research project.

3.5.2. Trading Machine

The price-based trading machine (PBTM) is intentionally simple by design. For example,
the PBTM is only able to take long positions (buy) and not make shorts or speculate with
option purchases. The PBTM is intended to be a simple contrast to the ‘buy-and-hold’
strategy (BAHS) which will make a single purchase in a company and hold the [long]
position until a future date.

For the purposes of the experimental comparison, both the PBTM and the BAHS must
completely exit their positions at the end of trading 2015. For each company, both the
PBTM and BAHS models are provided $1000 for investment (Wen, Yang, Song, and Jia,
2010). The BAHS will simply make a $1000 purchase at the beginning of the period
(January 2015). The PBTM, on the other hand, will make purchase and sell decisions
based upon the input model’s forecasted prices: if the forecasted price is higher than the
previous close and there is not already an open position, then the PBTM will make a stock

purchase, using the entire $1000 for investment. Similar to Teixeira and Inacio de Oliveira
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(2010), the PBTM position is exited if there is a gain of more than 10% (stopgain) or a
loss greater than 3% (stoploss) or if the experiment period ends prior to exiting the open
position(December 2015). The purchase and sell prices for both PBTM and BAHS is the
mean of the next day’s Open, Low, High, and Close prices, as an emulation of a realistic
execution price. This configuration is loosely based upon the models presented by Enke
and Thawornwong (2005); Teixeira and Indcio de Oliveira (2010); Wen, Yang, Song, and
Jia (2010); and Ticknor (2013).

3.6. Strengths and Weaknesses of Designed Solution

3.6.1. Strengths

The primary strength of the experiment is that all features are treated as a black-box.
Whereas some prior research into the use of technicals often implements specific trading
rules (Kim and Han, 2001; Friesen, Weller and Dunham,2009; Chang, Fan and Lin, 2011),
the models treated all inputs as generic features of the same depth and shape. This is
particularly important with regards to the null hypothesis that due to the EMH fechnicals
are an invalid learning machine input for stock price regressions.

Following the explicit absence of trading rules, the learning algorithms in the technicals
model are able to “learn” if there are any patterns in the historical prices, as purported by
technical “chartists”. The trading machine then makes purchase decisions based upon
those learned patterns. This effectively, though to a limited capacity, allows the
experiment to mimic how a technical, chart-based investor might make decisions.

Another strength of this design is that he experiment seeks to use a moderately wide range
of companies to help eliminate industry bias. Rather than focus on two or three
companies or upon a specific industry type (pharmaceuticals, oil & gas, etc) or on an index
of companies (such as the S&P500), the experiment looks at a moderate range of
companies spanning multiple industry segments. This is important because an index is a
somewhat abstract notion and the direct applicability of testing the relationship of the

EMH to an index is unclear. Moreover, the disparate industry inclusion allows the
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experiment to test the EMH and technical indicators in a variety of settings, some of
which may be more susceptible to forecasting (based on technicals) than others.

Worth noting is that this experiment continues a recent need to make model comparisons
between ANN and SVR and establish benchmarks across a number of companies. The
setup and data are both reproducible making a “template” from which more companies
could be fed into the same experimental process and a broader evaluation made. That is,
there is nothing inherent in the experiment to stop the evaluation at 12 companies (other

than time).

3.6.2. Weaknesses

The first major weakness in the experiments, meant to train and forecast price movements,
is that each model type (technicals, fundamentals, blended) pull from a limited set of
features. For the technicals-only experiment, there may be much better derivative features
to include. For example, a number of previous researchers have used William’s %R,
Stochastic Oscillator (%K and %D) and MACD as learning inputs while other studies use
weighted averages and Open, High, Low and Close as inputs (Kim and Han, 2001; Kim,
2003; Thawornwong, Enke and Dagli, 2003; Teixeira and Inacio de Oliveira, 2010; Hsieh,
Hsiao and Yeh, 2011; Kara, Boyacioglu and Baykan, 2011; Ticknor, 2013). However, the
selection and /limitation of used features was essentially arbitrary. Increasing the range of
feature options or deriving different magnitudes of weighted averages (different time
windows) could yield very different results.

Another major weakness is that all three models are treated exactly the same. For
example, if the fundamentals are released quarterly, it may be more apt to generate models
specific to earnings release dates which seek to forecast 1-week or 1-month out dates,
rather than daily values. On the opposite end of the spectrum is to train and test the
technicals-only model on intraday data (hourly, etc) and to experiment with the inclusion
of Volume or conducting wavelet transformations prior to training and testing. In other
words, each forecasting perspective (technicals, fundamentals, blended) are effectively
very different types of inputs and so models might be better suited to be custom to the

input type, rather than generic.
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A tangentially related weakness is that the purchase and sell prices might not reflect a
realistic execution price. The price was calculated as a mean of the day’s Open, High,
Low and Close prices in an attempt to estimate a semi-realistic market rate. However, a
careful investor with the prior-decision to make a buy or sell decision, might very well
execute the trade at a better-than-mean price.

Another weakness of the experiment is that the trade decisions are made on a daily basis.
It may be more effectual if the models would make intraday forecasts and to enter and exit
positions on a daily basis. That is, rather than forecasting the Close price exclusively, the
models could be used to forecast the Open, High, Low and Close, and then to make
purchase decisions based on the four price points while subsequently attempting to make
buy and sell decisions within the single day timeframe. Such a process might limit the
risks of maintaining open positions for prolonged periods, as well as focus more on market
timing--the main advantage proposed by a machine learning application.

The experiment and models could be expanded to include a range of feature tests or
feature-limiting (PCA, SVD) to examine which features help (or erode) model efficacy. A
specific focus on feature selection and feature-inclusion rules could also help elucidate the

effects of propagating quarterly or monthly data as constants (for the Fundamentals and

Blended models).
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4. Implementation / Results

4.1. Software

The experiment was conducted using Python scripts. In particular, the project relies
heavily upon Numpy, Pandas and Scikit Learn, three very commonly used open source
libraries intended for machine learning and data analysis. The Artificial Neural Network
used Keras, another open source library for Python built as an extension to Theano. Some
post-experiment analysis and data visualization utilized R, another open source software
package designed for statistical analysis. Ggplot2, an R package, was utilized in particular

for the post-experiment data visualizations.

4.2. Data Exploration

The following section will outline the features used in the three experiment phases. The
initial experiment consisted of training and testing models using derived technical features
and, as such, are covered first. Following the technical features, the fundamental economic
features are provided. Those fundamentals are subdivided into microeconomic (specific to

the company) and macroeconomic (economy at large).
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4.2.1. Technical Indicators

AT&T, 2015 - Close Price and Sample Moving Averages
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Figure 4.2, showing AT&T, is a correlation-based heat map for all features used in the experiment. As one
might expect, there is a very strong correlation between the historical moving prices and the actual Close
price, since Close is used for calculating the moving average itself. There is only a moderate to negligible
correlation between other technical features such as the CCI and RSI. This is common across all securities
in the study.

Figure 4.2 provides a heatmap (for AT&T ) illustrating the correlation between the various
features and the security’s underlying Close price. 4 priori one would expect the Moving
Averages (SMA-5, 15, etc) to have a high correlation with the closing price of the security
since they are strictly derivative. From a hypothesis perspective, this does not provide
significant information for developing new features. In terms of correlations with
fundamental factors, intuition is again useful. For example, there should be a positive
correlation between a security within the S&P500 and the index closing price itself. So far

as company-specific factors, there is a variance among companies more closely tied to the
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price of oil (Chevron and Exxon) and those more decoupled (Oracle and Microsoft).
What is striking across the class of included securities is the CCI and RSI which appear to
have no correlation whatsoever. The full set of heatmaps for all companies is available in

Appendix A.

4.2.2. MicroEconomic Indicators

Oracle - Close Price with Example Fundamnetals
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Figure 4.3 shows a the price of Oracle over time in relation to the changing microeconomic fundamentals.
As one would expect, the security price (red) increases as net income increases, showing that indeed a

security is rationally justified by the performance of the business.

Figure 4.3, typical of the included securities, illustrates a real connection between the

fundamentals of a company (Net Income, Total Liabilities, etc) and its market value
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(“Closing price”). This connection is a good indication for the contrasting hypotheses in
that if the fundamentals made no impact on the underlying security, then there would be
little comparative power to the purely technical model. A more expansive set of

Fundamentals-to-Closing price figures are provided in Appendix B.

4.2.3. MacroEconomic Indicators

Below are a set of figures outlining specific economic factors from the period 2006
through 2015. One can see, for example, the swift and immediate impact of the 2007 /
2008 financial meltdown reflected in exchange rates, GDP and new jobless claims.
Following the 9-year graphs of economic indicators are a set of figures intended to
provide insight into the volatility and ranges for those same economic indicators on a
year-by-year basis. The figures, in both cases, are a small selection of the full set

available in Appendix C.
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4.3. Data Preparation

Due to the disparate sources for the data on each company as well as the micro- and
macroeconomic features, much of the data preparation work was restricted to merging the

data or expanding annual, quarterly and monthly reported figures into daily values. As
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outlined in Chapter 3, “Non-daily Data,” the micro- and macroeconomic features which
were reported in non-daily values (quarterly, annual, etc) were expanded as constants for
the entire reporting period.

Due to the interaction of international markets with US markets, there may be instances
where a LIBOR or USD-Euro exchange value is reported. However, if the market was
closed in the US due to a US holiday (such as July 4th), the observation was excluded
from the study. Similarly, if a value was not reported due to an international market
closure (such as with LIBOR), the entire observation for the US market event was
excluded. In other words, the data is complete data only. No partial observations were
included in this study.

Another major step in the data preparation phase was to shift the closing price to be the
predictor value while also maintaining it as a feature for subsequent inputs. That is, the
close for today is based upon the features from yesterday: the dependent variable predicted
by the SVR and ANN uses the prior day features (High, Close, S&P500, USD/Euro, etc)
as the independent variables. However, the predictor’s true value becomes an input for the
next day’s regression.

Finally, before features were fed into either the SVR or the ANN, all features were scaled
from 0 to 1 (Kim, 2003; Lee, 2009). The purpose of this was to eliminate any possible
“overweighting” by the models by larger values, which was a factor because some
features were percentages (reported as decimal values) and others ranged in the hundreds

of thousands (Initial Jobless Claims, 4-week Average).

4.4. Data Modeling

For purposes of cross-validation and shuffling, the experiment resisted the urge to
randomly sample from the entire data set because the intent of the experiment is to
evaluate, strictly, whether past stock prices and the derivative technical indicators used by
traders worldwide would yield valid, profitable results when fed into a machine learning

algorithm. As such, the hold-out data set is the final 10% of the data, comprising 2015
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trades. Previous work, such as Enke and Thawornwong (2005), use this same process of
using the tail end of the data for the test.

To help alleviate potential for the ANN and SVR to overfit the training data (2006 - 2014),
the experiment workflow does make use of a holdout set (a cross-validation set) that is
used for a) parameter tuning and b) selecting the "best model" based on the performance
of the train model on the cross-validation set. For the SVR, the workflow uses a 2-fold
grid search which allows the system to train on a range of parameters (generally a total of
36 different combinations gamma and C, the weight of each training sample and the
curve-fit of the SVR respectively). Chai, Du, Lai and Lee (2015) found that a grid search
parameter tuning scheme performed better than genetic algorithm while also being
computationally less expensive. Each combination is trained and tested against the
cross-validation set (holdout) and then the best combination of the C and gamma are
selected. Gamma and C were typically one of 1.5¢* to 1.0e® and 1000 to 1584,
respectively. The full range of gamma included six equidistant steps from le” and 1.0
while C included equidistant steps from 1.0 to le*. The primary kernel for the SVM was
the radial basis function (RBF) which in the literature is frequently used as the SVM
kernel (Tay and Cao, 2002; Lee, 2009; Wen, Yang, Song, and Jia, 2010). Other options
include the standard linear or polynomial kernel. The RBF kernel appears to be more
favored by researchers as it does not rely upon linear relationships in the data, as is the
intrinsic nature of security prices (ibid).

The backpropagation ANN architecture was determined and tuned using a holdout set
early in the experimental process. Rather than expend too much time looking for the exact,
100% perfect architecture and internal parameters (learning rate, decay, and momentum),
a generally acceptable architecture was established and applied to each company. This
differs slightly from the SVR because the grid search used in the SVR allowed each
trained "best model" to be company-specific (within a range of initial parameters),
whereas the ANN was unfortunately applied as a single, rigid template to all companies.
Allowing for more customization or tuning on a company-level is certainly a space for

future research. Nonetheless, the ANN architecture is summarized as a three-layer ANN
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with a single input layer using a hyperbolic tangent function ("tahn") to a 50-unit
hidden-layer which itself possesses a 10-unit output that consolidates to a single linear
output layer. Each of the layers also possesses a 10% dropout which was found to have
better performance than when excluded.

One might ask why an additional pre-processing step such as Principle Component
Analysis or Singular Value Decomposition weren't used to simply select the most
impactful features. Said simply, it was beyond the scope of the experiment to determine
which of the technical values proved more useful for the machine learning algorithms as
this particular experiment was more concerned with the validity and rationality of using
derivative technical features for security price forecasting when there existed a large body
of literature indicating the irrationality and invalidity of such values. This constitutes,
certainly, an area for future research.

In terms of technical-only models, one might also examine whether moving averages
applied to fundamentals such as crude prices and exchange prices, as a blend between

technical and fundamental inputs, might further improve the efficacy of a blended model.
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4.5. Model Validation

4.5.1. SVR Model

Company MSE RMSE (USD) Profit (Loss): Profit (Loss):
Model, in USD Buy & Hold, in

USD

AT&T Inc. 25.091 5.009 (73.51) 42.45

Boeing Co 2984.521 54.631 0 133.24

Capital One Financial | 855.921

Corp. 29.256 (126.33) (41.99)

Chevron Corporation 1162.150 34.090 (94.12) (183.91)

Ford Motor Company 41.959 6.478 (56.73) (73.59)

General Electric | 63.501

Company 7.969 50.4 253.80

McDonald's Corporation | 995.192 31.547 18.63 281.65

Microsoft Corporation 244,978 15.652 0 332.16

Oracle Corporation 277.367 16.654 0 (98.87)

Target Corporation 83.238 9.123 0 107.40

Wal-Mart Stores, Inc. 768.468 27.721 0 (234.71)

ExxonMobil 408.297

Corporation 20.206 (71.00) (158.23)

Table 4.3 provides the experiment results for the SVRs profitability (or loss) using technical features versus

the buy-and-hold strategy.
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Company MSE RMSE (USD) Profit (Loss): | Profit (Loss):

Model, in USD Buy & Hold, in
USD

AT&T Inc. 25.691 5.069 (113.1) 4245

Boeing Co 2969.359 54.492 0 133.24

Capital One Financial

Corp. 859.160 29.311 (96.08) (41.99)

Chevron Corporation 1140.809 10.715 (57.73) (183.91)

Ford Motor Company {41 061 6.408 (50.02) (73.59)

General Electric

Company 55.850 7473 83.52 253.80

McDonald's Corporation |959 124 30.970 0.68 281.65

Microsoft Corporation |45 784 15.661 0 332.16

Oracle Corporation 275.933 16.611 0 (98.87)

Target Corporation 83.873 9.158 0 107.40

Wal-Mart Stores, Inc. 1494 712 22.242 0 (234.71)

ExxonMobil

Corporation 402.490 20.062 (121.95) (158.23)

Table 4.2 provides the experiment results for the SVRs profitability (or loss) using fundamental features

versus the buy-and-hold strategy.
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Company MSE RMSE (USD) Profit (Loss): | Profit (Loss):

Model, in USD Buy & Hold, in
USD

AT&T Inc. 24.939 4.9939 (91.06) 42.45

Boeing Co 2929.963 54.129 0 133.24

Capital One Financial

Corp. 842.723 29.030 (107.03) (41.99)

Chevron Corporation 1140.510 33.771 (110.47) (183.91)

Ford Motor Company {41,145 6.414 (50.02) (73.59)

General Electric

Company 54.688 7.395 83.52 253.80

McDonald's Corporation |941 482 30.684 6.92 281.65

Microsoft Corporation |45 237 15.660 0 332.16

Oracle Corporation 276.428 16.626 0 (98.87)

Target Corporation 83.519 9.1390 0 107.40

Wal-Mart Stores, Inc. 487.328 22.075 0 (234.71)

ExxonMobil

Corporation 402.933 20.073 (104.55) (158.23)

Table 4.3 provides the experiment results for the SVRs profitability (or loss) in the blended-model versus the

buy-and-hold strategy.
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SVR RMSE per Model, by Company
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Figure 4.8 illustrates the RMSE for each of the three experimental SVR models for each company included
in the study.
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4.5.2. ANN Model

Company MSE RMSE (USD) Profit (Loss): | Profit (Loss):

Model, in USD Buy & Hold, in
USD

AT&T Inc. 18.370 4.286 (72.06) 42.45

Boeing Co 3177.961 56.373 0 133.24

Capital One Financial

Corp. 832.084 28.846 0 (41.99)

Chevron Corporation 1046.523 32.350 (96.92) (183.91)

Ford Motor Company 35.136 5.928 (22.01) (73.59)

General Electric

Company 65.165 8.072 40.54 253.80

McDonald's Corporation {1325 42 36.409 0 281.65

Microsoft Corporation 246.894 15.713 0 332.16

Oracle Corporation 301.686 17.369 0 (98.87)

Target Corporation 106.895 10.339 0 107.40

Wal-Mart Stores, Inc. 415.461 20.383 0 (234.71)

ExxonMobil

Corporation 527.649 22.971 (77.00) (158.23)

Table 4.4 provides the experiment results for the ANNs profitability (or loss) in the technicals-only model
versus the buy-and-hold strategy.
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Company MSE RMSE (USD) Profit (Loss): | Profit (Loss):

Model, in USD Buy & Hold, in
USD

AT&T Inc. 27.245 5.220 (61.05) 42 .45

Boeing Co 3197.286 56.545 0 133.24

Capital One Financial

Corp. 924.724 30.409 0 (41.99)

Chevron Corporation 4124.168 64.220 (82.90) (183.91)

Ford Motor Company 47.632 6.902 0 (73.59)

General Electric

Company 168.968 12.999 (20.88) 253.80

McDonald's Corporation | 1362 377 36.910 0 281.65

Microsoft Corporation  |801.198 28.305 0 332.16

Oracle Corporation 387.177 19.677 0 (98.87)

Target Corporation 182.565 13.512 0 107.40

Wal-Mart Stores, Inc. {531 725 23.059 0 (234.71)

ExxonMobil

Corporation 525.087 22915 (76.09) (158.23)

Table 4.5 provides the experiment results for each model’s profitability (or loss) using fundamental features

versus the buy-and-hold strategy.
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Company MSE RMSE (USD) Profit (Loss): | Profit (Loss):

Model, in USD Buy & Hold, in
USD

AT&T Inc. 55.706 7.464 (95.12) 42 .45

Boeing Co 3091.925 55.605 0 133.24

Capital One Financial

Corp. 1029.205 32.081 0 (41.99)

Chevron Corporation 2398.477 48.974 (86.00) (183.91)

Ford Motor Company 40.152 6.336 0 (73.59)

General Electric

Company 73.153 8.553 18.12 253.80

McDonald's Corporation | 1361035 36.892 0 281.65

Microsoft Corporation  |1024.945 32.015 0 332.16

Oracle Corporation 520.480 22.814 0 (98.87)

Target Corporation 145.606 12.067 0 107.40

Wal-Mart Stores, Inc. 586.253 24213 0 (234.71)

ExxonMobil

Corporation 1053.166 32.453 (122.79) (158.23)

Table 4.6 provides the experiment results for the ANNs blended-model profitability (or loss) versus the

buy-and-hold strategy.
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Figure 4.9 illustrates the RSMEs generated by the ANN experimental models and each company included in
the study.
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4.6. Model Prediction & Visualization
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Figure 4.10.a Depicts the actual
closing price (Red) for Microsoft’s
stock price for the 2015 period. The
SVR (blue) and ANN (green), using
the Technical features only, are also
presented. While the error is clearly
high, what is striking about the image
is the directional consistency with the
actual price.

Figure 4.10.b shows the distribution of
prices for each model type. Again,
while the forecasted prices are clearly
off, the relative variance is a close

approximation for the actual.
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Figure 4.11.a depicts the actual
closing price (Red) for Exxon, 2015.
The SVR (blue) and ANN (green),
using the Technical features only, are
also presented. The sharp drop in the
prediction with the ANN (circa
November, 2015) is a common
occurrence across many of the ANN
experiments, buttressing the notion
that more tuning, on a per-company,
per-model basis, may yield more
consistent  results. Despite this
outlier, both the SVR and ANN show
remarkable consistency with the
actual price. As with Microsoft
(Figure 4.10.a), the directional
forecast is also consistent with the
closing price.

Figure 4.11.b shows the distribution

of prices for each model type.
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Figure 4.12.a is provided to show an
example of a security (Ford) which
exhibited a relatively stable security
with a minor decline for the 2015
period yet the SVR and ANN both
forecasted steep declines in price. In
this regard, the two models followed
almost the exact same pattern,
implying that perhaps there were
important fundamental properties
reflected in the (relative) price

which remained

stability
unaccounted for in the
technicals-only model.

Figure 4.12.b shows a much higher
distribution of forecasted prices than

the actual narrow band Ford traded

within.
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Figure 4.13.a, showing the forecasts
for McDonald’s, exhibits many of
the characteristics already see but
combined in a single security: the
general direction of the forecasts
follows the actual closing price and
there is a large outlier forecast with
the ANN model (end of 2015).
While the magnitude of the gain was
exaggerated within the SVR model,
the SVR model did correctly
forecast the consistent gain in
closing price exhibited in the last
quarter of 2015.

Figure 4.13.b reinforces the error
offset of the two predictive models
against the actual. Unlike the
previous figures, the McDonald’s
stock exhibited a rapid change
(outliers) in security price in which

the models perform acceptably in

forecasting the outliers.
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Figure 4.14.a is provided to show a
weaker model. The general shape
of AT&T’s security price 1is
followed but both the SVR and
ANN exhibit a tendency to greatly
inflate the expected security price,
implying an oversensitivity to the
provided features.

Figure 4.14.b reinforces the high
volatility of the security compared
with the generally tight band that
AT&T traded within for 2015.
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Figure 4.15.a shows Chevron’s actual
and two forecasted closing prices
(SVR-Blue; ANN-Green). The SVR
shows particular potential with a
tight following to the actual close
price. While the steep falloff in price
for the SVR was indeed greater than
the actual, the SVR model does show
a highly consistent model, tracking
well with actual decreases and
increases in the security price. The
ANN appears to have a poor fit with a
much greater error.

Figure 4.15.b provides insight into the
price distribution for 2015. The SVR
and ANN both show a greater
distribution of prices than the actual,
the SVR

though range  is

encouragingly close to the actual.
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Figure 4.16.a provides the
fundamentals model for AT&T. The
primary similarity with the technicals
driven model (Figure 4.14.a,b) is the
much greater range in total prices.
While the models roughly followed the
general shape of AT&T’s price over
2015, the magnitude of changes were
much greater in the ANN and SVR
models. Figure 4.16.b is again similar
to the AT&T-technicals  model,
implying there are likely important
valuation considerations not captured
by either the technicals or the provided

fundamentals.
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Model

Figure 4.17.a Provides the
Ford = Fiindamentals Moriel fundamental model for Ford
Motors. The forecasted prices
look remarkably similar to those
in the technicals-only model

(Figure 4.12a, b) in both the
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Figure 4.18.a provides an example of
a blended model, using McDonald’s.
The model performs similarly to the
prior technicals only model. The
drastic outlier and high variance
previously shown in the same
technicals-only model is balanced
for the ANN model. In the blended
model, the rapid increase in security
price was forecasted by both models,
though as before, the total magnitude
of the increase was much greater
than the actual.

Figure 4.18.b provides an insight
into the variance of prices. The SVR
again appears to provide the best
guidance for the actual value with
an even tighter range of prices than
before, matching both the narrow
band the actual traded in as well as

the rapid increases (outliers).
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The blended model for Exxon (Figure
4.19.a,b) was particularly predictive in the
case of the SVR, which tracked closely with
the actual closing price throughout the
duration of 2015, as well as in its overall
range of prices. The ANN appears to be fairly
underfit, with some strong tracking in the
early portion of 2015, but a drastic variance
in prices for the later half of 2015. This was
somewhat surprising as the technicals-only
model (Figure 4.11.a,b) was much more
stable for the ANN. Figure 20b. provides the
same graph, showing the same high-variance
pricing for Chevron, again surprising
considering  the  stability = of  the

fundamentals-only model.
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The blended model for AT&T
(Figure 4.20.a,b) did not perform
noticeably better than either the
(Figure 4.14.a,b) or
4.16.a,b)

Technicals
Fundamentals (Figure
models. The distribution of prices
was still consistently higher with a
poor predictive power for the SVR
and ANN.

This  furthers the implications
drawn from the previous models
that important features used to
forecast the security’s prices are
missing from the models, which
were unable to find strong
connections between the provided

technical and fundamental factors.
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The blended technicals and
fundamentals model for Ford (Figure
4.21a, b) do not show an improvement
over the previous models. Ford is not
atypical in this regard and provides a
good example across all three
experimental paradigms (Technicals:
Figures 4.12a, b and Fundamentals:
Figures 4.17.a, b):  acceptable
performance in the independent
technical and fundamental models, with
good directional forecasting (gain /
loss in closing price) but with large
base-line offsets in price and often a
much greater (2x) magnitude in price

range.
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5. Evaluation / Analysis

5.1. Evaluation of Results

While, the MSE (and RMSE) across many companies dropped with the blend of
Fundamentals and Technicals for the SVR model, those drops were modest and may
simply be the result of undertuning. The average performance for the ANN models was
significantly better (as measured by average MSE across all companies) for the
Technicals-only model. However, this may also be the result of underfitting the data in the
subsequent experiment models. As illustrated by Figures 4.17.b and 4.18.b, there is
significant variance in the prices forecasted by the ANN versus the Actual and the SVR
forecasts, though this variance was reduced in some fundamental models (figures 4.13.b &
4.15.b) and blended models (figure 4.18.b). Conversely, the SVRs performed consistently
well, matching the general shape, direction and distribution of actual prices better, and it is
for this reason that the SVR (and SVMs in general) are often cited as being easier to work
with: parameter tuning is significantly easier than architecting a well-rounded ANN model
(Tay and Cao, 2002; Kim, 2003; Yeh, Huang and Lee, 2011).

So far as the underlying research question regarding the predictive power of a
technicals-only model, the conclusion is that technicals are a valid input, performing at
nearly the same level as fundamentals-based models. Indeed, the difference in mean
RMSE between the Technicals- and Fundamentals-only models is only $2.51 for the SVR
and $5.14 for the ANN. For a factor classified as irrational (Technicals), the a priori
intuition would be that the technicals-based model would be effectively “random” but the
technical models tracked security price changes with an acceptable degree of
accurately to convince this researcher that even if economic theory may classify
historical prices as irrational justifications for security purchasing decisions, they are

ipso facto rational so far as justifying their inclusion in future forecasting research.
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5.2. Observations from the Results

The first clear signal from all three experiments is that some participant company shares
are much more closely tied to the fundamentals of the market -- and that they are more
"easily" forecasted using both the SVR and the ANN. Examples include the oil and gas
companies Exxon (XOM) and Chevron (CVX). Another good example of a model that
performed well once coupled with fundamentals is McDonald's.

In all three cases, one can intuit that the business models are indeed more closely tied to
the underlying economic conditions (included in this study) than alternative businesses
such as Oracle or Microsoft. For example, the price of oil will closely map to the total
earnings of CVX and XOM: as the price of oil goes up (as valued in USD), the total
earnings for the period will see a corresponding increase, assuming costs are essentially
fixed. In a similar manner, MCD which operates globally, earnings can be greatly
impacted by general consumer-oriented fundamentals such as unemployment. For all three
companies, as global players, the exchange rate of the USD to the EURO will also likely
play an influencing role.

It was beyond the scope of this project to investigate the specific features which improved
(or diminished) the performance of the models; however, this would certainly constitute a
fertile landscape for future investigations.

So far as the profitability of the trading machine, it should be noted that simply because a
“Buy-and-Hold” resulted in a greater loss than the algorithmic trading machine, does not
mean that the trading machine proved more accurate at predicting market prices. That is,
in some cases, the trading machine simply never generated a buy signal, resulting in
no trades for the entire period. In highly volatile markets in which prices swing rapidly
from positive to negative, this may be an acceptable behavior but it does not prove
anything. As noted below, the automated trading machine’s configuration was indeed a

limitation of the experiment and worth additional attention in the future.
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5.3. Strengths of the Results

The primary strength of the results is the establishment of a justification for feature
selection in future work and to address an often overlooked explanation for researchers’
use of features, frequently in the context of the EMH. With a simple contrast between
Technical-only and Fundamental-only models, the EMH is called into question. The
experiments show that technical features are able to forecast the direction, if not the exact
price, for a class of securities.

A secondary strength is that the models are lightweight and the pipeline is
sufficiently extensible to easily accommodate more test companies and additional
model options because the models avoid hyper-tuning on a per-company basis. Moreover,
train and test time are short enough (approx 30 min) to act as a prototype for actual
day-to-day operations in an investment setting.

Another strength is the results reinforce previous findings that SVMs are easier to
tune and can achieve relatively better performance on smaller training sets than
ANN. While there is a small gridsearch enabled on the SVR, its selected range was
typically only one of four value combinations (between gamma and C). The ANN was
itself a single hard-coded structure and converged within a couple of minutes but it was
clear to this researcher that hours could be spent on tuning each company for each
experiment.

A final strength of the findings is the consistently high “base error” in the forecasted
prices but the exceptionally accurate directional movement in all forecasted models.
Securities forecasted in this experiment, particularly with the SVR, maintained a
consistent price error but tracked direction well. Retooling to examining directional

movement seems to be among the most promising areas for future examination.

5.4. Limitations of the Results

The primary limitation of the results is one of model development. Not only are there

likely great economic candidate features that were unexplored (Real Median Household
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Income, Federal interest rates, and gold prices, to name but a few), there are also softer
features contained within current events. For example, including an investor sentiment as
it relates to the 2015 "GreExit" crisis, in which Greece was on the brink of a major capital
default, could yield important indicators for the closing prices of securities. Another
important aspect limiting the research were the non-US fundamentals: China and the EU
play large roles in global exchange markets and yet, aside from USD-to-Euro exchanges,
these important macroeconomic indicators were excluded completely from the study.
Beyond fundamentals, there are a plethora of technical features that were not
engineered, such as Moving Average Convergence Divergence (MACD), Stochastic %K
and Stochastic %D. While the prior literature frequently uses moving averages as used in
this study, MACD (among others) are also used by technical chart-based evaluations and
could provide important signals, particularly in the case of the pure technical models.

An important secondary limitation of the results is of model tuning. Due to the scope
of time allocated to this research, the models may be under-tuned. There is reason to
suspect that the Artificial Neural Network, for example, could be tuned on a per-security
basis. Because of the tools and time available, only a single ANN architecture was used
for all companies across all experimental phases. However, as was found with the SVR,
each security used slightly parameters to achieve the “best model,” implying a single
ANN architecture for not just every security but every configuration of input feature
(technical, fundamental, technical + fundamental) may not achieve the best results, despite
model convergence. In addition to general model tuning on a company-level basis,
alternative ANN models might include convolutional neural networks or applying wavelet
transformations to de-noise the inputs to the ANN.

While the research indicates that technical inputs are able to capture some price
movement, the evaluated securities were only a small portion of all available
securities. 12 of the thousands of publicly traded companies represents only the smallest
margin of statistical significance and so a better study would approach 30 to 50
companies. Further, while the research attempted to include a range of companies

representing the various segments of the economy (Gas & Oil, Consumer Goods, Finance,
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Automotive, Software and Technology, Telecommunications), more attention to
expanding the represented companies for each segment may yield more confidence to
research results.

Another limitation of the research is the range of investment options available to the
trading machine. To follow prior research, stop losses and stop gains were used. A stop
loss is a maximum percentage loss on a holding that once met, a position is exited. Stop
gains are the opposite: after a threshold of gain is reached (10%), the position is exited
even if the position might yield better results. This is an obvious limitation because profits
and losses are capped but position entry and close subjects the experiment to market
timing: exiting a position prematurely could result in significant losses. Moreover, many
advanced trading strategies include shorting a security -- that is, taking a contrarian
position which seeks to profit from a security's decline in price, versus the traditional
profit-through-gain.

Another notable area of limitation is the range of feature inputs. Finding that technical
features perform at or near-par with fundamentals may be further buttressed by using other
technical notions such as “bear or bull” or length of time (in bear/bull conditions), days of
consecutive price increase or decrease, or even gathering moving averages for the indirect
fundamentals such as the price of oil or the S&P500 itself.

The last major limitation of the research is that the models’ susceptibility to black
swan events were not tested--events such as the financial crisis of 2008 (Taleb, 2007;
Lewis, 2010). Would the models appropriately detect fast changes in market conditions

and would the trading machine appropriately exit the exposed positions?

6. Conclusions and Future Work

6.1. Summary

By examining 12 companies within the S&P500 using technical features as inputs to the
machine learning algorithms, this research implies that technical indicators are an

adequate input set for machine learning-based security price forecasting and that the
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EMH can be called into question. However, in the case of the SVR, the
fundamentals-based model did perform at a lower overall RMSE than the
technicals-model and so should likely be included in most models seeking to forecasting
security prices. While there is a pattern to historical prices which calls the EMH into
question, at least so far as the investment community “predictably reacts” to new
conditions, the efficient market hypothesis is to some degree reaffirmed in that new
information contain pertinent, important information for updating security valuation
not represented by historical prices and patterns. In other words, it might be
counter-argued that the rapid change in underlying security price due to significant
changes in earnings incorrectly forecasted by the SVR and ANN is a reaffirmation that
new information strongly influenced security prices relative to near-term technical
indicators. Yet it might also be noted again, the market can overreact to this new

information (De Bondt and Thaler, 1985; Verma, Baklaci and Soydemir, 2008).

6.2. Contribution and Impact

This research sought to examine the debate surrounding the rationality of technical
features into forecasting strategies implemented within machine learning literature. The
general conclusion is that technical features are able to forecast the next-day price of
a security at an approximate parity with fundamentals-based models. While
economic theory may indicate these inputs are “irrational” and based upon “noise,”
the models were ipso facto capable of generating acceptable forecasts by learning the
pattern in previous exchanges.

As with other previous researchers, this researcher can also conclude that SVMs are, in all
likelihood, more pragmatically better suited toward use in forecasting due to the ease of

model tuning.

6.3. Future Work

This research shows that for 12 of 500 S&P500 companies, technical indicators were a

legitimate input for machine learning algorithms in 2015. The research implies that future
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studies might seek to replicate the results by expanding the number of years tested--rather
than simply testing the hypotheses for 2015, models might train and test for other time
periods, of course requiring larger training sets.

Future work might better explore the fundamental input features by broadening the
included factors as the generic macroeconomic factors and the company-specific
microeconomic factors may also be too limited in scope. In this regard, another area worth
examining is to understand if an assumption of how the fundamentals were propagated
forward as constants altered the forecasts.

It is worth noting that because all features were treated as a blackbox with no feature
reduction process such as SVD or PCA, this experiment setup cannot identify which
features impeded or improved the performance of the models--this may be particularly
important for the blended model which performed worse for the SVM (slight
improvement in ANN) than either the technical or fundamentals-only models.

Expanding the number of technical inputs to included notions of “bear or bull” market --
or number of consecutive days of increase--might also be illuminating: for example, is
there a legitimate notion of “overbought” and “oversold” as often claimed by practitioners
of the Relative Strength Indicator (RSI) or is that merely a case of selective confirmation
bias? Could analyst earnings estimates or assessments (“buy”, “market perform”, “hold”,
etc) be included in the models? Perhaps the days to earnings could also be an important
feature. Another interesting area to examine is the inclusion of After- and Pre-Market
prices because most earnings release data come after market hours and so the new
information made available in the earnings release is not reflected in the end-of-market
Close price used as a major component of the next-day forecasts. If After- and Pre-Market
prices could be included, the models may better capture what the actual close price will
be.

Researchers might seek to evaluate hourly or sub-hour data: do technical indicators
perform even more accurately (or less) when the timeframe for evaluation is much

smaller?
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Alluded to previously, there might be fertile ground to integrate sentiment: not only to
examine how analysts rate a security but to integrate traditional and social media into
models. In this case, it would be important to build robust trust mechanisms, an example
of which might include an integration of an Information Foraging scheme to evaluate
various channels such as online / social media (Longo, Dondio and Barrett, 2009; Longo,
Dondio and Barrett, 2010) before integrating the sentiment scores with the technical and
fundamental feature mining. This thesis has presented an inductive, data-driven approach
for prediction. Because of the dynamism of the features involved in such a prediction, this
study could be tackled from a different perspective by, for instance, employing deductive
reasoning techniques for inference. Examples include (Longo, 2014) (Longo, 2013),
(Longo, 2015), (Rizzo, 2016).

As also seems clear from an examination of the price forecast vs actual close charts
(example figures 4.10.a, 4.11.a, 4.13a, .15.a, 4.18.a, 4.19.a, 4.19.b), it may be more
prudent for the trading machines to simply make decisions based on previous forecast
regardless of the actual close and simply seek to make directional purchase decisions.
That is, these same experiments might be run again and, rather than use a Forecast vs
Previous Close comparison for making purchase (or sell) decisions, the trading machine
simply makes a comparison fo its own prior forecasts. If the forecast is higher than the
previous, then a purchase is made. If lower, then a sell or a hold. As previous
experimenters have done to forecast the direction, the models might be re-evaluated on a
binary (up/down) basis rather than a regression basis.

The trading machine could expand to include shorts. The current trading machine is
only able to take long positions--buying the security to obtain profit from increases in
price after purchase. But the forecasts also detect downward movement and so could,
hypothetically, take short positions and seek profit from a lower market price.

With a clear baseline justification for feature inputs, the study could be used for doctoral

work by expanding company inclusion range and depth of features.
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8. Appendix A: Feature Correlation Heatmaps

The following figures provide heatmaps for the correlations of the features’ values with
the Close price. Because experiment 3, ‘Blended’, uses the full set of features shared
across the experiments, only a single heatmap has been produced for each company.
Further, because the figures are predictably “consistent,” only a sample of the most typical

have been included here.
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Feature Correlationss: F
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Feature Correlationss: MCD
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9. Appendix B: Visualizing Price and Economic Indicators

To see that there is indeed a relationship (if not loose, pseudo-dependency) between the
Close and other economic indicators, the following figures were produced to illustrate the
change in security price as a response to changes in economic conditions. Because the
story is generally consistent across all firms (improvements in earnings result in increased
security prices and decrements in profitability or margin result in a lowered price), a
sample of the companies is included here.
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10. Appendix C: Distribution of Feature Input Indicators by
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