
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers Digital Media Centre

2012-4

Effects of Variations in 3D Spatial Search Techniques on Mobile Effects of Variations in 3D Spatial Search Techniques on Mobile

Query Speed vs Accuracy Query Speed vs Accuracy

Junjun Yin
Technological University Dublin, junjun.yin@tudublin.ie

James Carswell
Technological University Dublin, james.carswell@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/dmccon

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Yin, J. & Carswell, J. (2012) Effects of Variations in 3D Spatial Search Techniques on Mobile Query Speed
vs Accuracy. Web & Wireless GIS 2012; Naples Italy, 12-13, April. Springer LNCS Vol. 7236.

This Conference Paper is brought to you for free and open access by the Digital Media Centre at ARROW@TU
Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

Funder: SFI

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/dmccon
https://arrow.tudublin.ie/dmc
https://arrow.tudublin.ie/dmccon?utm_source=arrow.tudublin.ie%2Fdmccon%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=arrow.tudublin.ie%2Fdmccon%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

1

Effects of Variations in 3D Spatial Search Techniques on
Mobile Query Speed vs Accuracy

Junjun Yin and James D. Carswell

Digital Media Centre, Dublin Institute of Technology, Ireland
{yinjunjun@gmail.com, jcarswell@dit.ie}

Abstract. This paper presents three Spatial Search Algorithms for determining
the three dimensional visibility shape (threat dome) at a user’s current location
in a built environment. Users then utilize this 3D shape as their query
“window” to retrieve information on only those objects visible within a spatial
database. Visibility shape searching addresses the information overload
problem by providing “Hidden Query Removal” functionality for mobile LBS.
This functionality will be especially useful in the Web 4.0 era when trillions of
micro-sensors become available for query through standard IP access.

Keywords: MSI, Mobile LBS, Spatial Databases, Isovist 3D, Threat Dome

1 Introduction

Visualisation of 3D built environment datasets on commercially available
smartphones (e.g. Google Maps 5 for Android 2.0+) is now reality. This is made
possible by rendering the mobile map from a single set of vector data tiles instead of
multiple sets of raster image tiles, and allows for smooth and continuous map viewing
and scaling from different perspectives using the same set of vector data. Although
Google Maps 5 is not yet photo realistic, the resulting 3D models are close to being
geometrically accurate as they are derived from extruding building footprints to
known heights for different parts of a building (Fig.1).

Within such a 3D vector dataset of Dublin, we have attached attributes (meta-data)
to the various floors, windows, doors of buildings, plus affixed a range of
environmental sensor data streams to other scattered locations on a building’s façade.
Together this provides the beginnings of an Internet of Things type environment for
testing our developed 2D/3D visibility-based spatial querying algorithms and
techniques.

It is recognized that analyzing enormous volumes of data on a mobile device
requires addressing the “information overload” problem to reduce display clutter.
Allied research into the information overload problem is ongoing, where map
personalisation and other semantic based filtering mechanisms are essential to de-
clutter and adapt the exploration of the real world to the processing/display limitations
of mobile devices [2, 3, 4, 5]. We propose that another way to filter this information is

2

to intelligently refine the search space by applying hidden query removal (HQR)
functionality in three dimensions.

Fig. 1. 3D tilt, zoom, and rotation enabled mobile map displayed
by Google Maps 5 for Android [1]

The combined effect gives a more accurate and expected query (search) result for
Location-Based Services (LBS) applications by returning information on only those
objects/sensor enabled “things” visible within a user’s 3D field-of-view (FOV) as
they move through a built environment. For example, visitors can now explore both
their horizontal and vertical surroundings by pointing their smartphones at stores,
offices, POIs, or any space to retrieve from the web any recorded information about
these objects - answering specific questions such as: “Whose office window is that up
there?” or more generally; “What are the air pollution readings along this street?” or

3

perhaps more interestingly; “Can I see any CCTV cameras from where I’m sitting?”
or indeed; “Are they seeing me?”.

However, to make our 3DQ (Three Dimensional Query) prototype function
effectively in real-time requires mobile spatial query techniques that extend today’s
spatial database technology both on the server and on the mobile device itself. This
paper describes the various algorithms developed and results of tests carried out on
COTS (commercial off-the-shelf) mobile devices querying a sample 3D vector
dataset. Our ultimate goal is to dynamically visualize on a smartphone the 3D query
space, or threat dome, overlaid in real-time on a 3D mobile map, together with any
returned query results (Figure 2).

Fig. 2. Threat Dome search space interacting with a 3D cityscape model; only things

intersecting the solid dome shape get returned by the query.

Since 3DQ is intended to be deployed as a web-based service for mobile users,
multiple users can connect and perform location based searches at the same time.
Therefore, one significant research challenge was to efficiently and rapidly calculate
the underlying visibility query shapes for each user. Also, maintaining the accuracy of
the retrieved results is essential to providing a better user experience by reducing the
information overload risk.

The remainder of this paper is organized as follows: Section 2 introduces the
vector datasets that we utilize in our work. Section 3 describes our main contributions
by presenting a comprehensive discussion of the algorithms and implementation of

4

our 3DQ prototype. This is followed in Section 4 by some evaluations of the
performance of 3DQ in terms of speed vs accuracy when using different search
algorithms and parameters, and Conclusions and plans for Future Work can be found
in Section 5.

2 Vector Datasets Background

Geospatial information is increasingly recognized as the common denominator in
both today’s “web 2.0” peer-to-peer social network era and tomorrow’s “web 4.0” –
where it is envisioned that the Internet becomes connected to trillions of micro-
sensors placed into real-world objects of all types (i.e. mechanical and non-
mechanical), all with their own 128 bit IP address [6]. In other words, an Internet of
Things that collects and sends time-stamped data to the cloud every second about their
location, movement, plus any number of other measureable phenomena – e.g.
environmental data such as air/water quality, ambient light/noise data, energy
consumption, etc.

It is in this “Big Data” realm where we envisage 3DQ operating most effectively.
When the potential of the sensor-web becomes realised, every brick of every building,
every cobblestone of every street, every road sign, traffic light, street light, water
bottle, beer can, garbage can and flower pot could conceivably be individually
communicating their whereabouts and local conditions to the world. In such a world,
we believe the ability to filter out, both semantically and spatially,
unwanted/unnecessary/unsolicited information while at the same time retrieving task-
relevant data for making informed decisions will be paramount.

Three dimensional indexing is a requirement for storing and querying 3D vector
objects, which at time of writing limits our spatial database options to Oracle Spatial
11gR2, although PostGreSQL with their anticipated PostGIS 2.0 extension for 3D
indexing will be, once available, a useful open source addition to this very short list.
However, we’ve discovered clear limitations of Oracle’s spatial query operators when
trying to determine the spatial relationships among 3D geometries. These include
creating 3D R-Tree indexes on 3D geometries using a minimum-bounding cube.
Oracle only considers if these cubes intersect with one another as a method for
determining whether their underlying 3D geometries actually intersect. Retrieving the
actual 3D location where two geometries (vector objects) intersect in 3D is not yet
supported.

For example, an important feature of 3DQ is to detect exactly where the
intersection between a generated ray (simulating the 3D pointing direction of a
smartphone) and a 3D building occurs. In this case, Oracle derives the intersection
point using the 2D spatial operator SDO_INTERSECTION by first projecting the
query shape (3D ray in this case) and the target (3D building) onto the ground plane
and then only returning the 2D position of this 3D ray/building intersection. Using
this information and combining it with the tilt angle and 2D distance to the nadir of
the actual intersection point, we are left to compute the actual 3D intersection point of
this query ourselves.

5

In an accurately computed threat dome, the generated dome shape will usually
have a large number of surface elements relative to the complexity of the surrounding
environment. If we want to consider this dome as a single 3D query shape (surface)
in the form of an Oracle SDO_GEOMETRY (in order to make use of the
SDO_INTERSECTION query operator), we find that its total number of surface
elements will typically exceed the number of elements allowed in the
SDO_ELEM_INFO_ARRAY - where it seems an arbitrary maximum of 999
coordinates (i.e. 333 3D points) are permitted.

In our case, where each surface element contains 12 coordinates defining its shape
(four 3D vertices), a maximum of only 27 surface elements are then allowed in one
SDO_ORDINATE list. As it happens, this is typically far fewer than what is required
to accurately describe the boundary of a complete 3D threat dome shape. To get
round this limitation, we must first split the complete threat dome into 3 or more
sections and then query them individually against the database - instead of creating a
single 3D volume as the threat-dome query shape. The returned query results are then
a sum of all object/section intersections after first removing any duplication.
Ironically, one beneficial consequence of this extra processing is that it encouraged us
to mirror the spatial database across multiple servers and then send each individual
3D dome section query to a separate database. The result is a much faster (~2sec.)
query process which potentially allows for near real-time threat dome visualisations
and searching on 3D mobile maps – our ultimate goal for this work.

Since the introduction of the “Isovist” concept in [7] for describing the 2D
visibility shape or 3D visibility volume at a given position, there have been a number
developments that employ Isovist-like approaches for urban environment analysis.
The notion of a “Spatial Openness Index” (SOI) developed in [8, 9] measures the
volume of visual perception within a surrounding sphere from a given point of view,
but without defining its shape. Other techniques to measure 2D and 3D visibility in an
urban environment are shown in [10], which calculate the visibility of pixel
coordinates on Digital Elevation Models (DEMs). Their proposed “iso-visi-matrix”
claims to be a very useful from a visual perception viewpoint. Different to these
approaches, visibility modelling algorithms developed in [11, 12], calculate the
visibility of local landmarks in an urban context. They determine the visibility of a
“Feature of Interest” (FOI) for location based services (LBS) that notify users when
they are in a position that can actually see those landmarks. 3DQ acknowledges the
importance and usefulness of carrying out 2D/3D visibility based analysis in the
urban environment and aims to extend this idea by exploiting the actual 3D visibility
shape as a query “window” to retrieve only those spatial objects that a user can
physically see from a given viewpoint.

When calculating 3D Isovists, a user’s visual perception is usually simulated and
interpreted as a collection of “sight lines” or “line-of-sight” collisions with spatial
objects in the environment [13]. In this regard, the technique of ray casting is a
common approach to determine sight line/object intersections where the collective
intersection points of collisions eventually form the visibility shape used as the query
window.

6

In most modern computer gaming applications, collision detection techniques are
very well developed to determine and render only those visible objects in a game
scene to optimize display speed. However, those type of calculations are normally
Boolean value based operations, which means if the ray hits an object the returned
value is “true” and vice versa. For the purpose of computer graphics layered
rendering, this technique (without further calculation of the intersection point) are
proven to be quite efficient [14, 15, 16]. However, our 3DQ prototype requires more
than just determining which objects constitute a scene from a user’s viewpoint, we
also need the 3D Isovist shape to determine where objects (e.g., built environment,
sensors in the Sensor Web) are intersected. Therefore, accurate vertices (intersection
points) of the visibility shape are necessarily required to form the corresponding
shape in a spatial database for subsequent query processing operations.

3 3DQ Search Algorithms

The 3DQ system adopts a “client-server” architecture to deliver spatial searching as
web-services for mobile devices. The services are in RESTful format style, where
mobile device as client collects readings from its integrated sensors (e.g. GPS,
compass, accelerometer), constructs them into a standard URL, and sends them to the
server. Once the server finishes with the query calculations, the responses are
organized and sent back in GEO-JSON format, which is OGC standard compatible
and completely text based. A more detailed description of the 3DQ system
architecture can be found in [17].

In a 2D scenario, the vertical dimension of a built environment is ignored in favour
of the geometry of building footprints on the horizontal plane. Ideally, the length of a
ray, which simulates a sight line from a user’s view point, shall be infinite unless it
hits an object along its path. However, to speed up the query calculation, we default
the search length (user’s perception distance) to 200 meters. In other words, the
footprints used to load the built environment around a user’s vicinity are limited to a
200 meters radius, thus speeding up considerably the query calculation. Options for
users to adjust this search distance are also provided.

An example of a visibility search in a 2D environment (i.e. 2D Isovist) at a given
location is shown in Figure 3 (a). The black square represents the user’s current
location which is picked up from GPS on the mobile device. The surrounding built
environment is constructed from the footprints of all building blocks within 200
meters. Benefiting from R-Tree indexing in Oracle Spatial 11g, the retrieval of all
buildings from a given location is quite efficient [19]. The filled polygon is the user’s
360o visibility shape at that location. The 2D Isovist shape is then utilized as the
query window to retrieve all database objects that intersect it. The Isovist
construction process is based on the method developed in [18], which is an open
source library for fast 2D floating-point visibility algorithms.

7

(a)

(b)

Fig. 3. (a) 2D Isovist view (b) Extruded 2.5D Isovist in a 3D environment

The 2D Isovist query is especially useful for conventional 2D mobile map searches,
where it can serve as the preliminary filter to reduce the sometimes overwhelming
amount of information available at a given location. However, as Google Maps 5 has
progressed 2D mobile maps into 3D, a more realistic look and feel of a built
environment is now available. Although, with this added vertical dimension come 3D
visibility calculations that are much more complicated than in 2D. For instance, the
arrow in Figure 3(a) points to a small building block where a 2D ray gets truncated,
but the building’s height is much lower than the surrounding buildings so a user’s
sight line can in fact see over top of this block.

Although fast, to simply extrude a 2.5D Isovist (Figure 3(b)) would be incomplete
as it does not pick up on this height difference. In fact, the results retrieved from an
extruded 2.5D Isovist would be no different than those returned from a 2D Isovist, as
the 3D coordinates for each returned object have the same x and y. Yet, to derive an
accurate 3D Isovist, as shown in [20], is far too calculation intensive for real-time
searching and therefore not optimal for serving multiple users as a web-service.
Therefore, we utilize ray casting techniques on vector datasets using a predefined
length (radius) for each ray to save on computation effort. Thus the final query shape
of the 3D Isovist appears as the “dome” shape shown in Figure 2 where the vertices
that form the dome are the intersection points between each ray and any objects the
ray hits.

An example demonstrating how vertices are detected in Search Algorithm 1 is
shown in Figure 4. In this illustration, assume building blocks with different heights
are along the path a ray travels. On the horizontal plane, the interval between each ray
is predefined at 6º by default (horizontal ray spacing). While on the vertical plane, we
first detect what objects the ray hits and then calculate the corresponding 3D
intersection point. The next ray along this same direction is initialized with a tilt angle
of 15º and so on (vertical ray spacing).

8

H1 H3

Radius

Ifirst Ilast

H2

H4

θ1 θ2 θ3

Fig. 4. Search Algorithm 1 for determining sight line intersections in a 3D environment. The

thick black line outlines the final boundary of the threat dome in this direction.

The pseudo code for Search Algorithm 1 follows:

Algorithm I: Tilting Ray Approach

 Input: radius, horizontal ray spacing, tilt angle,
current location

 Output: A 3D threat dome visibility shape

Function RayTilting3D (radius, raySpacing,
initalLocation, tiltAngle):

 Initialize ray generator from initialLocation
 Initialize final shape list: ShapePtCollect
 For each ray start with an initial tiltAngle:
 Initialize list: IntersectionPtCollect
 Get all the intersections and add to list
 Determine the first intersection: intersectionPt
 tiltAngle += AngleInterval (15o default)
 ShapePtCollect.append(intersectionPt)
 Return ShapePtCollect

As mentioned, Oracle does not return the exact 3D intersection point when a ray
hits the building blocks. Instead, it projects the ray and building blocks onto a
horizontal plane and returns a collection of 2D line segments. The intersection point is
then determined by getting the first intersection point from all the segments, together
with the tilting angle θ. The ray then continues to detect the next intersection point
and so on until it stops once titling angle θ reaches 90º. This approach takes advantage
of the 3D spatial query operators provided by Oracle Spatial as well as 3D spatial

9

indexing and serves as a good approximation of the true dome shape. However, it can
be seen in Figure 4 that building a threat dome using the tilting angle approach may
miss certain intersection points vertically as the ray may overpass a building block
because of the gap between any two tilting angles.

To improve on this approach, Search Algorithm 2 acts like “reverse water-flow”,
where the ray does not stop at the intersection point but instead continues on to
determine the next intersection until it finally stops at the distance specified by the
radius (Figure 5). The process starts by determining the intersections on the
horizontal plane between each ray and the projected footprints of the 3D building
blocks. The actual intersections are a list of line segments and each of them has a pair
intersection point <Iin, Iout>. The collection of Iin points will be picked up and ordered
by their distance from user’s location. We then determine the first intersection point
of all Ifirst, which represents the first hit between a ray and the objects. The ray restarts
from Ifirst and a tilting angle θ1 is initialized once it reaches the top of the building.
The next calculation happens at the next Iin point in the list, where if the height of the
ray at that point is higher than the height of the building, the process carries on to the
next Iin point in the list, otherwise, a new tilting angle is established and the same
process iterates to the next Iin point.

H1 H3

Radius

Ifirst
Ilast

H2

H4

θ1 θ2 θ3

Fig. 5. Search Algorithm 2 for determining sight line intersections in a 3D environment. The

thick black line outlines the final boundary of the threat dome in this direction.

Another advantage of Search Algorithm 2 is that instead of using the tilting angle
to generate multiple rays vertically, it only needs to process one ray on the horizontal
plane and collect height information of all building blocks along its path. In Search
Algorithm 2, the 3D building objects, which are represented as solids in Oracle
Spatial, are replaced as 2.5D data structures with a height value attached as an
attribute to each footprint and therefore uses 2D spatial indexing when deriving the

10

initial intersection list, which has a simpler and faster data structure than 3D spatial
indexing.

The pseudo code for Search Algorithm 2 follows:

Algorithm II: Reverse Water-Flow Approach

Input: radius, horizontal ray spacing, current location
Output: A 3D threat dome visibility shape

Function RaySweeping3D (radius, raySpacing,
initialLocation):
 retrieve all building block geometries that are

within the radius of a user’s current location
For each ray in the horizontal plane:
 initialize lists: HeightsCollect, DistanceCollect,
 IntersectionPtCollect
 derive all the intersection points from the ray:
 determine first intersection of each collision
 fill the lists
sort the IntersectionPtCollect according to their

distances from the initial location
tg• = Height(Ifirst)/Distance(Ifirst)
initial final shape list: ShapePtCollect
For each point in the list:
 If Height(Inext)< Dist(Inext)* tg• = newHeight:
 pass
 Else:
 ShapePtCollect.append(Inext, Height= newHeight)
 ShapePtCollect.append(Inext, Height= Height(Inext)
 tg• = Height(Inext)/Distance(Inext)
Return ShapePtCollect

A common feature found in both Algorithms 1 and 2 is defined ray spacing when
scanning for objects in the horizontal plane. However, no matter how small the
interval is, there is still a risk of missing certain intersection points, which reduces the
ultimate accuracy of the final query shape. As noticed in the 2D isovist calculation
shown in Figure 3(a), the 2D visibility shape is continuous at filling every visible
corner/gap between building geometries. Our third search approach therefore applies
Algorithm 2 on top of a 2D Isovist shape. Once a 2D Isovist is calculated, each vertex
of the Isovist polygon together with the user’s location defines a ray direction with the
length equal to the predefined radius. An example is shown in Figure 6, where the
rays travel through each of the vertices in a 2D Isovist polygon instead of being
evenly specified by a ray spacing value. Although it involves two steps of calculation,
it provides a more accurate visibility shape.

11

Fig. 6. An example of generating rays through the vertices of a 2D Isovist

The pseudo code for Search Algorithm 3 is follows:

Algorithm III: 2D Isovist Based Ray Sweeping Approach

 Input: radius, user’ current location
 Output: A 3D threat dome visibility shape

 Function RayIsovist3D (radius, initialLocation):
 retrieving all the 2D footprints within the radius

from current location
 calculating 2D isovist
 initial final shape list: ShapePtCollect
For each vertices of the Isovist generate a ray

through the initialLocation:
 applying Algorithm II
 Return ShapePtCollect

As mentioned previously, in an accurately computed threat dome, the generated
dome will usually have a large number of surfaces relative to the complexity of the
surrounding environment. We must therefore split the complete threat dome into 3
sections and then query them individually against the database - instead of creating a
single 3D volume as the threat-dome query shape. This led us to mirror the spatial
database across three servers and then send each individual 3D dome section query to
a separate database. In today’s cloud computing era, it may be possible to deploy this
approach as a cloud-based service with multiple spatial databases running in different
virtual machines at the same time. The result is potentially a much faster query
process that allows for near real-time threat dome visualisations on 3D mobile maps.

12

4 Evaluation of Query Speed vs Accuracy

In this section, we present our performance evaluation of the 3 Searching Algorithms
implemented in terms of speed vs accuracy. The datasets used include 2D footprints
of DIT campus with actual heights stored as a non-spatial attribute, 3D wireframe
building outlines stored as 3D multi-polygons, and extruded 3D solids from the 2D
footprints up to the stored heights. Plus 100 3D points simulating environmental
sensor “things”, which are attached to the surfaces of the building blocks (e.g.,
windows, walls, and doors, etc.) and other objects (e.g. light posts) in the database. A
screenshot of the combined dataset is shown in Figure 7.

Fig. 7. 3D model of university campus affixed with 100 synthesized environmental sensors.

The evaluation of each search algorithm was carried out at five different locations
in the campus. To test our approaches on large datasets as when deployed in a real-
world application, the 2D footprints consists of 345,316 polygons with height values
attached, and cover most of Dublin city. The datasets are stored in 3 Oracle Spatial
databases mirrored on three different machines. More specifically, machine one is
running Windows 7 (32 bit) with 4G RAM and Core2Duo 2.8 GHz CPU, the other
two machines are running virtual machines under Windows XP (32 bit) with 2G
RAM and Core2Duo 2.2 GHz CPU. The programming language is Python 2.7 with
the capability of providing OGC standard compatible Geo-JSON output to mobile
devices.

Figure 8 shows a comparison of query speed for the three different search
algorithms. Search Algorithm 1 was applied to a limited 3D solid dataset of the
nearby campus area while Search Algorithms 2 & 3 were applied against a complete
2D polygon map of Dublin City with building heights stored as a non-spatial attribute.
Notice how 3D querying on 2D datasets proves to be usefully quicker - even though

13

Oracle Spatial R-tree indexing limits the search space to only those database objects
that are within a specified 2D radius in either case.

Fig. 8. Comparisons of query speed for different search algorithms at 5 positions on
3D solid and 2D polygon datasets of Dublin

Table 1 shows a comparison of accuracy for all visibility query approaches.
Compared to a standard range query, where returning information on all 100 sensored
things would overload the mobile display at every query position, Search Algorithm 3
is shown to return the most visible sensors in every query position.

Table 1. Comparisons of accuracy of 3 Search Algorithms at 5 query positions together with
the maximum number of sensors actually visible at each position

 Position 1 Position 2 Position 3 Position 4 Position 5

Algorithm I
(6o ray spacing) 19/33 14/32 20/34 5/12 12/26

Algorithm II
(6o ray spacing) 20/33 18/32 20/34 9/12 13/26

Algorithm II
(3o ray spacing) 25/33 26/32 29/34 10/12 20/26

Algorithm III 30/33 29/32 32/34 11/12 24/26

The above query speed experiment was run again on a complete Dublin City 3D

solid dataset using all search algorithms. The results of this test are shown in Figure

14

9. It can be seen that for each search algorithm, the time taken to complete a 3D
query on 3D solid data is noticeably longer than when performed on 2D data of the
same area with height stored as an attribute. The reason for such a large dip in
Algorithm 3 timings at Position 4 is because there are only 12 sensors visible due to
the restricted visible search space at this location.

Fig. 9. Comparisons of query speed for different search algorithms at 5 positions on
3D solid dataset of Dublin City

5 Conclusions and Future Work

This paper presented three Spatial Search Algorithms developed in our 3DQ
prototype for determining the 3D visibility shape (threat dome) at a user’s current
location in a built environment. Users then utilize this 3D shape as their query
“window” to retrieve information on only those objects visible within a spatial
database. Visibility shape searching addresses the information overload problem by
providing “Hidden Query Removal” functionality for mobile LBS.

We believe that this functionality will be especially useful in the impending Future
Internet era where trillions of micro-sensors become available for query through IP
access. Analogous to scenes from Star-Trek, with Spock scanning his “tri-corder” for
readings of life and atmospheric conditions on some strange world, such “situation
awareness” queries would also be very interesting to bikers, joggers, walkers, city
workers, and all concerned parents and citizens alike on this world who want to know,
for example, the health of their immediate environment at any point in time.

15

Speed and accuracy are two very important requirements of any mobile LBS
application. Among the three search algorithms tested, Algorithm 3 shows the most
accuracy while Algorithm 2 has the fastest speed. Further study into the trade-offs
between speed and accuracy are underway to find the most suitable approach for
deploying 3DQ in a real-world mobile eCampus application for student/staff users.

Our ultimate goal is to make 3DQ work in real-time, or near real-time, where the
display of the visibility dome shape changes dynamically on top of the 3D map
display as a user walks around their city. Currently, the Google Maps 5 visualisation
API is not yet publically available for this; however, there are alternatives that can be
used for testing. For instance, VisioDevKit [21] provides 3D rendering capability
such that any 3DQ visibility shape can be overlayed.

To achieve our real-time threat dome calculation/visualisation goal, improvements
to the 3 search algorithms will also be further investigated. As our prototype currently
adopts a “client-server” architecture, performance is mainly constrained to the latency
of mobile networks. As mobile devices become more powerful as computing
platforms, together with some open source mobile spatial database options,
implementations of Search Algorithms 2 and 3 entirely on the mobile device will be
investigated.

Acknowledgements

Research presented in this paper was funded by a Strategic Research Cluster Grant
(07/SRC/I1168) by Science Foundation Ireland under the National Development Plan.
The authors gratefully acknowledge this support.

References:

[1] Google Maps 5 (2011): Retrieved from http://googlemobile.blogspot.com/2010/12/next-
generation-of-mobile-maps.html, accessed 15-10-2011

[2] S. Di Martino, F. Ferrucci, G. McArdle, G. Petillo (2009): Automatic Generation of an
Adaptive WebGIS in: 9th International Symposium on Web & Wireless GIS (W2GIS2009),
J.D. Carswell et al. (Eds.), Springer LNCS vol. 5886, Ireland, December 2009, pp.171-186

[3] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai and M. Matera (2002): Designing
Data-Intensive Web Applications in: The Morgan Kaufmann Series in Data Management
Systems, Morgan-Kaufmann Publishers, ISBN-13: 978-1558608436, San Francisco,
December 2002

[4] E. MacAodih, D. Wilson, M. Bertolotto (2009): A Study of Spatial Interaction Behaviour for
Improved Delivery of Web-Based Maps in: 9th International Symposium on Web &
Wireless GIS (W2GIS2009), J.D. Carswell et al. (Eds.), Springer LNCS vol. 5886, Ireland,
December 2009, pp.120-134

[5] D.M. Mountain (2007): Spatial Filters for Mobile Information Retrieval in: 4th ACM
Workshop on Geographical Information Retrieval (GIR’07), Publisher: ACM Press, Lisbon,
November 2007, Pages: 61-62

[6] Ball, M. (2011): How do crowd sourcing, the Internet of Things and Big Data converge on
geospatial technology? in: V1 Magazine Vol 5, Issue 41: http://www.vector1media.com/-

16

dialog/perspectives/23362-how-do-crowdsourcing-the-internet-of-things-and-big-data-
converge-on-geospatial-technology.html, [Accessed October 11, 2011]

[7] Benedikt M. L. (1979). To take hold of space: isovists and isovist fields. Environment and
Planning B, vol. 6, pp. 47-65

[8] Fisher-Gewirtzman D. and Wagner I.A. (2003). Spatial openness as a practical metric for
evaluating built-up environments. Environment and Planning B: Planning and Design, 30
(1), pp. 37-49

[9] Fisher-Gewirtzman D., Burt M. and Tzamir Y. (2003). A 3-D visual method for comparative
evaluation of dense built-up environments. Environment and Planning B: Planning and
Design, 30(4), pp. 575-587.

[10] Morello, E. and Carlo, R. (2009). A digital image of the city: 3D isovists in Lynch’s
urban analysis. Environment and Planning B: Planning and Design, 36(5) , pp.837-853

[11] Bartie, P., Mills, S. and Kingham, S. (2008). An egocentric urban viewshed: A method
for landmark visibility mapping for pedestrian location based services. In Moore, A. &
Drecki, I. (Eds.) Geospatial Vision – New Dimensions in Cartography. New Zealand,
Springer, pp. 61-85

[12] Bartie, P., Reitsma, F., Kingham, S. and Mills, S. (2010). Advanced visibility modelling
algorithms for urban environments. Computers, Environment and Urban Systems, vol. 34,
pp. 518-531

[13] SkylineGlobe. (2011). TerraExplorer viewer for 3D earth. Available from http://www.-
skylinesoft.com/, [Accessed October 11, 2011]

[14] Ericson, C. 2005. Real-time collision detection. ISBN 1-55860-732-3
[15] Bergen, G. (2004). Collision detection in Interactive 3D environment. ISBN 1-555860-

801-X
[16] Watt, A. and Policarpo, F. (2011). 3D Games: Real-time rendering and Software

Technology. ISBN 0201-61921-0
[17] Carswell, J.D. (2010). 3DQ: Threat Dome Visibility Querying on Mobile Devices. GIM

International, Vol.24, (8), 24, August 2010
[18] Obermeyer, K.J. (2008). The VisiLibity library. Available from http://www.VisiLibity.-

org, accessed 11st October, 2011
[19] Ravada, S., Kazar, B.M. and Kothuri, R. (2009). Query processing in 3D spatial

databases: Experience with Oracle Spatial 11g. 3D Geo-Information Sciences, pp.153-173,
DOI 10.1007/978-3-540-87395-2

[20] 3D isovist (2011). An Grasshopper extension for calculating 3D isovist. Available from
http://parametricmodel.com/3DIsovist/32.html, [Accessed October 11, 2011]

[21] VisioDevKit (2011). A real-time 2D/3D rendering engine for mobile devices. Available
from http://www.nn4d.com/site/global/developer_resources/apis_sdks, [Accessed October
11, 2011]

	Effects of Variations in 3D Spatial Search Techniques on Mobile Query Speed vs Accuracy
	Recommended Citation

	Microsoft Word - w2gis2012-3dQueryEffects-v11.doc

