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Abstract. Manevís classical potential is known to successfully modify Newto-

nian celestial mechanics, in accordance with the general-relativistic description.

The idea of replacing the exact solution of Einsteinís equations, describing or-

biting bodies, with a classical potential is widely used today. These models are

not restricted to planetary motion only, but also include numerous interesting

astrophysical phenomena such as accretion of matter around black holes or mas-

sive stars. There are different known potentials, which originate from metrics,

describing a rotating/non-rotating black hole (or a massive body in general).

A brief review of these results is given in this contribution, together with an

example for the Manev potential, related to the Parametrized Post-Newtonian

(PPN) metric, commonly used in general relativity for the description of the

solar system.

1 Introduction

During the 20s of the last century, the Bulgarian scientist Prof. Georgi Manev

worked on fundamental problems in Astrophysics and Cosmology. He was

also the founder of the Sofia Universityís Department of Theoretical Physics,

which he chaired up to 1944, dean of the Faculty of Physics and Mathematics

and Rector of the University. The political regime established in Bulgaria after

9 September 1944 expelled Prof. Manev from the University and the scientific

community ó see [1, 2] for more details.

In the early ninties the works of Manev have been rediscovered by the

Romanian scientist Prof. Florin Diacu [3ñ5].

Manev has introduced a classical potential in order to modify the celestial

mechanics in accordance with the general-relativistic description: to describe the

motion of a particle of mass m in the static field of universal gravitation due to

mass M , Manev [6ñ10] replaced the mass m with m = m0 exp(GM/r), where

m0 is an invariant and G is the Newtonís constant. This led to the following

modification of the Newtonís gravitational law:

Prof. G. Manev's Legacy in Contemporary Astronomy, Theoretical and
Gravitational Physics, eds. V. Gerdjikov, M. Tsvetkov, Heron Press Ltd., Sofia, 2005 1
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F =
GMm0

r2

(

1 +
3GM

c2r

)

. (1)

Potential of the type:

V (r) = A
GM

r
+ B

G2M2

c2r2
, (2)

where A and B are some real dimensionless constants, G is the Newtonís

constant and M is the mass of the central body, was originally introduced

by Newton himself in his Principia (Book II, Propositions XLIV and XLV)

in order to describe deviations in the Moonís orbit from the Keplerian laws.

However, modification of Newtonian physics for mimicing general-relativitic

results [7ñ10] is attributed to Manev. We will refer to potential of the type (2)

as to Manev potential. An extensive list of papers, refering to Manev potential

is provided in [3].

In this contribution we present the contemporary scheme for modelling

general-relativistic results in the Newtonian framework with modified classi-

cal potentials of Manev type. In particular, we analyse masses sweeping circular

orbits around a rotating and non-rotating black hole (or a massive body in gen-

eral) as well as parametrized post-Newtonian (PPN) formalism for the former

case.

2 The Set-Up

We consider a four-dimensional spacetime parametrized by coordinates xi

(i = 0, 1, 2, 3) and the geodesic motion of a test particle of unit rest mass

in gravitational field given by metric gij(x
k) with signature (+,−,−,−). We

will also use system of units for which G = 1 = c. The Lagrangian of the

particle can conveniently be taken in the usual form [11]:

L = gij ẋ
iẋj , (3)

where the dots represent derivatives with respect to s ó the parameter contin-

uously parametrizing the geodesic. A usual choice for this parameter is the arc

length ds along the trajectory:

ds2 = gijdxidxj . (4)

An integral of motion is then:

L = 1 . (5)

We will assume that the gravitational field is generated by a point mass. In

spherical coordinates the Lagrangian is:

L = gttṫ
2 − grr ṙ

2 − gθθ θ̇
2 − gϕϕϕ̇2 . (6)

2
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We will assume that the gravitational field is time-independent. We will also

assume independence of the metric on the azimuthal coordinate ϕ in view of the

isotropy of space. Then the EulerñLagrange equations

d

ds

∂L

∂ẋi
− ∂L

∂xi
= 0 (7)

give the following two integrals of motion:

E = gttṫ , (8)

J = gϕϕϕ̇ . (9)

Here E is the total energy and J is the angular momentum of the test particle

(of unit rest mass). We will be interested in orbits in the equatorial plane which

corrsponds to θ = π/2. Substituting (5), (8) and (9) into (6), we get:

ṙ2

2
+

1

2grr
(1 − E2

gtt
+

J2

gϕϕ
) = 0 , (10)

where the metric depends only on r.

If we consider the energy conservation law of a classical particle of unit mass

in a field with potential U(r),

ṙ2

2
+ U(r) = E , (11)

with E = const being the specific energy of this one-dimensional motion, we can

interpret (10) as the energy conservation equation of a one-dimensional motion

in potential

V (r) =
1

2grr
(1 − E2

gtt
+

J2

gϕϕ
) = U(r) − E = U(r) + const . (12)

We now focus on circular orbits for which ṙ = 0 both instantaneously and at all

subsequent times (orbit at a perpetual turning point) [12,13]. This implies:

V (r) = 0 , (13)

dV (r)

dr
= 0 . (14)

Identifying the Keplerian angular momentum distribution J/E, the centripetal

force acting on the particle can be expressed as [13]:

F =
J2

E2r3
, (15)

where E and J are expressed as functions of r from (13) and (14) for any specific

metric gij = gij(r, θ = π/2).
The pseudo-potential VM (r) giving rise to this force is the Manev potential:

VM (r) = −
∫

Fdr . (16)
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3 Examples

3.1 Schwarzschild metric

The line element in Schwarzschild geometry is given by (see, for example, [14]):

ds2 =
(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)

−1

dr2 − r2(dθ2 + sin2θ dϕ2) , (17)

where M is the mass of the central body.

Equations (13) and (14) then produce:

2M

r
−

(

1 − 2M

r

) J2

r2
− 1 + E2 = 0 , (18)

J2

r
− 3MJ2

r2
− M = 0 , (19)

respectively. One can solve (18) and (19) to obtain:

J2 = Mr
(

1 − 3M

r

)

−1

, (20)

E2 =
(

1 − 2M

r

)2 (

1 − 3M

r

)

−1

. (21)

Then the centripetal force (15) is:

F =
M

r2

(

1 − 2M
r

)2
(22)

and the Manev potential is given by:

VM (r) =
M

r − 2M
. (23)

The pseudo-Newtonian potential (23) has been used in [15] to correctly repro-

duce at classical level the model of accretion disk around a non-rotating black

hole.

Upon expanding (23) far from the center, we obtain

VM (r) =
M

r
+ 2

M2

r2
+ · · · , (24)

which corresponds to A = 1 and B = 2.

3.2 Kerr geometry

We consider Kerr geometry in BoyerñLindquist coordinates [14], which de-

scribes a rotating black hole [14]:

ds2 =
∆

ρ2
(dt − a sin2 θ dϕ)2− sin2 θ

ρ2
[(r2 + a2)dϕ − a dt]2− ρ2

∆
dr2−ρ2dθ2 ,

(25)

4
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where

∆ = r2 − 2Mr + a2 , (26)

ρ2 = r2 + a2 cos2 θ , (27)

where M is, again, the mass of the centre and a ó the angular momentum of

the centre (per unit mass).

The Lagrangian for a particle in the equatorial plane is:

L = (1 − 2M

r
) ṫ2 +

4Ma

r
ṫφ̇ − r2

∆
ṙ2 − (r2 + a2 +

2a2M

r
) φ̇2 . (28)

The appearance of the cross-term leads to the following integrals of motion

(instead of (8) and (9)) [13]:

J = −2Ma

r
ṫ + (r2 + a2 +

2a2M

r
) φ̇ , (29)

E = (1 − 2M

r
) ṫ +

2Ma

r
φ̇ . (30)

Solving this system of simultaneous equations for ṫ and φ̇ yields:

ṫ =
−2aMJ + (2a2M + a2r + r3)E

r(a2 − 2Mr + r2)
, (31)

φ̇ =
(r − 2M)J + 2aME

r(a2 − 2Mr + r2)
. (32)

The effective potential V (r) is [13]:

V (r) =
1

2
(1 +

a2

r2
+

2Ma2

r3
)E2 − 1

2r2
(1 − 2M

R
)J2 − 2MaEJ

r3
− ∆

2r2
. (33)

Solving the simultaneous equations (13) and (14) for E and J and substituting

into (15) gives the following centripetal force:

F =

[

a3M + aMr(3r − 4M) ± r(a2 − 2Mr + r2)
√

Mr
]2

r3 [a2M − r(r − 2M)2]
2

. (34)

The positve sign corresponds to the case when the angular momentum of the

particle is in direction opposite to the direction of the angular momentum of

the rotating central mass (counter-rotation) and the negative sign corresponds to

co-rotation [12].

Upon expansion over the powers of 1/r and integration, the Manev potential

is determined as:

VM (r) =
M

r
+ 2

M2

r2
± 12a

5

√
M3

r5/2
+

2

3

M(a2 + 6M2)

r3
+ O(r−7/2) . (35)

Obviously, to detect the effects of the rotation of the central mass, the Manev

potential will have to include higher-order terms (otherwise, Schwarzschild

geometry is recovered).
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3.3 Parametrised Post-Newtonian Metric (PPN Formalism)

To describe the Solar System, it is useful to make spacetime look as Euclidean

as possible by introducing isotropic spatial coordinates. The PPN metric used

for this description is [14]:

ds2 = (1 − 2M

r
+

2βM2

r2
)dt2 − (1 +

2γM

r
)
[

dr2 + r2(dθ2 + sin2 θ dφ2)
]

,

(36)

where β and γ are the PPN parameters.

The integrals of motion are:

E = (1 − 2M

r
+

2βM2

r2
)ṫ , (37)

J = (1 +
2γM

r
)r2φ̇ . (38)

Following the same procedure, we obtain:

VM (r) =
M

r
+

4 − 2β + 3γ

2

M2

r2
+

12 + 12γ + γ2 − 6β(2 + γ)

3

M3

r3
+· · · .

(39)

General relativity predicts β = 1 = γ, which corresponds to A = 1 and B =
5/2.
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