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Numerical study of an ion-exchanged glass waveguide using 

both two-dimensional and three-dimensional models 

Pengfei Wang1, Yuliya Semenova1, Jie Zheng2, Qiang Wu1, Agus Muhamad 

Hatta1 and Gerald Farrell1 

1Photonics Research Center, School of Electronic and Communications 

Engineering, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland; 

2State Key Laboratory of Integrated Optoelectronics, College of Electronic 

Science and Engineering, Jilin University, Changchun 130012, P. R. China 

E-mail: pengfei.wang@dit.ie 

Abstract: A numerical study is carried out to compare the two-dimensional (2-D) 

case and three-dimensional (3-D) case for the modelling of an ion-exchanged glass 

waveguide. It is shown that different waveguide widths on the photomask correspond 

to different ion concentration distributions after an annealing process. A numerical 

example is presented of two waveguide sections with different widths indicates that 

due to the abrupt change of the waveguide width, a 3-D theoretical model is required 

for an accurate prediction of the parameters of ion-exchanged glass waveguides. The 

good agreement between the modelled and measured results proves that the developed 

3-D numerical model can be beneficially utilized in the generalized design of optical 

devices based on ion-exchange waveguides.  

Keywords: Integrated optics device, glass waveguide, ion exchange, annealing 

1. Introduction 

Ion-exchanged glass waveguides have been investigated extensively for applications 

in the area of integrated optics due to their superior characteristics such as low-

propagation loss and the relatively simple fabrication technique involved. An ion-

exchanged glass waveguide has a graded index profile which distinguishes it from a 

waveguide with a step-index profile, such as a silica-on-silicon buried waveguide, a 

polymer waveguide or a silicon-on-insulator waveguide. Defining the index profile is 



 2 

an important preliminary step in the simulation and design of planar lightwave circuits. 

For ion-exchanged glass waveguides one commonly used method is based on an 

approximation of the refractive index profile by a semi-Gaussian function in the 

horizontal direction (parallel to the glass surface) and by a complementary error 

function in the vertical direction, which requires the so-called diffusion depth 

parameters xd  and yd  to be estimated experimentally [1-4]. This simulation method 

works well for some simple ion-exchanged integrated circuits devices, such as 

channel or tapered waveguides. However, for more complex optical devices, such as a 

buried waveguide and an array-waveguide grating multiplexer, simulations based on 

the ion diffusion equation model are more desirable since the semi-Gaussian function 

has a limited accuracy.  

It is known that a during fabrication the desired refractive index profile is achieved by 

control of the experimental parameters: ion-exchange time, annealing time, 

temperature and the waveguide widths defined by the photomask layout. Using initial 

values of these parameters, it is possible to derive the ion-concentration distribution 

[5-11] and hence the refractive index profile can be found by solving the diffusion 

equation numerically. Using the calculated refractive index profile, a simulation can 

be carried out to determine the optical performance of the device. Based on this 

simulation further iterations of process above can be carried until the desired optical 

performance is achieved and with it a knowledge of correct values of the experimental 

parameters needed. Therefore, in this paper modelling of the refractive index profile 

of an ion-exchanged glass waveguide through numerical calculation of the diffusion 

equation is considered.  

In practice, integrated optical components based on planar lightwave circuits 

usually consist of waveguide sections with different widths. Ref. [10] presented an 

investigation of the dependence of burial-depth on waveguide width for a buried ion-

exchanged glass waveguide. In this paper, the influence of the waveguide width of the 

photomask on the ion concentration distribution is investigated for ion-exchanged 

glass waveguides based on thermal ion-exchange and annealing. Both 2-D and 3-D 

models are presented. The results for the 2-D modelling indicate that for the ion-

exchanged waveguide, different waveguide widths result in a significantly different 

distribution for the ion concentration after annealing. For ion-exchanged waveguide 
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devices that require an abrupt change in the waveguide width, for example a 

multimode interference based coupler or an arrayed-waveguide grating, a 3-D model 

is presented. A numerical example of a structure consisting of two waveguide sections 

with different widths is presented. Through comparison between the simulation 

results obtained with the 2-D and 3-D models, it is found that for the case of an abrupt 

change of the waveguide width, a 3-D model is necessary to ensure an accurate 

prediction of the ion concentration in the transition region near the interface. 

Additionally the mode patterns for an ion-exchanged waveguide based multimode 

interferometer (MMI) are investigated and presented. The investigation involves both 

theoretical modeling and experimental verification. The 3-D numerical model shows a 

good agreement with the measured mode pattern results for the ion-exchanged optical 

devices. 

2. Modelling of an ion-exchange process for the 2-D case 

 

A 

y 
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B 
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Fig. 1 Schematic diagram of the ion-exchange process. 

Fig.1 presents a schematic diagram of the ion-exchange process without an applied 

voltage. The nonlinear diffusion equation for ion-exchange is [5-11]  
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where C  is the normalized ion concentration of A ions. 
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D−= 1α , AD  and BD  

are the self-diffusion coefficients for A ions and B ions respectively. This non-linear 
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equation has no analytical solutions and therefore some numerical algorithms have 

been used in previous investigations, such as the explicit Dufort-Frankel method [12] 

and the method of Peaceman and Rachford (PR-ADI) [13]. Our numerical calculation 

indicates that both methods can produce similar simulation results but the explicit 

Dufort-Frankel method is computationally faster. For the same computer hardware 

specifications the calculation time for the explicit Dufort-Frankel method can be 

reduced to less than a half of the calculation time needed with the other two methods. 

Furthermore, this method can be easily expanded for a 3-D case. Therefore, the 

explicit Dufort-Frankel method is used in this paper. 

When the waveguide is uniform in the z-direction, i.e., 0=
∂
∂
z

, a 2-D model can 

be used. Denoting 
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The corresponding boundary condition can be found from Ref. [5]. To consider 

the influence of the waveguide width on the refractive index profile, a numerical 

example of an Ag+-Na+ ion-exchange process is presented. From Ref. [6] 

6101.5 −×=AD  and 87.0=α . The ion-exchange and annealing times are 20 and 35 

minutes, respectively. Waveguide widths of 3, 5, 7 and 10 µm on the photomask are 

considered. The simulation results for the ion concentration distribution are presented 

in Fig.2a and Fig.2b. 



 5 

 

-20 -15 -10 -5 0 5 10 15 20 
0 

0.2 

0.4 

0.6 

0.8 

1 

X (µm) 

N
or

m
al

iz
ed

 c
on

ce
n

tr
at

io
n 

 
 

W=10 µm 

W=7 µm 

W=5 µm 

W=3 µm 

 

(a) 

 

0 1 2 3 4 5 6 7 8 
0 

0.2

0.4

0.6

0.8

1 

N
or

m
al

iz
e

d 
co

n
ce

n
tr

a
tio

n
  

Y (µm) 

W=3 µm 

W=5 µm 

W=7 µm 

W=10 µm 

 

(b) 

Fig. 2 Normalized distributions of the ion concentration after thermal ion-exchange in (a) x-

direction; (b) y-direction. 
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Fig. 2a presents the normalized ion concentrations in the x-direction parallel to the 

glass surface and Fig. 2b presents the normalized ion concentration in the y-direction 

in the middle of the waveguide. It can be seen that in the y-direction, there is no 

apparent difference between the ion concentration distributions for different 

waveguide widths. Thermal annealing is usually carried out after ion-exchange, which 

has been shown [14] to improve the fiber coupling efficiency and decrease the 

propagation loss. The calculated ion concentration distributions after the thermal 

annealing process are presented in Fig. 3a and Fig. 3b.  
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(b) 

Fig. 3 Normalized ion concentration distributions after the thermal annealing process in (a) 

x-direction; (b) y-direction. 

Fig. 3 shows that after thermal annealing, the ion concentration profiles differ 

significantly for different waveguide widths, including the amplitude of the maximum 

concentration. This numerical example shows that different waveguide widths 

correspond to significantly different ion concentration profiles. This 2-D model is 

suitable for a waveguide with a uniform width or a slowly varying tapered waveguide 

in the z-direction. However, the 2-D model presented above cannot predict the ion 

concentration distributions in the case of an abrupt change of the waveguide width, 

for example the transition region of a multimode interferometer, therefore a 3-D 

model is required for prediction in such an integrated device fabricated through the 

ion-exchange or diffusion process.  

3. Modelling of an ion-exchange process with a 3-D model  

Similar to the 2-D model, with the explicit Dufort-Frankel method, the diffusion 

equation for the 3-D case is: 
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(3) 

Consider a structure consisting of two waveguide sections (section I and section II) 

with a different waveguide widths of 0w  and 1w  as shown in Fig.4. In practice such a 

structure corresponds to the entry section of an MMI device. For the numerical 

calculation it is assumed that mw µ30 =  and mw µ151 = . The area of the calculation 

region is 40×200 µm2 in the x-z plane and the interface between the two waveguide 

sections lies at 100z mµ= . 

 

 

w0 w1 

z 
x 

Section II Section I 

 

Fig. 4 Schematic structure of a two-waveguide section with the widths w0 and w1. 

Using the same experimental parameters as the 2-D case, with the three-

dimensional model, the ion concentration profile in the x-z plane at the surface of the 

glass is presented in Fig. 5. From Fig. 5, the interface between the two waveguide 

sections can be clearly seen. The corresponding ion-concentration distributions in the 

x-direction and y-direction are plotted in Fig. 6a and Fig. 6b. The calculated results 

with the 2-D model are also presented in Fig. 6a and Fig. 6b. The 2-D model results 

were obtained by considering the waveguide sections I and II independently. It can be 

seen that the ion concentration near the interface is different from the profile for 

widths of 3 µm and 15 µm. From the calculated results one can see that at the 
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interface and in the region around the interface in waveguide section I, the ion 

concentration obtained by the 3-D model has a different distribution by comparison 

with the results obtained from the 2-D case. For the ion concentration distribution in 

the y-direction, there is no apparent difference for different waveguide sections. 

However, in Fig. 6 (a) and (b), one can also see that in the transition region of the 

proposed multimode interferometer, that is 95 100m Z mµ µ≤ ≤  along the propagation 

direction, the 2-D model presented in Sec. 2 cannot calculate the distribution of ion 

concentration for both x and y-direction cases. 

 

Fig. 5 Ion concentration profile in the x-z plane at the surface of glass. 
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(b) 

Fig.6 Normalized ion concentration distributions after the thermal ion-exchange process 

for the structure in Fig. 4 in (a) x-direction; (b) y-direction. 
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The calculated ion concentration distribution in the x-z plane at the surface of 

glass after 35 minutes of thermal annealing is presented in Fig.7. It can be seen that 

the waveguide boundaries are not as clear as in the distribution presented in Fig. 5, 

and the transition region between singlemode and multimode waveguides is extended. 

The corresponding ion-concentrations in the x-direction and y-direction at different z-

coordinates are plotted in Fig.8a and Fig.8b. 

 

Fig. 7 Ion concentration profile in the x-z plane at the surface of the glass after annealing. 
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(b) 

Fig. 8 Normalized ion concentration distributions after the thermal annealing process for 

the structure in Fig. 4 in (a) x-direction; (b) y-direction. 



 13 

From the modelling results presented in Fig. 8, it can be seen that distributions of 

the ion concentration are significantly different from the corresponding results 

presented in Fig. 6. In Fig. 6, the ion-concentration in the waveguide region II is 

identical to the results obtained by the 2-D model, but in Fig. 8a, one can see that only 

when z >= 120 µm, does the distribution of ion concentration agree with that obtained 

by the 2-D model. From this example, one can see the significant influence of the 

abrupt change of the waveguide width on the corresponding index profile and if the 2-

D model is used, the distribution of ion-concentration around the interface between 

the two waveguide sections cannot be obtained. The transition region between 

singlemode and multimode waveguides is extended from 5 µm (see Fig. 6 (a) & (b)) 

to 15 µm at least due to the annealing process which results in ion diffusion. This 

suggests that the 3-D model developed is essential for the accurate prediction for an  

ion-exchanged waveguide which undergoes an annealing process. 

4. Optical performance of the ion-exchanged device 

To illustrate the optical performance of the ion-exchanged waveguide device with 

an abrupt change of waveguide width, a simulation using a 3-D beam propagation 

method is carried out based on the different index profiles obtained with both 2-D and 

3-D models. The maximum change of refractive index due to the ion-exchange is 

assumed to be 049.0=∆n  and the refractive index of the substrate is 1.504 at a 

wavelength of 1.55 µm. The ion-exchange and annealing times are 20 and 35 minutes, 

respectively.  

In the simulations presented earlier in this paper, the device length considered is 

200 µm but in practice fabricating a 200 µm long device and subsequently polishing 

the end facets to achieve the required optical quality is very difficult. Hence a longer 

device length was required in practice, which in principle would mean that 

simulations carried out for a device length of 200 µm could not be readily compared 

with experimental results for the fabricated longer device. However in our simulations, 

it was found that periodic real images occur within the section of the multimode 

waveguide due to the well-known self-focusing principle for a graded index 

waveguide [15, 16]. It was found that the profile of the optical field distribution of the 

proposed MMI device in the x-y plane at a distance of 500 µm from the input facet is 
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the same as that at a distance of 5000 µm. Hence in practice a 5000 µm long device is 

fabricated with the waveguide width transition at a distance of 100 µm from the input 

facet. The longer device length allows the end facets to be easily polished to achieve 

the desired optical quality and to adjust the total length precisely to 5000 µm. 

Additionally the computation window in the simulation along the z-direction is 

extended from 200 µm to 500 µm. The simulation results are presented in Fig. 9a and 

Fig. 9b, respectively. The input light used in the theoretical models has a wavelength 

of 1550 nm. Comparing Fig. 9a and Fig. 9b, it is clear that the light propagation 

differs due to the different index profiles obtained by the 2-D and 3-D models. For 

example, in Fig. 9 (a), there is no change in the intensity profile in the region up to the 

100 µm transition point between the singlemode and multimode waveguides obtained 

by the 2-D model, but in Fig. 9 (b), one can see that increasing attenuation occurs in 

the region up to the transition point. 

The corresponding simulated mode patterns of the device at a length of 5000 µm 

are presented in Fig. 10a and Fig. 10b. The mode patterns have the same shape at  

5000 µm  as those at  500 µm. Fig. 10a is based on the index profile obtained by the 

2-D model, and Fig. 10b is based on the index profile obtained by the 3-D model. 

Through comparison of Fig. 10a and Fig. 10b, it is found that there is a significant 

difference in the optical field intensity and mode pattern from the output port for the 

2-D and 3-D models. This suggests that for a graded-index waveguide structure 

involving an abrupt change in the waveguide width, a 3-D model is required to 

accurately predict the optical performance of the device.  
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(a) 

  

(b) 

Fig.9 Light propagation in the x-z plane (both 2-D and 3-D plots) at the surface of the glass, based 

on the refractive index profile obtained by (a) 2-D model; (b) 3-D model.  

 

(a) 
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(b) 

Fig.10. Optical field distribution in the x-y plane (cross-section view) based on the refractive 

index profile obtained by (a) 2-D model; (b) 3-D model.   

5. Experimental evaluation 

In order to verify the theoretical models for the ion-exchanged integrated device, the 

ion exchanged glass MMI device described earlier in this paper was fabricated. The 

chemical composition of the soda-lime glass used in the experiments is given in Table 

1. 

Table 1. Chemical composition of the soda-lime silicate glass employed in the experiments 

Oxide Weight (%) 

SiO2 73.15 

Na2O 14.35 

CaO 8.20 

Al 2O3 0.25 

K2O 0.23 

MgO 3.50 

TiO2 0.02 

Fe2O3 0.15 
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In order to define the waveguide pattern on the soda-lime silicate glass, a 300-

nm-thick aluminum film was deposited upon the pre-cleaned glass surface and 

standard photolithographic techniques were employed to define the openings in the 

film where ion-exchange could take place. The glass slides with the aluminum mask 

openings were immersed in an AgNO3-NaNO3 molten salt composition at a 

temperature of 330°C; the temperature was controlled and monitored by a digital 

temperature sensor. The process of ion-exchange of Ag+ with the Na+ in the glass 

slide was carried out for 20 minutes, after ion exchange, the glass sample was 

removed from the molten salt and the sample was then immediately washed in 

deionized water to remove residual surface salt. After the cleaning process, an 

annealing process followed at the same temperature for a period of 35 minutes. 

Finally, the entire glass device length was accurately set to a length of 5000 µm using 

end polishing and the aluminum mask was removed using acid. 

As shown in Fig. 11, an experimental setup for measuring the mode patterns was 

built. The ion-exchanged device was mounted on a vacuum stage which was 

connected to a vacuum pump. A tunable laser is used as an optical source with an 

output power of 0 dBm at an operating wavelength of 1550 nm. At the waveguide end 

a microscope objective focuses the output light to an infrared camera which is 

controlled by a personal computer. A standard singlemode fiber with a tapered end is 

employed to connect the laser source and the sample, the fiber was aligned in X-Y 

direction until the measured transmitted optical power was maximised. 
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Fig. 11. Schematic representation of the ion-exchanged waveguide measurement setup 

The setup in Figure 11 can be used to obtain the near field mode patterns of the 

waveguide end-facet. Figure 12 shows the end-facet mode pattern of the ion-

exchanged MMI optical device at a wavelength of 1550 nm. From Fig. 10b and Fig. 

12, one can see that there is a good agreement between the shape of mode pattern 

calculated using the 3-D theoretical model and the measured results.  

Y 

X Z 

Y 5 µm 
 

Fig. 12. Near-field mode pattern image of the ion-exchanged MMI device at the propagation 

direction of Z=5000 µm. 

4. Conclusion 

The modelling of an ion-exchanged glass waveguide has been investigated in this 

paper for both the 2-D and 3-D case. The 2-D model shows that different waveguide 

width on the photomask correspond to different ion concentration distributions after 

the annealing process. To illustrate the influence of the abrupt change of waveguide 

width on the distribution of the ion concentration, a comparison has been carried 

between the 2-D and 3-D models. A numerical example is presented based on two 

waveguide sections with different widths and is has been shown that due to the abrupt 

change of the waveguide width, a 3-D model is required for accurate modelling of 

such waveguide based devices. Furthermore, the agreement between the modelled and 

measured results also suggests that the 3-D theoretical numerical model developed 

can be beneficially utilized in the generalized design of ion-exchange waveguide 

based optical devices. 
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