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Abstract- In this study, an alternative control method is proposed to improve the harmonic 

suppression efficiency of the active power filter in a distorted and unbalanced power system to 

compensate the perturbations caused by unbalanced non-linear loads. The proposed method uses a self-

tuning filter (STF) to process the grid voltage in order to provide a uniform reference voltage  to obtain 

the correct angular position of the phase locked loop. Moreover, the required compensation currents are 

obtained by implementing another STF to the transformed set of currents in order to separate the 

fundamental and harmonic currents. This allows the calculation of precise reference current for 

unbalanced, non-linear and variable load conditions. The proposed control method gives an adequate 

compensating current reference even for non ideal voltage and unbalanced current conditions. The real-

time control of the filter under the distorted and unbalanced power system is developed in RT-LAB real-

time platform. Results obtained in the SIL (software-in-the-loop) configuration are presented to verify the 

effectiveness of the proposed control technique. 

 Index Terms- Active power filter, Park transformation, Clark transformation, self 

tuning filter, unbalanced load currents and voltages. 

 
1. Introduction 

 Awareness of the quality and reliability/security of the power supply has increased in 

recent years due to a number of reasons. The main reason is technological advancement 

in conventional and non-conventional power generation, exploitation of renewable 

energy sources and their integration into supply networks and finally utilization of 

highly sophisticated devices in the end users equipment, all of which required to be 

ensured with desired power quality [1]. Suppression of harmonic currents, generated 

due to harmonic voltages in the supply side and the non-linear loads, is one of the most 
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important and dominating components for power quality improvement. The shunt active 

power filter (APF) has been shown to alleviate these problems, drawing much attention 

since its introduction in 1976 by Gyugyi and Strycula [2]. The shunt APF has excellent 

compensation characteristics and is able to simultaneously suppress harmonic currents 

and compensate for reactive power. To achieve this, the power converter of an APF is 

controlled to generate a compensation current that is equal to the harmonic and reactive 

currents.  

 

The rapid progress in the development of modern power electronic devices and DSP 

technology has led to a greater concentration on the improvement of APFs. In order to 

determine the harmonic and reactive components of the load current, several techniques 

are introduced in the literature [3]. These strategies play a very important role in the 

improvement of steady state and dynamic performances and the stability of the filter. 

The common point of the control techniques is the requirement of a grid voltage 

measurement [4]. The unbalanced voltages usually occur because of variations in the 

load characteristics over time and/or the unbalanced nature of the load, which could 

arise, for example, from different phases of the load current due to variations of 

impedances. Therefore, the dynamic characteristics of the harmonic detection methods 

would likely be adversely affected without proper consideration of the condition of grid 

voltages and currents. Some methods are proposed to increase the harmonic suppression 

efficiency of APF controlled by p-q theory in [34,5-10], p-q-r theory in [11]. All these 

algorithms require some kind of low-pass or high-pass filters to extract the fundamental 

or harmonic components. In [12,13], a neural network based solution is proposed for the 

control of shunt APFs operating under distorted voltage conditions.  

 

Self-tuning filter (STF) was initially developed to estimate the phase angle of pulse 

width modulation (PWM) converter outputs [14].  It was then applied to solve the 

control problem of shunt APF in distorted voltage condition [15]. The STF algorithm 

was shown to possess important advantages over other methods in the case of 

unbalanced and distorted source voltages; however, specifics on the control system 

were not divulged in those papers. Since then much attention has been devoted to the 

application of the STF to the control of APFs [16-31].  To date, the STF algorithm has 

only been adapted to p-q theory and the dq method, referred to here as STF-based pq 
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theory (STF- pq) [18-24, 31] and STF-based dq method (STF-dq) [15,24,25], 

respectively. Abdusalam et al. (2007) [16] proposed the integration of STF algorithm 

with d-q theory for the control of hybrid APFs (HAPFs), where a shunt APF was 

connected in series with a shunt passive filter. Karimi et al. (2008) [17] also showed 

how the STF can be used to control a shunt APF by integrating it with pq theory, and 

referred to the resultant system as selective bandpass filtering. Abdusalam et al. (2008 

& 2009) applied STF-based control with p-q theory for voltage signals in [18] and 

current signals in [19], without the use of low-pass or high-pass filters.  

 

The STF was also used for both voltage and current signals in [19, 20]. Gupta et al. 

(2010) used the STF- pq under name of harmonic tuned filter in [21]. Samadaei et al. 

(2011) also used STF- pq to control shunt APF connected in series with the shunt 

passive filter in [24]. In [27], the STF- pq theory is first used in the control of multi-

level shunt APF by Benaissa et al, (2012). By this method the number of filters is 

reduced in the control system. However, the effectiveness of the control algorithm is 

only tested under balanced currents with ideal grid voltage conditions. Ghadbane et al. 

(2012) used the STF- pq theory, where the STF is applied to the load current only [28]. 

Ghamri et al. (2012) proposed an STF- pq based method, where the STF was first used 

to extract the harmonic currents from load currents with subsequent application of pq 

theory [29]. Biricik et al. (2011) in [25] showed that the harmonic suppression 

performance of both the pq and dq control methods deteriorates in the case of distorted 

source voltages. The authors propose applying an STF- pq based control strategy to 

improve the harmonic suppression efficiency of a HAPF and solve the problems caused 

by unbalanced and distorted source voltages in [30]. 

 

In this paper, an alternative control method is proposed to increase the harmonic 

suppression efficiency of three phase, three wire APF in the case of unbalanced and 

distorted grid voltage conditions by processing the load currents through the STF only. 

This eliminates the requirement of any high-pass or low-pass filtering as otherwise 

required by dq, pq, pqr theories etc. The algorithm can be successfully applied under 

variable and unbalanced load conditions. The main contributions of this paper are the 

following: 

 



4 
 

• The algorithm does not necessitate pre-processing, such as high-pass and low-

pass filtering, in order to separate the fundamental and harmonic components; 

• Performance of the system is evaluated with distorted and unbalanced grid 

voltages and with unbalanced, non-linear, variable load groups; 

• The detailed model and the algorithm has been implemented in RT-LAB real-

time simulator platform, developed by OPAL-RT, to evaluate the real time 

performance of the proposed control method of the Shunt APF in a 3-phase 3-

wire system. 
 

2. Review of APF Control Methods 
This section briefly reviews three techniques for the estimation of the reference 

compensation current of the APF. A description of the well-known (conventional) p-q 

and d-q methods is presented, which is followed by a description of the STF-based p-q 

theory method in [19]. The reader is referred to [19, 34] for a more detailed treatment of 

the methods. 

 
2.1 Instantaneous Active Power Theory (p-q Theory) 

The instantaneous and reactive power method, proposed by Akagi [34], remains 

one of the most popular APF control schemes. It first transfers the voltages and currents 

from the three-phase a-b-c phase coordinates to a two-phase coordinate system α-β-0, 

via Clarke transformation. Then the active and reactive instantaneous powers are 

calculated. Generally, each of the active and reactive powers is composed of continuous 

and alternating terms. The continuous term corresponds to the fundamentals of current 

and voltage. The alternating part represents power related to the sum of the harmonic 

components of current and voltage. A low-pass filter or high-pass filter is required to 

separate continuous and alternating terms of active and reactive instantaneous powers.  

The three phase reference current of the APF is obtained by applying the inverse Clarke 

transform to the stationary reference currents.  

 

2.2 Stationary Reference Frame Method (d-q Method) 

The d-q method is the second most studied control method in the literature. This 

method is based on the Park transformation. First, the load currents are transformed into 

the component in the d-q coordinate system in order to separate the fundamental and 

harmonics components of instantaneous currents (id, iq). One of the main differences of 
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this method from p-q theory is that the d-q method requires the determination of the 

angular position of the synchronous reference of the source voltages; for this a PLL 

algorithm is used. After the transformation of load currents into the synchronous 

reference, a low-pass or high-pass filter is using to separate the fundamental and 

harmonic components. Finally, the reference currents are transformed to the three phase 

reference using the inverse synchronous transform. 

 

2.3 Self-Tuning Filter-Based Instantaneous Active and Reactive Theory   

As mentioned earlier, the STF algorithm was first used to estimate the phase angle of 

the PWM converter outputs in [14]. As mentioned in Section 1, this algorithm is mostly 

used with the pq theory to solve the problems caused by unbalanced and distorted grid 

voltages. In [19], the STF is applied to filter out the voltage harmonics from the grid 

voltages, which are then used in the pq theory. Here, the STF also acts to balance the 

voltages. Moreover, a second STF is applied to the load currents, iα and iβ, to obtain the 

harmonic currents, iα and iβ, which are then used in the pq theory.       

 

3. Proposed Control Method 

The purpose of the APF is to dynamically compensate  the reactive and harmonic 

current. Current drawn by the three-phase load with a non-unity power factor harmonics 

is given by: 

 

)()()()( 1 titititi qhL ++=     (1)

where iL(t) is the load current, i1(t) is the fundamental current,  ih(t) is the harmonic 

currents and iq(t) is the reactive current. Conventionally, shunt APF is operated as a 

current source in parallel with the load. The power converter of an APF is controlled to 

generate a compensation current, ic(t), which is equal in magnitude to the reactive and 

harmonic current of the load  and opposite in phase, i.e., 

 

[ ])()()( tititi qhc +−= .     (2) 

 This yields a sinusoidal source current given by 

 



6 
 

)sin(1 tiiS ω= .      (3) 

In the proposed control method, the load currents (iLa, iLb, iLc) are transformed first 

into the components of the synchronous reference frame coordinate system by using the 

Park transformation: 
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where, the angle θ is the angular position of the synchronous reference. It is a linear 

function of the angular position of the grid voltages. This angular position can be 

determined by the aid of a phase-locked-loop (PLL). Therefore, the performance of the 

control method is dependent on the type of PLL algorithm used. In order to improve the 

efficiency of the PLL, the three-phase supply voltages (ua, ub, uc) are transformed using 

the Clarke (or α-β) transformation into a different coordinate system by using: 
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In order to obtain undistorted and balanced waveform for the control circuit, the α-β 

of the distorted grid voltage is processed through the STF. In [19], the transfer function 

of the STF is obtained by integration of the synchronous reference frame and it is 

defined as: 
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(6) 

where 

 ( ) ( )j t j t
xy xyV t e e U t dtω ω−= ∫  .         (7) 

The STF has a magnitude and phase response that is similar to those of a general 

band-pass filter. Apart from the integral effect on the input magnitude, the STF does not 

alter the phase of the input, i.e. the input Uxy(s) and output Vxy(s) have the same phase. 
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Note that in order to have unit magnitude, i.e. |H(s)| = 0 dB, a constant KX is 

incorporated in to (6) [19], that is,  
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In the stationary reference, the fundamental components ( αu , βu  ) are given by: 
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The obtained un-distorted and balanced two phase voltages can be converted to the 

three phase system by using inverse Clark transformation as given by, 
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In this method the angular position (θ) of the source voltages is determined correctly by 

the PLL. The un-balanced nature of load currents is also an important power quality 

issue that may reduce the performance of the APF. For this reason, the obtained id and iq 

components by (4) are also processed in the proposed control method in order to 

calculate balanced current components.  

[ ] )()()()( 2 si
s

sisi
s

Ksi qddd
ω

−−= ,    (12) 

[ ] )()()()( 2 si
s

sisi
s

Ksi dqqq
ω

+−= .    (13) 

After obtaining the balanced and undistorted current components, the harmonic 

components of instantaneous currents ( di
~

, qi
~

 ) are obtained by  
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ddd iii −=~ ,     (14) 

and 

           qqq iii −=~
  respectively.     (15) 

In most of the control methods, a low-pass or high-pass filter is used to separate the 

fundamental and harmonic currents. However, there is no need for an additional filter in 

the proposed control method. Finally, the obtained current harmonic components, from 

(14) and (15), are then transformed to the three phase converter reference currents using 

the inverse synchronous transform given by, 
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In order to compensate for the converter active losses, the DC-link capacitor voltage 

is processed by a conventional proportional-integral (PI) regulator, which gives a 

measure of the active power losses in the converter. To generate accurate converter 

reference currents an additional fundamental component (idc) has been added, which is 

derived from the PI of the dc regulator. The reference converter currents are compared 

with the actual converter currents and the error is processed through a PI and passed 

through a hysteresis comparator to derive the final switching signals for the converters.  

 

4. Power Circuit and Measurement Description 

To test the proposed algorithm a (3Ø, 3-wire) Voltage Source Inverter is 

connected in parallel with the load, as shown in Fig. 1. The grid voltages (ua, ub, uc) and 

the load currents (iLa, iLb, iLc) are the sensing requirements.  Single-phase Resistor 

Capacitor type rectifier supplied non-linear loads (Load1, Load2 & Load3) and a three-

phase RL type rectifier supplied non-linear load (Load4) are used to evaluate the 

dynamic performances of the system. The resistances of the RC loads are not equal with 

the others. Consequently, the three-phase load currents are not balanced. Additionally, a 

linear RL type load (Load5), which is connected between phase-a and phase-b, is used 

to create additional unbalance current condition in the studied system. Analysis shows 
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that the fundamental active power (P) is 29.4 kW; the fundamental reactive power (Q) 

is 7.4 kVAr when all the loads are connected. The details of the system parameters can 

be found in Table I. 

 

TABLE I: PARAMETERS OF THE ANALYSED SYSTEM 
Symbol Quantity Value 

vS ,  f  Line to Neutral Volt. & Freq. 240 V, 50 Hz 

Zs  Grid Line Impedances 3 mΩ,2.6 µH  

Zc Converter Coupling Impedances 20 mΩ, 2mH 

ZL  Load Line Impedances 10 mΩ,0.3 mH  

Cdc, Udc DC-Link Size & Voltage 5mf, 750V 

Kp1 &  Ki1 Proportional &  Integral Gain 0.88 & 78.96 

Kp2 &  Ki2 Proportional &  Integral Gain 160 & 29578 

Ts Sampling Time 55µS 

K1&  K2 STF Gain 100 & 40 

fs Switching Frequency 14 kHz 

Load 1 Non-Linear Load Res. and Cap. 16 Ω,80 µF 

Load 2 Non-Linear Load Res. and Cap. 20 Ω, 80 µF 

Load 3 Non-Linear Load Res. and Cap. 18 Ω, 80 µF 

Load 4 Linear Resistor Load 40 Ω 

Load 5 Non-Linear Load Res. and Ind. 16 Ω,30 mH 

 

In this study, the distorted and un-balanced grid voltages are used. This non ideal 

grid voltage is generated by the equation given in (17). In this case, voltage total 

harmonic distortions (THDu) in each phase of the grid are found to be 10.80 %, 12.79 

%, 8.13 % respectively which can be considered typical considering the range of 

voltage THDs considered in the literature [35-39].  and the RMS value of the phase 

voltages (ua, ub, uc) are 240 V, 226 V and 247 V. 
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Fig. 1. Block diagram of the APF and proposed control method 

 

5. Computer Simulated and Real-Time Experimental Results 

To demonstrate the performance of the proposed control method, results from both 

the numerical simulation and real-time experimentation are presented here. Section 5.1 

presents MATLAB / Simulink simulation results comparing the proposed control 

method with a state-of-the-art technique in [19], as well as the well-known pq and dq 

methods. In particular, the effect of non-ideal supply conditions on the performance of 

APF is investigated. In Section 5.2, results are presented from testing the proposed 

control method and power system using the RT-LAB real-time platform. 
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5.1 Simulation Results 

In this section, the performance of the proposed method is compared to that of the 

prior art for both ideal and non-ideal grid voltage conditions. As seen in Fig. 2 (a), the 

grid voltage waveform is purely sinusoidal. In contrast, the non-ideal grid voltage 

waveform is generated by using (17), as  shown in Fig. 2 (b). 

  
a-) b-) 

  
c-) d-) 

Fig. 2. Voltage and current waveforms, a-) ideal grid voltage, b-) non-ideal (distorted and unbalanced) grid voltage, c-) load currents 
under ideal grid voltage, d-) load currents under non-ideal grid voltage 

 

The non-ideal grid voltage considered in Fig. 2 (b) is 3% unbalanced and has a THD 

of 10%. The load current waveforms under ideal grid voltage conditions can be seen in 

Fig. 2 (c). Fig. 2 (d) shows the harmonic distortions on the load current change 

depending on the distortion present on the grid. Notice that, depending on  the load, 

current THD varies within 16 to 21%.  

  
a-) b-) 



12 
 

  
c-) d-) 

Fig. 3. Compensation of the grid current harmonics by using conventional dq method:  a-) under ideal voltage, b-) under non-ideal 
voltage, and by using conventional pq method: c-) under ideal voltage, d-) under non-ideal voltage, 

 

Fig. 3 shows grid current waveforms after harmonic compensation by the two 

conventional methods, dq and pq, for both ideal and non-ideal grid voltage conditions. 

Under ideal grid voltage conditions, the grid currents are well compensated by both the 

dq (see Fig. 3 (a)) and pq method (see Fig. 3 (c)). For these cases, as seen in Table II, 

the THD of the grid currents are reduced from around 20% to around 2%.  

However, for the non-ideal grid conditions, their performances are not acceptable. As 

can be seen from Table II, the THD of the grid currents decreases from around 20 % to 

around 7% with dq method (see Fig. 3 (b)) and 10 % with pq theory (see Fig 3 (d)). It is 

clear that the non-ideal supply condition adversely affects the behaviour of the APF 

while using conventional pq theory and the dq method.  

This problem has been investigated extensively in the literature with various control 

strategies proposed, one of which is the STF- pq method adopted in [19]. In Figs. 4 (a) 

and (b), we see that the STF-pq method displays good performance under both ideal and 

non-ideal grid voltage conditions, as attested in [19]. Table II shows that the THD of the 

grid currents are reduced to around 2 %, for both grid voltage conditions. 

Table II. APF Performance Operation Scenarios Cooperation with Control Methods 

  
Methods 

& 
Conditions 

dq pq STF- pq [19] Proposed Method 
 Currents THD of 

Phases (%) 
Currents THD of 

Phases (%) 
Currents THD of Phases 

(%) 
Currents THD of 

Phases (%) 
 a b c A b  c a b  c a b  c 

L
oa

d 
C

ur
re

nt
  Ideal  16.35 17.64 20.23 16.35 17.64 20.23 16.35 17.64 20.23 16.35 17.64 20.23 

Non-Ideal 22.04 29.73 18.20 22.04 29.73 18.20 22.04 29.73 18.20 22.04 29.73 18.20 

G
ri

d 
C

ur
re

nt
 Ideal  2.38 2.42 1.66 1.68 1.88 1.89 1.69 1.76 1.73 1.66 1.73 1.66 

Non-Ideal 6.46 7.41 5.73 9.90 9.98 6.01 2.50 2.57 2.19 2.30 2.64 2.16 
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Fig. 4 (c) and (d) show the grid current waveforms after harmonic compensation by 

the proposed method in this paper under ideal and non-ideal voltage conditions, 

respectively. Results show that the harmonic compensation performance of the 

proposed method is comparable to that of the STF- p-q method. The THD of the grid 

currents for both STF-based methods are reduced to ~2 % under both grid voltage 

conditions, which meets the IEEE 519-1992 recommended standard. 

  
a-) b-) 

  
c-) d-) 

 
Fig. 4. Compensation of the grid current harmonics a-) by using STF based pq theory under ideal voltage, b-) by using STF based pq 

theory under ideal voltage, c-) by using proposed method under ideal voltage, d-) by using proposed method under non-ideal 
voltage 

 

A graphical depiction of the remnant distortion after compensation by the various 

methods, for phases a, b and c is shown, respectively, in Figs. 5 (a), (b) and (c). The 

benefit offered by our technique is that the performance improvement is achieved 

through use of a simpler structure.  
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Fig.5. Performance comparison of the control methods, a-) phase-a, b-) phase-b, c-) phase-c, (Blue bars are for ideal grid voltage 

condition, red bars are non-ideal grid voltage condition 
 

 

5.2 Real-Time Control in Software-in-the-Loop (SIL ) Configuration 

The proposed control method and power system have been modelled in Simulink 

using RT-LAB real-time platform and associated tools to observe the performance in a 

real time environment. RT-LAB allows for the distributed simulation of complex power 

systems. Specifically, the proposed system is realized on a field programmable gate 

array (FPGA) architecture using the Xilinx system generator toolbox. The system is 

then tested in software-in-the-loop (SIL) in hardware synchronization mode, which is 

similar to the hardware-in-the-loop (HIL) test giving due consideration for delay in the 

real time measurement of actual signals and implementation of the control signals. Fig. 

6 shows the real-time laboratory setup using the OPAL-RT (OP5600) platform, which 

manages the communications between the CPUs, FPGA architecture and the console 

PC (from which the global simulation is controlled).  
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Fig.6 Experimental setup with the OPAL-RT 

As seen in Fig. 7 (a), the grid voltage waveform is not purely sinusoidal. 

Therefore, after transformation of this waveform to the α-β coordinate system via (6) 

the grid voltage waveform  as shown in Fig 7 (b) is also not sinusoidal. As mentioned 

earlier, this distorted voltage  has a detrimental effect on the control system, which 

degrades the harmonic suppression performance of the converter.  
 

 

Fig. 7 (a). Three phase unbalanced and distorted (non-ideal) 

grid voltages (ua, ub, uc) (scale: 113 V/div.) 

 

 

Fig. 7 (b). Grid voltages after transformation to α-β coordinate 

system (uα, uβ), (scale: 113 V/div.) 
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Fig.  7 (c). Output signal of the STF ( αu , βu ) 

 (scale: 113 V/div.) 

 

 

Fig. 7 (d). The obtained three phase balanced and un-distorted 

(ideal) voltage signals for the control system ( au , bu , cu ) 

(scale: 113 V/div.) 

As discussed in Section 3, this problem can be rectified by using the STF. The 

two phase grid voltages are filtered using (9) and (10) to obtain undistorted and 

balanced waveforms—see Fig. 7 (c). It can be seen that, there is no phase displacement 

between the input and output waveforms, which is a major advantage offered by this 

method. The obtained undistorted and ideal two phase voltage waveforms are then 

transformed to three phase voltage waveforms via (11), shown in Fig. 7 (d). Finally, the 

correct angular position of the synchronous references can be calculated using a 

standard PLL. 

The  THD of the load currents (Load1, Load2, Load3, Load4) in each phase are  

26.03 %, 29.98 %  and 20.47 %, while the rms currents are 54.74 A, 48.85A, 41.68 A. 

After connection of Load 5, the THDi changed to 22.05 %, 29.82 %, 18.21 % and the  

currents obtained are 80.67 A, 73.87 A, 67.65 A . The load current waveforms can be 

seen in Fig. 8.  
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Fig. 8. Three phase non-linear load currents (scale: 47 A/div.) 

 

 

Fig. 9. Injected converter currents by the proposed control 

method (scale: 47 A/div.) 

In the second step of the controller, the di  and qi components can be calculated by 

way of (4). The calculated currents consist of fundamental and harmonics components. 

In order to extract harmonic components, the second STF is designed as in (12) and 

(13). Therefore, the di and qi components are processed in order to obtain, the balanced 

di  and qi components at the fundamental frequency. The harmonic components are 

subtracted from the fundamentals to obtain two phase converter reference currents. No 

additional low-pass or high-pass filter is required for this purpose. Then, the obtained 

two phase reference current signals are converted to three phase by using (16). Injected 

converter currents can be seen in Fig. 9.  Finally, the grid current waveforms are 

obtained as given in Fig. 10. As a result, the THD of the grid currents are reduced from 

26.03 %, 29.98 %, 20.47 %  to 4.12 %, 4.53 %, 4.18 % in the first load combinations 

(Load1, Load2, Load3 and Load4). The grid current THD are measured as 3.64 %, 4.18 

%, 3.64 % after the connection of Load5. Since the reactive power consumed is 

compensated for by the APF, the grid current is in phase with voltage (Fig. 11). 
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Fig. 10. Grid current after filtering by proposed control method 

under non- ideal grid voltage and unbalanced nonlinear load 

currents conditions (scale: 47 A/div.) 

Fig. 11. Grid voltage (yellow plot) and  grid current (blue plot) 

waveform under non-ideal grid voltage condition at phase a 

after filtering  

(scale: 35 A/div , 97 V/div) 

 

 

Fig .12 (a). DC-link voltage and current waveforms at phase-a 

during load increasing (Current scale: 94 A/div., 10 V/div.)  

 

Fig.   12 (b). DC-link voltage and current waveforms at phase-a 

during load decreasing (Current scale: 94 A/div., 10 V/div.)  

 

Figs. 12 (a) and 12 (b) show the dynamic performance of the system.   

It is to be noted that to show the dc link dynamic variation, the pre-settled DC-link 

capacitor voltage,
 

*
dcU , is subtracted from the actual measured dc-link capacitor voltage, 

dcu , to obtain instantaneous error,
 

dcu∆ . 
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The load change operation comprises the addition of all other loads to create an 

average load change of 50%. During this operation, the magnitude of the load current 

changed and the proposed control method compensated the grid current dynamically 

under both load change conditions. Moreover, the DC-link capacitor voltage (green 

plot) is maintained as required during the fast load change. 

 

6. Conclusion 

In this paper, the design of a control method that generates the correct reference 

current signal in order to satisfy the requirements of harmonic suppression and reactive 

power compensation, for unbalanced nonlinear load combinations under the case of 

non-ideal grid voltage conditions have been discussed. An alternate method is proposed 

where two STF are applied to manage the distorted and unbalanced voltage and current. 

In the proposed method, the distorted and unbalanced voltages are first processed by 

using self tuning filter (STF) to determine the correct angular positions. Then a second 

STF is used to extract balanced load current waveforms  This method eliminates the 

need for additional low-pass or high-pass filtering when extracting harmonic 

components from the fundamental. A step-by-step performance study, in a real-time 

environment, shows that the proposed control technique is able to generate the proper 

compensating reference current during the steady state and dynamic load change 

conditions under the distorted and unbalanced grid voltage conditions.  
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