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Abstract

In a previous work [E.M. Prodanov, R.I. Ivanov, and V.G. Gueorguiev, Reissner–
Nordström Expansion, Astroparticle Physics], we proposed a classical model for
the expansion of the Universe during the radiation-dominated epoch based on the
gravitational repulsion of the Reissner–Nordström geometry — naked singularity
description of particles that ”grow” with the drop of the temperature. In this work
we model the Universe during the Reissner–Nordström expansion as a van der Waals
gas and determine the equation of state.
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We recently proposed [1] a classical mechanism for the cosmic expansion. It relies on
the assumption that the Universe is a two-component gas. One of the fractions is that
of ultra-relativistic ”normal” particles of typical mass m and charge q with equation of
state of an ideal quantum gas of massless particles. The other component is ”unusual”
— these are either particles of ultra-high charge or particles of ultra-high mass M and
charge Q (up to a few electron charges: ∼ 10−34 cm), greater than the mass M . The
”unusual” particles are modelled as Reissner–Nordström naked singularities and the
expansion mechanism is based on their gravitational repulsion. The motion of charged
test particles in a Reissner–Nordström field has been studied in [2].
Naked singularities have been subject of significant scrutiny for decades. The general-
relativistic description of the gravito-electric field of charged elementary particles is in
terms of naked singularities — since the charge-to-mass ratio for elementary particles is
greater than one. For the electron, the charge-to-mass ratio is ∼ 1021. In view of this,
in the 1950s, the Reissner–Weyl repulsive solution served as an effective model for the
electron. Very recently, a general-relativistic model for the classical electron — a point
charge with finite electromagnetic self-energy, described as Reissner–Nordström (spin
0) or Kerr–Newman (spin 1/2) solution of the Einstein–Maxwell equations, — has been
studied by Blinder [3]. Naked singularities are disliked — hence the Cosmic Censorship
Conjecture [4] — but not ruled out — there is no mathematical proof whatsoever of the
Cosmic Censorship. At least one naked singularity is agreed to have existed — the Big
Bang — the Universe itself. Of particular importance in the study of naked singularities
are the work of Choptuik [5], where numerical analysis of Einstein–Klein–Gordon solu-
tions shows the circumstances under which naked singularities are produced, and the
work of Christodoulo [6] who proved that there exist choices of asymptotically flat initial
data which evolve to solutions with a naked singularity. The possibility of observing
naked singularities at the LHC has been studied in [7] — for example, a proton-proton
collision could result in a naked singularity and a set of particles with vanishing total
charge or with one net positive charge — an event probably undistinguishable from
ordinary particle production. In a cosmological setting, naked singularities have been
well studied and classified — see, for example, [8].
As shown in [1], for temperatures below 1029 K, quantum effects do not play a role in
the interaction between the ”unusual” particles and the ”normal” particles (see [1] also
for the discussion on the proposed model’s range of validity, imposed by considering
classical gravitational interactions only).
Consider a ”normal” particle of specific charge |q/m| > 1, and an ”unusual” particle of
opposite charge (qQ < 0). If the ”normal” particle approaches the ”unusual” particle
from infinity, the field of the naked singularity is characterized by three regions [1, 2]:

(a) Impenetrable region — between r = 0 and r = r0(T ).
For an incoming test particle, reality of the kinetic energy leads to the existence
of a turning radius. This is the radius r0(T ) which can be thought of as radius of
the ”impenetrable” sphere surrounding the naked singularity. It depends on the
energy of the incoming particle (or the temperature T of the ”normal” fraction
of the Universe): the higher the energy (or the temperature), the deeper the
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incoming particle will penetrate into the gravitationally repulsive field of the naked
singularity.

(b) Repulsive region — between the turning radius r0(T ) and the critical radius
rc ≥ r0(T ).
The critical radius rc is where the repulsion and attraction interchange. As the
temperature drops, the ”unusual” particles ”grow” (incoming particles have lower
and lower energies and turn back farther and farther from the naked singularity).
When the temperature gets sufficiently low, the radius of the ”unusual” parti-
cles r0(T ) grows to rc (but not beyond rc, as the region r > rc is characterized
by attraction and an incoming particle cannot turn back while attracted). This
means that incoming particles have such low energies that they turn back imme-
diately after they encounter the gravitational repulsion. This does not apply to
incoming particles of charge q such that qQ > 0 — we shall see that the repulsive
region for such particles extends to infinity (the gravitational attraction will not
be sufficiently strong to overcome the electrical repulsion).

(c) Attractive region — from the critical radius rc to infinity. Again, there is no
gravitationally attractive region for an incoming particle such that qQ > 0.

As shown in [2], when an incoming particle has sufficiently large charge which is also
opposite in sign to that of the naked singularity: sign(Q)q/m < −1 , the particle will
collide with the naked singularity. When the naked singularity ”captures” such particle,
its charge Q decreases and its mass M increases. If sufficient number of incoming parti-
cles are captured, Q will eventually become equal to M — the naked singularity will pick
a horizon and turn into a black hole. This black hole will evaporate quickly afterwards.
We will assume that our ”unusual” particles have survived such annihilation. We will
also assume that these superheavy charged particles have survived annihilation through
all other different competing mechanisms — for example, they could recombine into
neutral particles or decay before or after that (see Ellis et al. [9] on the astrophysical
constraints on massive unstable neutral relic particles and Gondolo et al. [10] on the
constraints of the relic abundance of a dark matter candidate — a generic particle of
mass in the range of 1−1014 TeV, lifetime greater than 1014−1018 years, decaying into
neutrinos).
Our expansion model assumes that initially, at extremely high energies and pressures,
the ”normal” particles are within the gravitationally repulsive regions of the ”unusual”
particles. The particles from the ”normal” fraction ”roll down” the gravitationally re-
pulsive potentials of the ”unusual” particles and in result the Universe expands. The
addition of a new class of particles (the ”unusual”) in the picture of the Universe does
not challenge our current understanding of the physical laws governing the Universe.
The ”unusual” particles interact purely classically with the ”normal” component of the
Universe and this classical interaction results in the appearance of a repulsive force. Our
aim is to offer a possible explanation for the expansion of the Universe while conform-
ing with the well established theoretical models. As shown in [1], during the Reissner–
Nordström expansion, the standard relation between the scale factor of the Universe a
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and the temperature T holds: aT = const. Also, during the Reissner–Nordström expan-
sion, the time-dependance of the scale factor is: a(τ) ∼

√
τ (see [1] for details). Such is

the behaviour of the scale factor during the expansion of the Universe throughout the
radiation-dominated era, obtained by the standard cosmological treatment. These two
pictures are not alternatives — they complement each other. This is manifested in the
fact that the scale factor behaves in the same way, namely, that the dynamics of the
Universe is the same for both pictures. Thus, we believe, the physics of the expanding
Universe could be considered as a superposition of these two pictures.
On a large scale, the Universe is isotropic and homogeneous and for a Robertson–Walker
Universe (see, for example, [11, 12]), the energy-momentum sources are modeled as a
perfect fluid, specified by an energy density and isotropic pressure in its rest frame. This
applies for matter known observationally to be very smoothly distributed. On smaller
scales, such as stars or even galaxies, this is a poor description. In our picture, the
Universe has global Robertson–Walker geometry, but locally it has Reissner–Nordström
geometry. On the level of the interaction between the ”unusual” particles and the ”nor-
mal” particles of the Universe, different density and pressure variables should be intro-
duced. We are going to complement the entire radiation-dominated era with Reissner–
Nordström expansion and model the interaction between the ”unusual” particles and
the ”normal” particles as interaction between the components of a van der Waals gas.
Modeling the Universe as a van der Waals phase is possible in the light of the deep
analogies between the physical picture behind the Reissner–Nordström expansion and
the classical van der Waals molecular model: atoms are surrounded by imaginary hard
spheres and the molecular interaction is strongly repulsive in close proximity, mildly
attractive at intermediate range, and negligible at longer distances. The laws of ideal
gas must then be corrected to accommodate for such interaction: the pressure should
increase due to the additional repulsion and the available volume should decrease as
atoms are no longer entities with zero own volumes (see, for example, [13]).
As an interesting development in a similar vein, one should point out the work [14] (see
also the references therein) which studies van der Waals quintessence by considering
a cosmological model comprising of two fluids: baryons, modelled as dust (large-scale
structure fluid) and dark matter with a van der Waals equation of state (background
fluid). Van der Waals equation of state for ultra-relativistic matter have been studied
by [15].
Returning to the Reissner–Nordström expansion, once the temperature drops sufficiently
low so that r0(T ) becomes equal to rc, the ”normal” particle with charge q such that
0 ≥ sign(Q)q/m ≥ −1 , will be expelled beyond r = rc (as r0(T ) < r always) — into the
region of gravitational attraction. Due to its ultra-high energy, the ”normal” particle
will overcome the gravitational attraction and will escape unopposed to infinity. Thus
the gravitationally attractive region is of no importance for such particles and for them
we can assume that the potential of the naked singularity is infinity from r = 0 to
r = r0(T ) and zero from r = rc to infinity.
For ”normal” particles such that qQ > 0, the potential gradually drops to zero towards
infinity. For ultra-high temperatures, the energy E of a ”normal” particle is of the order
of kT . At temperatures below 1010 K, the dominant term in the energy E becomes the
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particle’s rest energy mc2 (throughout the paper we use geometrized units c = 1 = G)
and, as we shall see, the turning radius r0(T ) becomes infinitely large below such tem-
perature. As we model the entire radiation-dominated epoch with Reissner–Nordström
repulsion, at recombination (the end of this epoch: trecomb ∼ 300 000 years), the free
ions and electrons combine to form neutral atoms (q = 0) and this naturally ends the
Reissner–Nordström expansion — a neutral ”normal” particle will now be too far from
an ”usual” particle to feel the gravitational repulsion (the density of the Universe will be
sufficiently low). During the expansion, the volume V of the Universe is proportional to
the number N of ”unusual” particles times their volume (one can view the impenetrable
spheres of the naked singularities as densely packed spheres filling the entire Universe).
At recombination, V ∼ t3recomb . Therefore, at recombination, the radius r0(T ) of an
”unusual” particle will be of the order of Rc = N−1/3trecomb . During the expansion,
a ”normal” particle is never farther than r0(T ) from an ”unusual” particle. We will
request that once r0(T ) becomes equal to Rc = N−1/3trecomb , then the potential of the
interaction between a naked singularity and a particle of charge q, such that qQ > 0,
becomes zero.
There are many studied examples of such “unusual” particles: these could be either the
ultra-heavy charged particles (CHAMPS) of the model of de Rujula, Glashow and Sarid
[16], or the collapsed charged objects of very low (∼ Planck) mass studied by Hawking
[17], or even Preskill’s [18] ultra-heavy magnetic monopoles which were created so co-
piously in the early Universe that they outweighed everything else in the Universe by a
factor of 1012 (in the latter case Q will be the magnetic charge of a monopole, all other
particles in the Universe will be magnetically neutral: q = 0).
In this paper we use a standard treatment [13] to model the van der Waals phase of the
Universe as a real gas and, using the virial expansion, we obtain the gas parameters.
Combining the van der Waals equation with aT = const, we find the equation of state
describing the classical interaction between the ordinary particles in the Universe and
the “unusual” particles. The phase after the van der Waals phase is that of an ideal gas
of ”normal” particles.

Consider now Reissner–Nordström geometry [19, 12] in Boyer–Lindquist coordinates
[20] and geometrized units is:

ds2 = − ∆
r2

dt2 +
r2

∆
dr2 + r2 dθ2 + r2 sin2θ dφ2 . (1)

where: ∆ = r2 − 2Mr + Q2 , M is the mass of the centre, and Q — the charge of the
centre. We will be interested in the case of a naked singularity only, namely: Q > M .
The radial motion of a test particle of mass m and charge q in Reissner–Nordström
geometry can be modeled by an effective one-dimensional motion of a particle in non-
relativistic mechanics with the following equation of motion [1, 2] (see also [21] for
Schwarzschild geometry) :

ṙ2

2
+

[
−

(
1− q

m

Q

M
ε
)M

r
+

1
2

(
1− q2

m2

)Q2

r2

]
=

ε2 − 1
2

, (2)
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where ε = E/m is the specific energy (energy per unit mass) of the three-dimensional
motion. The expression in the square brackets is the effective non-relativistic one-
dimensional potential and the specific energy of the effective one-dimensional motion is
(1/2)(ε2 − 1). As we will not be interested in the effective one-dimensional motion, we
will proceed from equation (2) to derive an expression that will serve as gravitational
potential energy U(r) of the three-dimensional motion. In the rest frame of the probe
(ṙ = 0), equation (2) becomes a quadratic equation for the energy ε. The bigger root
of this equation is exactly the gravitational potential energy U(r) plus the rest energy
m (see also [22]). Namely:

U(r) =
qQ + m

√
∆

r
−m =

qQ

r
+ m

√
1− 2M

r
+

Q2

r2
−m . (3)

Since M ∼ Q ∼ 10−34 cm, expression (3) for the potential energy U(r), for distances
above 10−34 cm, can be approximated by:

U(r) = −Mm

r
+

qQ

r
+

m

2
(−M2 + Q2)

1
r2

. (4)

Motion is allowed only when the kinetic energy is real. Equation (2) determines the
region (r− , r+) within which motion is impossible. The turning radii are given by [1, 2]:

r± =
M

ε2 − 1

[
ε

q

m

Q

M
− 1±

√(
ε

q

m

Q

M
− 1

)2
− (1− ε2)

(
1− q2

m2

) Q2

M2

]
. (5)

We identify the impenetrable radius r0(T ) of an “unusual” particle as the bigger root
r+. The expansion mechanism is based on the fact that r0(T ) is inversely proportional
to the temperature, namely, the naked singularity drives apart all neutral particles and
particles of specific charge q/m such that sign(Q)q/m ≥ −1.
Note that when ε → 1 (which happens when the rest energy becomes the dominant
term, i.e. when kT drops below m, or below 1010K), then the turning radius r0(T )
tends to infinity.
At the point where gravitational attraction and repulsion interchange, there will be no
force acting on the incoming particle. That is, this is the point where the derivative of
the potential (4) vanishes:

rc = M
( Q2

M2
− 1

)(
1− q

m

Q

M

)−1
. (6)

Obviously, the critical radius rc for an incoming particle charged oppositely to the
”unusual” particle (qQ < 0) will be smaller than the critical radius for a neutral (q =
0) incoming particle — the region of gravitational repulsion will be reduced by the
additional electrical attraction. When the incoming probe has charge with the same
sign as that of the ”unusual” particle (i.e. qQ > 0), then rc does not exist. This means
that there will be a region of repulsion only — the gravitational attraction will not be
sufficiently strong to overcome the electrical repulsion.
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Finally, the potential energy of a charged probe in the field of an “unusual” particle can
be written as follows:

U(r) =



∞ , r < r0(T ) ,

−Mm
r + qQ

r + m
2 (−M2 + Q2) 1

r2 , r0(T ) ≤ r ≤ R ,

0 , r > R ,

(7)

where:

R =

{
rc , 0 ≥ sign(Q)q/m ≥ −1 ,
Rc , qQ > 0.

(8)

Obviously, the expansion beyond rc will be due to the second type of particles only and
we will study them from now on.
Next, we consider the thermodynamics of a real gas.
The virial expansion relates the pressure p to the particle number N , the temperature
T and the volume V [13]:

p =
NkT

V

[
1 +

N

V
F (T ) +

(N

V

)2
G(T ) + · · ·

]
, (9)

where the correction term F (T ) is due to two-particle interactions, the correction term
G(T ) is due to three-particle interactions and so forth. We will ignore all interactions
involving more than two particles. The correction term F (T ) is [13]:

F (T ) = 2π

∞∫
0

λ(r) r2dr = β − α

kT
, (10)

where λ(r) is given by:

λ(r) = 1− e−
U(r)
kT . (11)

Then “van der Waals” equations is [13]:

p +
(N

V

)2
α =

NkT

V

(
1 +

N

V
β

)
. (12)

In the limit Nβ/V → 0, this equation reduces to the usual van der Waals equation [13]:[
p +

(N

V

)2
α

](
1− N

V
β

)
=

NkT

V
. (13)

We now assume that the “unusual” particles leave “voids” in the Universe where “nor-
mal” particles cannot enter. Thus, the effective space left for the motion of the “normal”
component of the gas is reduced by Nβ, where β is the “volume” of an “unusual” par-
ticle and N is the number of “unusual” particles. We will also pretend that “unusual”
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particles are not present and that the potential in which the “normal” particles move is
not due to the “unusual” particles, but rather to the two-particle interactions between
the “normal” component of the gas. In essence, we “remove” N “unusual” particles out
of all particles and we are dealing with a gas of n “normal” particles such that qQ > 0.
The ”van der Waals” equation (12) then becomes:

p +
(N

V

)2
α =

nkT

V
(1 +

N

V
β) , (14)

For the potential determined in (7), we have:

λ(r) = 1− e−
U(r)
kT =



1 , r < r0(T ) ,

U(r)
kT , r0(T ) ≤ r ≤ Rc ,

0 , r > Rc .

(15)

We then get:

β = 2π

r0(T )∫
0

r2 dr =
2π

3
r3
0(T ) =

1
2

v0(T ) , (16)

α = 2π

Rc∫
r0(T )

U(r) r2 dr = πmM2
(
1− Q2

M2

)
[Rc − r0(T )]

+ πmM
(
1− q

m

Q

M

)
[R2

c − r2
0(T )] , (17)

where v0(T ) is the “volume” of an ”unusual” particle. Note that both α and β depend
on the temperature via the particle’s radius r0(T ).
We have shown [1] that for our expansion model, the standard relation between the
scale factor of the Universe a and the temperature T holds: aT = const. Let ρ denote
the density of the Universe. Then, as the volume V of the Universe is proportional to
the third power of a and as V ∼ 1/ρ , we have T ∼ ρ1/3. Therefore, T/V ∼ ρ4/3.
The volume V of the Universe during the van der Waals phase is proportional to the
volume v0(T ) of the ”unusual” particles times their number N . Using equation (16),
namely: β = 1

2v0(T ), it immediately follows that Nβ/V is, essentially, constant.
Equation (14) is the equation of state for the van der Waals phase of the expanding
Universe and can be written: as:

p = ηρ4/3 − α

β2
. (18)

Here η is some constant. The second term depends on the temperature via α and β
and becomes irrelevant towards the end, as α → 0 when r0(T ) → Rc (we have ideal gas
treatment beyond this stage). Note also that the correction term −α/β2 is positive as
α is negative.
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