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Abstract

By considering a random walk model compounded in Einstein’s
evolution equation, we show that both the classical Schrödinger and
Klein-Gordon equations can be viewed as a consequence of introduc-
ing a memory function given by −iδ and δ(1), respectively. For a
memory function of the type −i1+αδ(α) where 0 < α < 1 we derive
a fractional Schrödinger-Klein-Gordon equation whose corresponding
propagator (free space Green’s function) is then evaluated. The pur-
pose of this is to derive a wave equation that, on a phenomenological
basis at least, describes the transitional characteristics of wave func-
tions for spin-less particles that may exist in the intermediate or ‘semi-
relativistic’ regime. On the basis of the phenomenology considered, it is
shown that such wave functions are self-affine functions of time t with
a probability density that scales as 1/t1−α for mass-less particles.
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1 Introduction

It is well known that the fundamental difference between non-relativistic and
relativistic quantum mechanics is compounded in the application of the Energy
E and Momentum p operators (where ~ is the Dirac constant) [1]

E → i~∂t, p→ −i~∇; ∇ ≡ x̂∂x + ŷ∂x + ẑ∂z

applied to the energy-momentum equations (for rest mass m and speed of light
c)

E =
p2

2m
and E2 = p2c2 +m2c4

respectively. Using natural units with c = 1 and ~ = 1, for a free space in
which there is no influencing potential energy, Schrödinger’s equation for the
non-relativistic wave function ψ(r, t) is

(∇2 + 2im∂t)ψ(r, t) = 0 (1)

and the Klein-Gordon equation for the relativistic wave function Ψ(r, t) is

(∇2 − ∂2t −m2)Ψ(r, t) = 0 (2)

1.1 Spin-less Particles

Both equations (1) and (2) describe spin-less particles, the wave functions being
scalar functions of space r and time t. In terms of the differential operators
associated with equations (1) and (2), equation (1) is second order in space
and first order in time whereas equation (2) is second order in both space
and time. Equation (1) describes non-relativistic quantum systems such as
atoms, molecules (subject to interaction with an atomic potential). Equation
(2) describes Scalar Bosons such as Mesons which are hadronic subatomic
particles composed of one quark and one antiquark, bound together by the
strong interaction (subject to interaction with a nuclear potential). One may
think of the difference between equation (1) and (2) as being the difference
between atomic/molecular physics and nuclear physics, respectively.

In terms of the eigen-functions or standing wave patterns that equations
(1) and (2) describe (subject to interaction with a potential), they can loosely
be taken to represent the difference between the behaviour of an atom (a non-
relativistic system) and the nucleus of an atom (a relativistic system) which
provides the potential energy for the standing wave patterns associated with an
electron cloud. In this sense, the distinct nature and associated characteristics
of equations (1) and (2) are analogous to the distinct components associated
with the Bohr model of an atom. There are no intermediate component states
and, in this sense, the ideas developed in this paper are an attempt to model
the intermediate case. This is not the same the Dirac equation which, for
completeness, is briefly discussed in the following section.
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1.2 The Dirac Equation

The Dirac equation expresses the relativistic energy-momentum relationship
in terms of a partial differential equation that is first order in both space and
time to yield the equation (using natural units with ~ = c = 1) [2]

(a∂x + b∂y + c∂z + i∂t − dm)Ψ(r, t) = 0 (3)

where

a = i

(
0 σ1
σ1 0

)
, b = i

(
0 σ2
σ2 0

)
, c = i

(
0 σ3
σ3 0

)
,

with Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
and d =

(
I2 0
0 −I2

)
,

I2 and 0 being 2× 2 dimensional identity and zero matrices, respectively. How-
ever, in this case, Ψ is not a scalar function but a (Dirac) Spinor and describes
particles with ‘Spin’. For the case when m→ 0, the Weyl equation is obtained
which describes massless spin-1/2 particles - ‘Weyl Spinors’.

Both equations (2) and (3) satisfy the relativistic energy-momentum rela-
tionship and are equally valid along with their appropriate solutions and are
generalisations of the Schrödinger equation to the relativistic case in terms of
a relativistic scalar wave function and a multi-component Spinor, respectively.

The formulation of a relativistic wave equation that is analogous to the
Schrödinger equation in terms of having a first order energy operator leads
naturally to the concept of a multi-component scalars which is fundamental
to quantum mechanics and its relation with geometric algebra (e.g. Clifford
algebra and Dirac algebra). However, neither equations (2) or (3) consider the
transitory effects associated with a quantum mechanical system tending from
a non-relativistic to a relativistic system (and visa versa). This is because the
energy-momentum relationships for a non-relativistic and a relativistic system
are fundamentally distinct, being characterised by the energy and the square
energy, respectively.

1.3 Schrödinger form of the Klein Gordon Equation

In addition to expressing the Klein-Gordon equation in terms of a partial
differential equation that is first order in space and time (which by default
introduces Spinors) it is also possible to express the Klein-Gordon equation as
a set of coupled Schrödinger type equations thus (using natural units)

i∂tφ(r, t) = − 1

2m
∇2[φ(r.t) + χ(r, t)] +mφ(r, t)
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i∂tχ(r, t) =
1

2m
∇2[φ(r.t) + χ(r, t)]−mχ(r, t)

By adding and subtracting these equations, equation (2) is easily recovered
where Ψ = φ+ χ. By writing

Ψ =

(
φ
χ

)
and making using of the Pauli matrices, it is possible to express these cou-
pled equations in terms of a Schrödinger-type equation where each compo-
nent of Ψ individually satisfies the Klein-Gordon equation. Further, in the
non-relativistic limit, the Feshbach-Villard transform [3] allows positively and
negatively charges particles to be represented in terms of the upper and lower
components of the fields φ and χ, respectively. Note that these fields which
are not Spinors in the same sense as the component fields associated with Ψ
are as defined by equation (3).

1.4 Non-Relativistic Limit and the Schrödinger Equa-
tion

It is possible to derive equation (1) from equation (2) by defining a relativistic
wave function given by Ψ = ψ exp(−imt)1 under the condition | ∂t lnψ(r, t) |
/m << 0∀(r, t) which yields equation (1). This is the non-relativistic limit of
the Klein-Gordon equation and on a physical basis, this condition implies that
the rest mass energy and the total energy of the system (including the rest
mass energy) is small, i.e. i~∂tψ << mc2ψ.

Although this limiting condition provides a connectivity between the rel-
ativistic and non-relativistic extremes of a wave function, it does not yield a
statement on how a wave function behaves in a transitory sense which is the
issue we explore in this paper as predicated on the following question: What
are the properties of the wave function associated with a spin-less particle as
that particle approaches the speed of light? In other words, what are the
characteristics of a wave function in the ‘intermediate zone’ when a spin-less
particle can not be formally classified as being relativistic or non-relativistic.

1.5 Principal Idea

One of the underlying ideas associated with relativistic quantum mechanics is
to find a way of expressing the Klein-Gordon equation in terms of a first order
partial differential equation in time, thereby expressing the wave function in

1For natural units applied to Ψ = ψ exp(−imc2t/~), the quotient mc2/~ being a fre-
quency.



Intermediate Relativism of Spin-less Particles 5

terms of a Schrödinger type equation involving the energy of the system instead
of the square energy. Examples of this have been provided in the preceding sec-
tions, the Dirac equation being the most famous example of a solution to this
problem with regard for its ‘naturalness’ in terms of introducing the concept of
particle spin and thereby address the 1922 Stern-Gerlach experiment in which
electrons were shown to possess an intrinsic angular momentum (analogous to
the angular momentum of a classically spinning object) but only for certain
quantised values.

The non-relativistic equations of quantum mechanics can, in principal, be
derived by considering the non-relativistic limit of the corresponding relativis-
tic equations as illustrated in the previous section. However, given that this
is a limiting condition, the question then arises as to how it may be possible
to consider the intermediate scenario and model a quantum field that is in the
semi-relativistic regime. The principal purpose of this paper is two-fold: (i) to
introduce the question; (ii) to realise a possible approach to solving it. With
regard to point (ii), and, given that the essential difference between equations
(1) and (2) relates to the time derivatives being first and second order, the
principal idea is to consider an approach that is based on the introduction of
a fractional time derivative ∂1+αt where 0 < α < 1 to generate a Fractional
Shrödinger-Klein-Gordon (FSKG) equation. This is a phenomenology and
in order to contextualise this idea further, and working in one-dimension, in
the following section we show how it is related (on a phenomenological basis)
to the specification of the memory function associated with the generalised
Kolmogorov-Feller equation, which, in turn, is a statement of Einstein’s evo-
lution equation for a density function associated with random walk processes
(random elastic scattering).

2 Derivation of the Schrödinger Equation us-

ing a Random Walk Model

For elastic scattering processes associated with a one-dimensional random walk
model, Einstein’s evolution equation is [4]

ψ(x, t+ τ) = ψ(x, t)⊗x p(x)

where ψ(x, t) is the density function, p(x) is the Probability Density Function
(PDF) that characterises the (random) process and ⊗x denotes the convolution
integral of a one-dimensional space x. This equation models the evolution of
the density function from a time t to a time t + τ . In conventional random
walk theory the density function is taken to represent the concentration of a
canonical ensemble of particles undergoing elastic collisions.
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Consider a Taylor series for the function ψ(x, t+ τ), i.e.

ψ(x, t+ τ) = ψ(x, t) + τ∂tψ(x, t) +
τ 2

2!
∂2t ψ(x, t) + ...

For τ << 1
ψ(x, t+ τ) ' ψ(x, t) + τ∂tψ(x, t)

and we obtain the Classical Kolmogorov-Feller Equation (CKFE), [5], [6]

τ∂tψ(x, t) = −ψ(x, t) + ψ(x, t)⊗x p(x) (4)

Equation (4) is based on a critical assumption which is that the time evolution
of the density field ψ(x, t) is influenced only by short term events and that
longer term events have no influence on the behaviour of the field at any time
t, i.e. the ‘system’ described by equation (4) has no ‘memory’. This statement
is the physical basis upon which the condition τ << 1 is imposed thereby
allowing the Taylor series expansion of the ψ(x, t + τ) to be made to first
order.

From equation (4), the Schrödinger operator can be derived if we consider
imaginary time and a Gaussian system where the Variance σ2 (σ being the
‘Standard Deviation’) approaches zero. Thus let t := it, τ = ~ and

p(x) =
1

σ
√

2π
exp

(
−1

2

x2

σ2

)
, σ2 → 0 (5)

whose Fourier transform yields the Characteristic Function

p̃(k) =

∞∫
−∞

p(x) exp(−ikx)dx = exp(−σ2k2/2) = 1− σ2

2
k2, σ2 → 0

Using the convolution theorem, equation (4) transforms to

−i~∂tψ̃(k, t) = −ψ̃(k, t) +

[
1− σ2

2
k2
]
ψ̃(k, t) = −σ

2

2
k2ψ̃(k, t)

which in x-space (using the convolution theorem again) yields the equation

−i~∂tψ(x, t) =
σ2

2
∂2xψ(x, t)

Thus with σ2 := ~2/m, equation (1) is recovered in one-dimension using nat-
ural units with ~ = 1. Note that this equation is consistent with a model for
the PDF given by

p(x) = δ(x) +
~2

2m
δ(2)(x)
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and has the Green’s function

G(x | x0, t | t0) =

√
im

2π(t− t0)
exp

[
im(x− x0)2

2(t− t0)

]
which is the solution of the equation

(∂2x + 2mi∂t)G(x | x0, t | t0) = −δ(x− x0)δ(t− t0)

where x0 and t0 < t are the spatial origin and initial time, respectively, with
x | x0 ≡| x− x0 | and t | t0 ≡| t− t0 |.

3 Derivation of the FSKG Equation using a

Random Walk Model

Given that equation (4) is memory invariant, the question arises as to how
longer term temporal influences can be modelled, other than by taking an
increasingly larger number of terms in the Taylor expansion of ψ(x, t+τ) which
is not of practical analytical value, i.e. writing Einstein evolution equation in
the form

τ∂tψ(x, t) +
τ 2

2!
∂2t ψ(x, t) + ... = −ψ(x, t) + ψ(x, t)⊗x p(x)

The key to solving this problem is to express the infinite series on the left hand
side of the equation above in terms of a ‘memory function’ mem(t) and write

τmem(t)⊗t ∂tψ(x, t) = −ψ(x, t) + ψ(x, t)⊗x p(x) (6)

where ⊗t is taken to denote the convolution integral over t. This is the Gener-
alised Kolmogorov-Feller Equation (GKFE) which reduces to the CKFE when
mem(t) = δ(t) For any inverse function or class of inverse functions of the type
mem−1(t), say, such that

mem−1(t)⊗t mem(t) = δ(t)

the GKFE can be written in the form

τ∂tψ(x, t) = −mem−1(t)⊗t ψ(x, t) + mem−1(t)⊗t ψ(x, t)⊗x p(x)

where the CKFE is again recovered when mem−1(t) = δ(t) given that δ(t)⊗t
δ(t) = δ(t).

Consider the memory function for which

τmem(t) = −i1+αδ(α)(t), 0 < α < 1
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and the PDF

p(x) = (1− αm2)δ(x) +

(
1

2m

)1−α

δ(2)(x)

so that equation (6) becomes

−i1+α∂(1+α)t ψ(x, t) = −αm2ψ(x, t) +

(
1

2m

)1−α

∂2xψ(x, t) (7)

It is then clear that when α → 0 and α → 1, equations (1) and (2) are re-
covered, respectively. In the following section, we study the free space Green’s
function for equation (7) - the Fractional Schrd̈ingier-Klein-Gordon (FSKG)
equation.

4 Evaluation of the FSKG Green’s Function

The Green’s function G for equation (7) is the solution of

(∂2x + i1+αβ∂1+αt + γ)G(x | x0, t | t0) = −δ(x− x0)δ(t− t0), 0 < α < 1

where
β = (2m)1−α and γ = −αβm2

and describes the propagation of a particle whose wave function is given by
the solution of equation (7) from a space-time singularity at (x0, t0).

In Fourier space this equation transforms to

(−k2 + Ω2 + γ)g̃ = −1 (8)

where

g(X,ω) =

∞∫
−∞

G(X, τ) exp(−iωτ)dτ, τ ≡| t− t0 |

g̃(k, τ) =

∞∫
−∞

G(X, τ) exp(−ikX)dX, X ≡| x− x0 |

and
Ω2 = i1+αβ(iω)1+α

so derived by considering the following Fourier transform based definition of a
fractional derivative:

∂1+αt ψ(X, t) =
∂1+αt

2π

∞∫
−∞

ψ̃(X,ω) exp(iωt)dω =
1

2π

∞∫
−∞

(iω)1+αψ̃(X,ω) exp(iωt)dω
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Theorem 4.1 The time independent Green’s function g(X,ω) for equation
(7) is given by

g(X,ω) =
i

(2Ω− iγ)
exp(iΩX)

Proof From equation (8) we can write

g̃ =
1

k2 − Ω2 − γ
=

1

k2 − Ω2

(
1− γ

k2 − Ω2

)−1

=
1

k2 − Ω2

(
1 +

γ

k2 − Ω2
+

γ2

(k2 − Ω2)2
+ ...

)
The first term of this series is the Fourier space representation for the conven-
tional Green’s function for the classical (one-dimensional) wave equation and
is given by i exp(iΩX)/2Ω. Hence, using the convolution theorem, we obtain
a multiple convolution series expression for the function g(X,ω) given by

g(X,ω) =
i

2Ω
exp(iΩX) + γ

i

2Ω
exp(iΩX)⊗X

i

2Ω
exp(iΩX)

+γ2
i

2Ω
exp(iΩX)⊗X

i

2Ω
exp(iΩX)⊗X

i

2Ω
exp(iΩX) + ...

Defining the convolution integral in normalised form, i.e. for two piecewise
continuous functions f1(X) and f2(X)

f1(X)⊗X f2(X) ≡ lim
L→∞

L∫
−L

f1(X − Y )f2(Y )dY

the primary convolution integral of this series is

lim
L→∞

1

2L

L∫
−L

exp[iΩ(X − Y )] exp(iΩY )dY = exp(iΩX)

and hence the series reduces to the form

g(X,ω) =
i

2Ω
exp(iΩX)

[
1 +

iγ

2Ω
+

(
iγ

2Ω

)2

+ ...

]

=
i

2Ω
exp(iΩX)

(
1− iγ

2Ω

)−1
=

i

(2Ω− iγ)
exp(iΩX)
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5 Temporal Properties of Mass-Less Particles

The time dependent Green’s function is given by

G(X, τ) =
1

2π

∞∫
−∞

g(X,ω) exp(iωτ)dω

We consider the time dependent properties of this function for the case when
x→ x0 and

G(0, τ) =
1

2π

∞∫
−∞

i

2Ω

(
1− iγ

2Ω

)−1
exp(iωτ)dτ

This function expresses the temporal properties of a free spin-less particle in
the proximity of its origin.

Theorem 5.1 For a mass-less particle

| G(0, τ) |2∼ 1

τ 1−α
, τ > 0

Proof
i

2Ω

(
1− iγ

2Ω

)−1
=

i

2Ω
− γ

4Ω2
+ ... =

i

2Ω
, m→ 0 (9)

so that

G(0, τ) =
1

2π

∞∫
−∞

exp(iωτ)

2i(1+α)/2
√
β(iω)(1+α)/2

dω =
1

2i(1+α)/2
√
βΓ
(
1+α
2

)
τ (1−α)/2

given that

1

2πi

i∞∫
−i∞

exp(pτ)

pq
dp =

1

Γ(q)τ 1−q
, q > 0

and hence it is clear that | G(0, τ) |2 - the probability density (of finding a
particle in a given place at a given time, if the particle’s position is measured)
- scales with time according to 1/τ 1−α.

This result is of course based on the asymptote m → 0 to recover just
the first term of the series expansion given in equation (9). However, we can
relax the condition by taking the inverse Fourier transform of higher order
terms given that the principal component of each term is Ω−n, n = 1, 2, 3, ....
Repeating the same calculation as that applied to the first term, we obtain the
series

G(0, τ) =
c1(α,m)

τ (1−α)/2
+ c2(α,m)τα + c3(α,m)τ (1+3α)/2 + ..
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where cn are complex coefficients. It is then clear the first term is the only
term that has an (fractional) inverse scaling with time.

Finally, we note that since

g(X,ω) =
i

(2Ω− iγ)
(1 + iΩX + ...) =

i

2Ω
− X

2
, m→ 0

we can write

G(X, τ) =
c1(α,m)

τ (1−α)/2
− X

2
δ(τ), m→ 0

and the inverse scaling law with time is preserved over all space. Thus, for
any source of semi-relativistic mass-less particles Υ(x, t) of compact support
x ∈ [−X,X], say, the wave function is given by

ψ(x, t) ∼ 1

t(1−α)/2
⊗t

X∫
−X

Υ(x, t)dx− x

2
⊗x Υ(x, t)

6 Conclusion

By introducing a fractional time derivative we have derived an equation, i.e.
equation (7), that models the intermediate relativistic case for spin-less free
particles using an approach that is based on the GKFE. We have then shown
that for mass-less particles, the time dependent behaviour of the density func-
tion scales as 1/t1−α. This scaling function is the kernel of the fractional
(Riemann-Liouville) integral which can be used to define a fractional differen-
tial. This is discussed in Appendix A which provides a brief introduction for
the benefit of readers who are not familiar with the fractional calculus.

6.1 Open Questions

The methodology considered in this paper is entirely phenomenological and
there are a number of open questions that should be considered:

1. Given that there are, in principal, a number of routes to constructing
an equation that full-fills the requirements of equation (7) on a phe-
nomenological basis, is there a uniqueness criteria that can be applied
(or otherwise)?

2. Given 1. above, what are the properties associated with a two- and
three-dimensional version of equation (7)?
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3. Given 1. above, what modifications to equation (7) should be considered
in order to model an interacting system determined by a time indepen-
dent potential V (r), for example, given that equation (1) and (2) extend
to the forms

[∇2 + 2im∂t − 2mV (r)]ψ(r, t) = 0

[∇2 − ∂2t −m2 − 2iV (r)∂t + V 2(r)]Ψ(r, t) = 0

respectively?

6.2 Discussion

Unlike the fractional Schrd̈inger equation [8] which has a fractional spatial
derivative and is based on using a Lévy distribution (with Characteristic Func-
tion exp(−a | k |γ) ' 1− a | k |γ, a→ 0 where γ is the Lévy index) in place
of the Gaussian distribution as given in equation (5), the use of a memory
function to fractionalise the time derivative associated with the GKFE may
be of significance in terms of modelling intermediate-relativism. If so, it is not
coincidence that the time evolution of such semi-relativistic fields should be
characterised by a 1/t1−α scaling law as this kernel is fundamental to fractional
calculus (as discussed briefly in Appendix A) and through fractional calculus,
the behaviour of self-affine or fractal fields (also discussed briefly in Appendix
A). Thus, the possibility exists that there is a correlation between the physics
of semi-relativistic states and the ‘world of Fractal Geometry’.

The phenomenology associated with the approach considered in this paper
is consistent with the derivation of the Schrödinger and Klein-Gordon equa-
tions using a Feynman path integral approach (e.g. [8], [9] and [10]). It is also
compatible with an approach based on fundamental properties such as homo-
geneity, isotropy and randomness to justify the emergence of the continuity
equation through fluctuations described in terms of the probability density
[11], quantum Brownian motion [12] and maximising the Gibbs-Boltzmann
entropy (or equivalently minimising the Szilard-Shannon-Kotelnikov informa-
tion entropy measure) [13].

In addition to the Klein-Gordon equation considered in this paper, the
fundamental field equations of physics are relativistic forms of non-relativistic
counterparts. Just as the Klein-Gordon equation is a relativistic spin-0 ver-
sion of the spin-0 Schrödinger equation, so the Proca equations [7], for ex-
ample, are a relativistic version of Maxwell’s equations which describe elec-
tromagnetic fields with mass and a spin of 1 characterising a Vector Boson.
Similarly, the Proca equations decouple to give the Klein-Gordon equation
whereas Maxwell’s equation decouple to yield the classical wave equation, i.e.
Maxwell’s equations are Proca’s equations in the non-relativistic limit. Thus,
the issue of considering the nature of physical fields associated with the ‘rela-
tivistic to non-relativistic continuum’ applies to other systems of equations in
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addition to those considered in this paper, a path of enquiry that is left for
future investigation.

Appendix A: A Short Overview on the Frac-

tional Differential

For 0 < q < 1, if we define the (Riemann-Liouville ) derivative of order q as

D̂qu(t) ≡ d

dt
[Î1−qu](t) =

1

Γ(1− q)
d

dt

t∫
−∞

(t− τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1− q)

t∫
−∞

(t− τ)−qu′(τ)dτ ≡ Î1−qu′(t).

Hence,
Îq[D̂qu] = Îq[Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator Îq. Given any q > 0, we can
always write λ = n− 1 + q and then define

D̂λu(t) =
1

Γ(1− q)
dn

dtn

t∫
−∞

u(τ)(t− τ)−qdτ.

Dq is an operator representing a time invariant linear system consisting of a
cascade combination of an ideal differentiator and a fractional integrator of
order 1− q. For Dλ we replace the single ideal differentiator by n such that

D̂0u(t) =
1

Γ(1)

d

dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫

−∞

u(τ)δ(t− τ)dτ

and

D̂nu(t) =
1

Γ(1)

dn+1

dtn+1

t∫
−∞

u(τ)dτ = u(n)(t) ≡
∞∫

−∞

u(τ)δ(n)(t− τ)dτ.

In addition to the conventional and classical definitions of fractional deriva-
tives and integrals, more general definitions have recently been developed in-
cluding the Erdélyi-Kober operators [14], hypergeometric operators and oper-
ators involving other special functions such as the Maijer G-function and the
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Fox H-function [15]. Moreover, all such operators leading to a fractional inte-
gral of the Riemann-Liouville type and the Weyl type would appear (through
induction) to have the general forms

Îqf(t) = tq−1
t∫

−∞

Φ
(τ
t

)
τ−qf(τ)dτ and Îqf(t) = t−q

∞∫
t

Φ

(
t

τ

)
τ q−1f(τ)dτ

respectively, where the kernel Φ is an arbitrary continuous function so that the
integrals above make sense in sufficiently large functional spaces.

Although it is possible to compute fractional integral and differential oper-
ators using the results discussed above, to the best of the authors knowledge,
no direct relationship between fractional calculus and fractal geometry has yet
been established and we arrive at an open question: Is there a geometrical rep-
resentation of a fractional derivative? If not, can one prove that a graphical
representation of a fractional derivative does not exist? The general consensus
of opinion is that there is no simple geometrical interpretation of a derivative
of fractional order and that if there is, then as Virginia Kiryakova concludes
in her book on ‘Generalised Fractional Calculus and Applications’ [16], ‘... it
is likely to be found in our fractal world’.
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