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REISSNER–NORDSTRÖM EXPANSION

EMIL M. PRODANOV∗, ROSSEN I. IVANOV†

School of Mathematical Sciences, Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland

E-mails: ∗Emil.Prodanov@dit.ie; †Rossen.Ivanov@dit.ie

and V.G. GUEORGUIEV

University of California, Merced, USA
E-mail: vesselin@mailaps.org

We propose a classical mechanism for the cosmic expansion during the
radiation-dominated era, assuming the Universe as a two-component gas. The
first component is the ultra-relativistic “standard” fraction described by an
equation of state of an ideal quantum gas of massless particles. The second
component consist of superheavy charged particles and their interaction with
the “standard” fraction drives the expansion. This interaction is described by
the Reissner–Nordström metric purely geometrically — the superheavy charged
particles are modeled as zero-dimensional naked singularities which exhibit
gravitational repulsion. The radius of a repulsive sphere, surrounding a naked
singularity of charge Q, is inversely proportional to the energy of an incoming
particle or the temperature. The expansion mechanism is based on the “grow-
ing” of the repulsive spheres of the superheavy particles with the drop of the
temperature — this drives apart all neutral particles and particles of specific
charge q/m such that sign(Q)q/m ≥ −1. The Reissner–Nordström expansion
mechanism naturally ends at Recombination. We model the Universe during
the Reissner–Nordström expansion as a van der Waals gas and determine the
equation of state.

In 1971, Hawking1 suggested that there may be a very large number
of gravitationally collapsed charged objects of very low masses, formed as
a result of fluctuations in the early Universe. A mass of 1014 kg of these
objects could be accumulated at the centre of a star like the Sun. Hawk-
ing treats these objects classically and his arguments for doing so are as
follows:1 gravitational collapse is a classical process and microscopic black
holes can form when their Schwarzschild radius is greater than the Planck



March 4, 2008 3:37 WSPC - Proceedings Trim Size: 9in x 6in 31˙Prodanov

305

length (Gh/c3)−1/2 ∼ 10−35 m (at Planck lengths quantum gravitational ef-
fects do not permit purely classical treatment). This allows the existence of
collapsed objects of masses from 10−8 kg and above and charges up to ±30
electron units.1 Additionally, a sufficient concentration of electromagnetic
radiation causes a gravitational collapse — even though the Schwarzschild
radius of the formed black hole is smaller than the photon’s Compton wave-
length which is infinite. Therefore, when elementary particles collapse to
form a black hole, it is not the rest Compton wavelength hc/mc2 that
is to be considered — one should instead consider the modified Compton
wavelength hc/E, where E ∼ kT >> mc2 is the typical energy of an ultra-
relativistic particle that went to form the black hole.1 Microscopic black
holes with Schwarzschild radius greater than the modified Compton wave-
length hc/E, can form classically and independently on competing quan-
tum processes. Hawking suggests that these charged collapsed object may
have velocities in the range 50 – 10000 km/s and would behave in many
respects like ordinary atomic nuclei.1 When these objects travel through
matter, they induce ionization and excitation and would produce bubble
chamber tracks similar to those of atomic nuclei with the same charge. The
charged collapsed objects survive annihilation and, at low velocities (less
than few thousand km/s), they may form electronic or protonic atoms:1

the positively charged collapsed objects would capture electrons and thus
mimic super-heavy isotopes of known chemical elements, while negatively
charged collapsed objects would capture protons and disguise themselves as
the missing zeroth entry in the Mendeleev table. Such ultra-heavy charged
massive particles (CHAMPS) were also studied by de Rujula, Glashow and
Sarid2 and considered as dark matter candidates. Dark Electric Matter Ob-
jects (DAEMONS) of masses just above 10−8 kg and charges of around ±10
electron units have been studied in the Ioffe Institute and positive results
in their detection have been reported3 — observations of scintillations in
ZnS(Ag) which are excited by electrons and nucleons ejected as the relic
elementary Planckian daemon captures a nucleus of Zn (or S). The DAMA
(DArk MAtter) collaboration also report positive results4 in the detection
of such particles using 100 kg of highly radiopure NaI(Tl) detector.

These superheavy charged particles can serve as driving force for the ex-
pansion of the Universe during the radiation-dominated epoch in a classical
particle-scale model, which we recently proposed.5 Along with this type of
particles, within our model, magnetic monopoles can also play the same role
for the expansion of the Universe: it has been suggested6 that ultra-heavy
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magnetic monopoles were created so copiously in the early Universe that
they outweighed everything else in the Universe by a factor of 1012.

The classical mechanism of the cosmic expansion relies on the assump-
tion that the Universe is a two-component gas. One of the fractions is that
of ultra-relativistic “standard” particles of typical mass m and charge q
with equation of state of an ideal quantum gas of massless particles. The
other component consists of the superheavy charged particles of masses M
(of around 10−8 kg and above) and charges Q (of around ±10 electron
charges and above) — exactly as those described earlier.

For an elementary particle such as the electron, the charge-to-mass ra-
tio is q/m ∼ 1021 (in geometrized units c = 1 = G), while for the su-
perheavy charged particles, M <∼ Q. In view of this, the general-relativistic
treatment of elementary particles or charged collapsed objects of very low
masses also necessitates consideration from Reissner–Nordström (or Kerr–
Newman) viewpoint — for as long as their charge-to-mass ratio remains
above unity. We also treat the superheavy charged particles classically (in
line with Hawking’s arguments outlined earlier). That is, the superheavy
charged particles are modelled as Reissner–Nordström naked singularities
and the expansion mechanism is based on their gravito-electric repulsion.
Instead of the Schwarzschild radius, the characteristic length that is to be
considered now and compared to the modified Compton length,1 will be
the radius of the van der Waals-like impenetrable sphere that surrounds
a naked singularity (see Cohen et al.7 for a very thorough analysis of the
radial motion of test particles in a Reissner–Nordström field). As shown in
Prodanov et al.,5 for temperatures below 1031 K, the radius of the impene-
trable sphere of a superheavy charged particle of mass 10−8 kg and charge
±10 electron units is greater than the modified Compton wavelength of the
superheavy charged particle itself. The “standard” particles of the expand-
ing Universe are therefore too far from the superheavy charged particles for
quantum interactions to occur between the two fractions.

Consider a “standard” particle of specific charge q/m, and a super-
heavy charged particle of charge Q, such that sign(Q)q/m ≥ −1, with the
“standard” particle approaching the superheavy charged particle from in-
finity. The pseudo-Newtonian potential of the field of the naked singularity
is given by5 U(r) = −(mM)/r + (qQ)/r + [(m/2)(−M 2 + Q2)]/r2 and
the field is characterized by three regions.5,7 The region between r = 0
and r = r0(T ) is impenetrable due to the condition for reality of the ki-
netic energy of the incoming test particle . The turning radius r0(T ) is
given by5,7 r0(T ) = Q(q + m)/(kT ) for very high temperatures. This can
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be thought of as the radius of an “impenetrable” sphere, surrounding the
naked singularity, that grows with the drop of the temperature: the higher
the energy (or the temperature), the deeper an incoming particle will pen-
etrate into the gravitationally repulsive field of the naked singularity. The
region between the turning radius r0(T ) and the critical radius rc ≥ r0(T )
is repulsive. At this critical radius, repulsion and attraction interchange:5

rc = M(Q2/M2 − 1)/[1 − (qQ)/(mM)] and the region above rc is attrac-
tive. As the temperature drops, the superheavy charged particles “grow”
(incoming particles have lower and lower energies and turn back farther
and farther from the naked singularity). When the temperature gets suf-
ficiently low, the radius r0(T ) of the impenetrable sphere of a superheavy
charged particle grows to rc (but not beyond rc, as in the region r > rc the
incoming probe is attracted and cannot turn back). This means that incom-
ing particles have such low energies that they turn back immediately after
they encounter the gravitational repulsion. Incoming particles of charge q
such that qQ > Mm do not even experience attraction — the repulsive
region for such particles extends to infinity (the gravitational attraction
will not be sufficiently strong to overcome the electrical repulsion) and for
them r0(T ) has no upper limit. The interaction between the two fractions of
the Universe results5 in power law expansion with scale factor a(τ) ∼

√
τ ,

corresponding to the expansion during the radiation-dominated era.
In our picture, the Universe has local Reissner–Nordström geometry, but

globally, the geometry is that of Robertson–Walker. Namely, we confine our
attention to the local spherical neighbourhood of a single naked singularity
and consider the Universe as multiple copies (fluid) of such neighbourhoods.
It is plausible to assume that these naked singularities are densely packed
spheres that fill the entire Universe. Thus, the volume V of the Universe,
at any moment during the Reissner–Nordström expansion, would be of
the order of the number N of these particles, times the “volume” of the
repulsive sphere of a superheavy charged particle: V ∼ Nr3

0(T ). Therefore,
the number density of the superheavy charged particles is of the order of
r−3
0 (T ). At Recombination, the free ions and electrons combine to form

neutral atoms (q = 0) and this naturally ends the Reissner–Nordström
expansion mechanism — a neutral “normal” particle will now be too far
from an “usual” particle to feel the gravitational repulsion (the density of
the Universe will be sufficiently low).

The standard treatment of a Robertson–Walker Universe uses the
isotropicity and the homogeneity for modeling the energy-momentum
sources as a perfect fluid. This applies for matter known observationally
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to be very smoothly distributed. On smaller scales, such as stars or even
galaxies, this is a poor description. In our picture we model the Universe as
a van der Waals gas and we use small scale density and pressure variables.
Such modeling is possible in the light of the deep analogies between the
physical picture behind the Reissner–Nordström expansion and the classi-
cal van der Waals molecular model: atoms are surrounded by imaginary
hard spheres and the molecular interaction is strongly repulsive in close
proximity, mildly attractive at intermediate range, and negligible at longer
distances. The laws of ideal gas must then be corrected to accommodate for
such interaction: the pressure should increase due to the additional repul-
sion and the available volume should decrease as atoms are no longer entities
with zero own volumes. Therefore, at Recombination, the radius r0(T ) of a
superheavy charged particle will be of the order of Rc = N−1/3trecomb . We
request that, once r0(T ) becomes equal to Rc, i.e. when the charged parti-
cles recombine, then the potential of the interaction between a naked sin-
gularity and a particle of charge q, such that qQ > mM , becomes zero. For
particles of charge q, such that sign(Q)q/m ≥ −1 and also qQ ≤ mM , the
potential of the interaction becomes negligible earlier: when r0(T ) reaches
rc.

With N superheavy particles, the effective space left for the motion of
the “standard” fraction consisting of n particles, is reduced by a factor
of N times the volume of the repulsive sphere of a superheavy particle.
Then the “van der Waals” equation p + (N 2α)/V 2 = nkT [1 + (Nβ)/V ]/V
has: α = 2π

∫ R
r0(T ) U(r) r2 dr = πm(M2 − Q2)[R − r0(T )] + πmM [1 −

(qm)/(QM)][R2−r2
0(T )] and β = 2π

∫ r0(T )
0 r2dr = 2πr3

0(T )/3. Here R = rc

if sign(Q)q/m ≥ −1 and also qQ ≤ mM , or R = Rc if qQ > mM . The
equation of state is p = ηρ4/3 − α/β2, where η = const. The second term
depends on the temperature via α and β and becomes irrelevant towards
the end, as α → 0 when r0(T ) → R.
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