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Abstract  

Human papillomaviruses (HPVs) are ubiquitous, sexually transmitted viruses present in 99.7% 

of all cervical cancers, the second most common cancer in females worldwide. Expression of 

HPV L1 and L2 late genes is found only in terminally differentiated epithelial cells. As L1 and 

L2 proteins are highly immunogenic, it is suggested that their suppression may prevent 

detection of the virus by the immune system, thus acting as a prerequisite for persistence of 

infection. Therefore, if expression of these proteins in the lower cervical layers was induced, it 

could lead to clearance of the virus. One aim of this thesis was to investigate potential inducers 

of late gene expression in HPV-16. Functional stable cell lines containing plasmids, in which 

L1 is replaced by a CAT reporter gene, were treated with an array of small molecule drugs. 

TPA and retinoic acid were found to be inducers of late gene expression, with potential as 

treatments for persistent HPV infection. An additional aim of the study was to investigate the 

role and distribution of invariant Natural Killer T (iNKT) cells in cervical epithelium. iNKT 

cells are potent activators of the immune system with a predominately protective function. 

However, their presence may be downregulated in HPV positive epithelium, possibly helping 

infected cells evade protective immunological surveillance. As there is currently no available 

means to determine iNKT cell existence in human tissue, the objective was to develop a novel 

method for their detection, useful for subsequent enumeration of iNKT cells in HPV-infected 

cervical cancer samples. Cell blocks containing a pure population of iNKTs were initially 

created for use as positive controls. The staining potential of the 6B11 antibody, which targets 

the iNKT T cell receptor (Vα24-Jα18), was then examined for use in both iNKT cell block 

sections and a range of human tissue. Investigations through automated staining returned 

positive results in gastric and tonsil tissue, showing potential use for 6B11 as an innovative 

technique of iNKT cell detection in human tissue.  
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1. Chapter 1 - Introduction  

1.1 The Cervix  

The cervix is the narrow opening into the uterus from the vagina (Mescher 2005) and is part of 

the female reproductive system, which consists of internal organs (including the vagina, uterus, 

ovaries and fallopian tubes) together with the external genital organs (the vulva and its 

components). At the upper portion of the cervix, there is an opening into the uterus called 

the internal os, while the lower portion of the cervix contains an opening into the vagina 

referred to as the external os (Lowe & Anderson 2005). The cervical canal links the two, 

connecting the uterine cavity and the lumen of the vagina. This cervical canal varies greatly in 

length and width between females and over the course of a woman's life, depending on age, 

parity and menstrual status. The cervix is divided into the endocervix, the area proximal to the 

uterus and the ectocervix, proximal to the vagina (Anderson 1991) (Figure 1.1). The endocervix 

is lined with a single layer of mucus secreting simple columnar epithelium while the ectocervix 

is covered by nonkeratinizing stratified squamous epithelium. These layers of stratified 

squamous epithelium are divided into basal, parabasal, intermediate and superficial regions 

(Figure 1.2). The abrupt transition from the columnar epithelium of the endocervix to the 

stratified squamous epithelium of the ectocervix produces a squamocolumnar junction (SCJ) 

(Wadhwa 2012). Squamous metaplasia in the cervix refers to the physiological replacement of 

the columnar epithelium by a newly formed squamous epithelium. The region where this 

metaplasia occurs is known as the "transformation zone" (T-zone) and is the most likely 

location for abnormal or precancerous cells to develop (Pich et al. 1992). This type of cancer 

originating in the ecotocervix is called squamous cell carcinoma (SCC) and is by far the most 

common tumour of the cervix. The glandular cells of the endocervix can also become 

cancerous, a condition referred to as adenocarcinoma of the cervix. While SCCs accounted for 

more than 90% of primary cervical malignancies in the past, the overall frequency has dropped 

http://en.wikipedia.org/wiki/Internal_orifice_of_the_uterus
http://en.wikipedia.org/wiki/External_os
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to 60–80%, while the incidence of endocervical adenocarcinoma is rising (Wei 2009).  Less 

commonly, some cervical cancers have features of both squamous cell carcinomas and 

adenocarcinomas. These are referred to adenosquamous carcinomas or mixed carcinomas. 

 

  
 

Figure 1.1 Structure of the Cervix and Transformation Zone  

The diagram illustrates the female reproductive system indicating the location of the 

endocervix, ectocervix and the transformation zone. The transformation zone indicates the 

region where the columnar epithelial cells of the endocervix meet the stratified squamous 

epithelial cells of the ectocervix and is the area where metaplasia most commonly occurs 

(Iwasaki 2010).    
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Figure 1.2 Structure of the Ectocervix  

A) The diagram illustrates the layers of normal stratified epithelium (Adapted from Moody & 

Laimins 2010). B) High power H&E stain demonstrating the different layers of squamous 

epithelium in the ectocervix. Starting from the basement membrane, the youngest cells of the 

basal layer are shown, maturing as they move through the parabasal, intermediate and 

superficial layers (Cunniffe 2014). 
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1.2 Cervical Cancer Epidemiology  

According to the Irish Cancer Society, approximately 200 women are diagnosed with cervical 

cancer each year in this country (Irish Cancer Society 2015). It is the ninth most common female 

cancer in Ireland and the second most common female cancer worldwide (World Health 

Organisation 2014b). In comparison to the majority of other cancers, cervical carcinoma 

primarily affects younger women, with 60% of cases occurring in women aged 50 or younger 

(Irish Health 2010). However, because it develops over time, it is also one of the most 

preventable types of cancer. The Papanicolaou (Pap) test has been established as one of the 

most successful cancer screening tests to date, with invasive cervical cancer incidence and 

mortality rates dropping dramatically in countries where this programme is implemented 

(Isidean & Franco 2014). A Pap smear is a simple and effective test where cells collected from 

the cervix are spread on a microscope slide for examination. The Papanicolaou stain, developed 

by Dr. George N. Papanicolaou in the late 1940s, is a polychrome staining method comprising 

of a nuclear stain (haematoxylin) together with two counterstains (Orange G and Eosin Azure 

dyes) (Papanicolaou & Traut 1997). A correctly stained Pap smear should show well 

distinguished purple nuclei while cytoplasmic staining should display a spectrum of colours 

such as orange in highly keratinised cells to ranges of orange/pink in superficial cells and 

turquoise green/blue in intermediate and parabasal cells (DeMay 1996) (Figure 1.3). Following 

Papanicolaou staining the cells are highly transparent, a feature which means diagnosis is 

possible even in areas of overlapping cells and when mucus and inflammatory cells are present. 

The cells are subsequently evaluated for irregularities, specifically for precancerous and 

cancerous abnormalities. 
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Figure 1.3 Papanicolaou Stain   
Papanicolaou stain showing a low-grade squamous intraepithelial lesion (LSIL).  

Superficial cells are orange to pink with intermediate and parabasal cells turquoise green to 

blue. Abnormal cells have an enlarged nucleus, irregular chromatin and relatively 

abundant cytoplasm, with binucleation also observed (Adapted from Carson & Hladik 2009).

      

 

In Ireland, CervicalCheck is the National Cervical Screening Programme and provides free Pap 

tests to women aged 25 to 60. The importance of access to such programmes is reinforced by 

World Health Organisation statistics, which state that more than 85% of cervical cancer deaths 

occur in developing countries, where it accounts for 13% of all female cancers  (World Health 

Organisation 2014).  Cervical cancer remains the most common cancer in women in Eastern 

and Middle Africa. High risk regions, with estimated age-standardised rates over 30 per 

100,000, include Eastern Africa (42.7), Melanesia (33.3), Southern (31.5) and Middle (30.6) 

Africa, while rates are lowest in Australia/New Zealand (5.5) and Western Asia (4.4) (World 

Health Organisation, 2012). The estimated age-standardised incidence and mortality rates 

worldwide per 100,000 per year is demonstrated in Figure 1.4. 

 

Enlarged  

nucleus 

Binucleation 

Abundant 

Cytoplasm 
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Figure 1.4 Cervical Cancer Estimated Incidence and Mortality Rates 2012 
A) Estimated cervical cancer incidence worldwide in 2012. B) Estimated cervical cancer 

mortality worldwide in 2012. Figures show estimated age-standardised rates (World) per 

100,000 (World Health Organisation 2012). 

 

1.3 Human Papillomavirus and Cervical Cancer  

Human Papillomavirus (HPV), one of the most common causes of sexually transmitted disease 

in both men and women worldwide, is found in 99.7% of women with cervical cancer 

(Walboomers et al. 1999). HPV was first implicated as a causative agent of cervical cancer in 

the early 1980s by Harold zur Hausen, who was awarded the Nobel Prize in Physiology or 

Medicine in 2008 for his ground-breaking discovery  (zur Hausen 1989). 

 

 

A) Estimated cervical cancer 

incidence worldwide in 2012 

B) Estimated cervical cancer 

mortality worldwide in 2012 
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1.4 HPV Taxonomy   

Papillomaviruses are a highly diverse family of viruses which contain 29 genera formed by 189 

papillomavirus (PV) types. Numerous types have been detected in various mammals and birds, 

however the most extensive research has been performed in humans. Currently, the complete 

genomic sequence of over 240 distinct viral types has been characterised at the nucleotide level 

(Van Doorslaer 2013), with 120 types isolated and termed as human papillomaviruses (HPVs) 

(Bernard et al. 2010; de Villiers et al. 2004). HPVs infect epithelial cells and have the ability to 

induce an array of conditions ranging from warts to cancer (Doorbar 2006). More than 40 

different strains of HPV affect the genital area and on the basis of molecular epidemiologic 

evidence, specific strains of HPV have been clearly indicated as principal inducers of invasive 

cervical cancer and intraepithelial neoplasia (Walboomers et al. 1999; Schiffman et al. 1993). 

All Papillomaviruses are members of the Papillomaviridae family. The major branches of this 

phylogenetic tree are divided into 5 genera, which are identified by letters of the Greek alphabet, 

namely alpha-papillomavirus, beta-papillomavirus, gamma-papillomavirus, mu-

papillomavirus and nu-papillomavirus. The minor branches are referred to as species, which 

are further subdivided into strains as demonstrated in Figure 1.5 (de Villiers et al. 2004). The 

two major HPV genera are the alpha and beta-papillomaviruses, with approximately 90% of 

currently characterized HPVs belonging to one of these groups (Doorbar 2006). The largest 

group of HPVs comprise the Alpha-papillomaviruses, with this group containing the genital/ 

mucosal HPV types. The remaining three genera (Gamma, Mu and Nu) infect cutaneous sites 

which do not normally progress to cancer (Doorbar 2006).  
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Figure 1.5 HPV Family Tree  
Human Papillomaviruses are dived into 5 evolutionary groups with the Alpha genera infecting 

cervical epithelium (Doorbar 2006). 

 

More than 30 different HPV types are known to infect cervical epithelium and are classified 

into genotypes based on their association with cervical cancer and precursor lesions (Muñoz et 

al. 2003; Doorbar 2006) (Table 1.1). Many of these HPV types are shown to be ubiquitous and 

globally distributed (de Villiers et al. 2004). Low-risk types are non-oncogenic and have the 

potential to induce benign or low-grade abnormalities of cervical cells. Certain low-risk strains, 

such as HPV-6 and HPV-11, also have the ability to cause conditions such as anogenital warts 

as well as recurrent respiratory papillomatosis (RRP) (Lacey et al. 2006). 
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Oncogenic, or high-risk HPV types can cause intraepithelial neoplasia of the anogenital region 

in addition to some oropharyngeal cancer. 

Group HPV Types 

Established High-Risk 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73,82 

Probable High-Risk 26, 53, 66 

Established Low-Risk 
6, 11, 13, 40, 42, 43, 44, 54, 61, 70,72,81 and CPD108 

(HPV89 Subtype) 

Table 1.1 αHPV Types  
Risk groups of αHPV genotypes with risk relating to the possibility of developing cervical 

cancer (Adapted from Muñoz et al. 2003).  

 

It is now recognised that persistent cervical infection with high-risk HPV is a necessary 

prerequisite for the development of cervical cancer and its immediate precursor cervical 

intraepithelial neoplasia grade 3 (CIN3) (Saslow et al. 2012). Investigation into whether high-

risk HPV is a true aetiological agent of cervical cancer has been examined by considering 

Koch's postulates, as modified by Rivers for viral diseases. River’s postulates are as follows; 

1. Isolate virus from diseased hosts 

2. Cultivation of virus in host cells 

3. Proof of filterability 

4. Production of a comparable disease when the cultivated virus is used to infect 

experimental animals 

5. Reisolation of the same virus from the infected experimental animal 

6. Detection of a specific immune response to the virus (Rivers 1937).  
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As several of the six postulates cannot be tested ethically in patients, epidemiological data and 

laboratory studies have been utilised. Understandably, revolutionary advances in the scientific 

world have influenced the relevance of Koch’s and River’s postulates, with the ability to detect 

and evaluate nucleic acid sequences crucial for identifying infectious agents and their 

relationship with host cells. Fredricks and Relman have published their version of Koch’s 

postulates for the 21st century, which may also be applied when investigating the ability of 

HPV to cause cervical cancer (Fredricks & Relman 1996).  

Current findings offer overwhelming support for a necessary, but not sufficient, role for 

persistent high-risk HPV-type infection in cervical carcinogenesis  (Bosch et al. 2002). A drop 

in cervical cancer rates following a reduction in HPV infections would provide definitive proof  

(Roden & Wu 2006). Infection with high-risk oncogenic HPV types is detected in 99.7% of 

patients with cervical carcinoma (Walboomers et al. 1999) with HPV types 16 and 18 regarded 

as the genotypes most closely connected with progression to cervical cancer. These types are 

found consistently in approximately 70% of cervical cancer biopsies worldwide with type 16 

alone responsible for approximately 50% of cases (Bosch et al. 2008). 

1.5 HPV Pathogenesis 

Almost all sexually active men and women are exposed to the human papillomavirus in their 

lifetime. Eight out of 10 women will become infected at some point, with the peak prevalence 

of HPV infection occurring in women in their early 20s (Naucler et al. 2007). Although the 

incidence of infection is considerably high, most cases of HPV infection are transient and 

asymptomatic. The majority of instances resolve spontaneously, with up to 90% of the infected 

population clearing the infection within two years (Ho et al. 1998). However, a minor 

proportion of the infected population will become persistently infected, with the interval 

between persistent high-risk HPV infection and diagnosis of cervical cancer approximately 12-

15 years (Snijders et al. 2006). The most common clinically significant manifestation of 
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persistent genital HPV infection is cervical intraepithelial neoplasia (CIN). CIN is 

histologically classified into 3 grades i.e. mild dysplasia (CIN1), moderate dysplasia (CIN2), 

or severe dysplasia (CIN3) (Massa & Cejtin 2004). Each grade depicts the extent of which the 

cervix is affected by abnormal cells. As mentioned, cervical lesions do not necessarily progress 

to invasive cancer, with CIN1 often spontaneously resolving and reverting to a normal state 

without treatment. However, high-risk HPV serotypes that establish persistent infections can 

result in high-grade dysplasia (Barroso 2013). These high-grade abnormalities are considered 

cancer precursors as they are at a significant risk of progression to cancer.  

The Bethesda classification system was also developed for reporting cervical 

cytologic diagnoses and recording Pap smear results. This system aims to ensure a uniform 

analysis with clear terminology when making a clinical diagnosis (Solomon et al. 2002).  The 

terminology of the Bethesda system involves squamous intraepithelial lesion (SIL) 

classification and is divided into:  

(i) Low-grade SIL (LSIL) which includes HPV-linked cellular alterations, mild dysplasia 

and CIN1. 

(ii) High-grade SIL (HSIL) which includes both moderate and severe dysplasia, carcinoma 

in situ as well as CIN2 and 3. 

(iii) Squamous cell carcinoma (SCC) (Kurman 1991). 

As displayed in Figure 1.6, HPV gains initial entry to the basal cell layer through micro-

abrasions in the cervical epithelium. Once infection has occurred, early HPV genes are 

expressed and the viral DNA replicates from episomal DNA. As the viral genome migrates 

towards the midzone and superficial zone of the upper epithelium, it is further replicated and 

the late genes are expressed. When dysplastic cells constitute up to one third of the depth of the 

epithelium, the disease is classified as LSIL while HSIL represents dysplasia involving more 
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than one third and up to the entire depth of the epithelium (Mukhopadhyay et al. 2013). Over 

time, with persistent expression of viral genes, dysplastic cells may penetrate the basement 

membrane, leading to the development of an invasive cancer.   

 

 

Figure 1.6 HPV-Mediated Progression to Cervical Cancer  
Once initial infection has been established in the basal cell layer, viral genes are expressed 

which may lead to the proliferation of dysplastic cells within the epithelium. The relationship 

between the terminologies of the Bethesda system and CIN classification is displayed above. 

LSIL represents dysplasia involving the lower one-third of the squamous epithelium and 

comprises CIN1 while HSIL includes all dysplastic lesions beyond this and signifies moderate 

dysplasia (CIN2), severe dysplasia (CIN3) and carcinoma in situ. A small percentage of cases 

progress to cervical cancer with the potential to invade surrounding tissues if left untreated.  

(Woodman et al. 2007).  
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Representation of the squamous intraepithelial lesions in cervical tissue is shown in Figure 1.7. 

A haematoxylin and eosin stain was performed on cervical epithelium showing no evidence of 

malignancy together with LSIL, HSIL and SCC tissue sections.  

  

Figure 1.7 H&E Staining of Various Grade Cervical Epithelium  

Images from cervical samples representing various grades of squamous intraepithelial lesions. 

No evidence of malignancy (NEM) is shown in addition to low and high grade squamous 

intraepithelial lesions and squamous cell carcinoma. LSIL displays abnormal immature cells in 

the basal third of the epithelium with HSIL showing diffuse atypia and immature cells 

inhabiting the entire depth of the epithelium. Malignant cells invading though the basement 

membrane, with complete loss of epithelial structure and a large number of proliferating cells 

is observed with SCC. Sections were stained with haematoxylin and eosin with magnification 

shown at 100X (Orrù 2012). 
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1.6 The HPV Genome  

Human Papillomaviruses are a group of small non-enveloped double stranded DNA viruses 

with circular genomes of approximately 7,900 base pairs. However, despite this small size, their 

molecular biology is complex.  The HPV genome is organised into three domains: a long control 

region (a non-coding region also referred to as the upstream regulatory region [URR]), an early 

region and a late region (Figure 1.8 and 1.9) (Gravitt & Shah 2004). Each genome contains 

eight major open reading frames (ORFs), six of which are located in the early region (E1, E2, 

E4, E5, E6, and E7) with two in the late region (L1, L2) (Zheng & Baker 2006).  

 

 

Figure 1.8 The HPV-16 Circular, Double Stranded Genome (Sharma et al. 2013). 
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Figure 1.9 Linear Representation of the HPV-16 Genome   
Boxes indicate protein-coding regions, with E representing the early genes and L representing 

the late genes. The long control region (LCR) is also shown as are the early and late viral 

promoters (p97 and p670) and the early and late polyadenylation signals (pAE and pAL). Black 

circles indicate splice donors (5’ splice sites) while white circles indicate splice acceptors (3’ 

splice sites). Numbers refer to nucleotide positions in the HPV-16 sequence (Orrù 2012). 

 

The proteins of the early region are regulatory in function and are expressed immediately after 

initial infection of the host cell. They play roles in various biological processes including HPV 

genome replication and transcription, cell signalling and apoptosis control as well as immune 

modulation and structural modification of the infected cell (Graham 2010). The viral capsid is 

composed of the major and minor late gene proteins, termed L1 and L2, respectively. These 

capsid proteins are essential for the transmission of the virus and its survival in the environment 

(Graham 2010). The function of each HPV protein is summarised in Table 1.2. The life cycle 

of HPV is specifically associated with epithelial differentiation, with L1 and L2 proteins 

detected only in the upper layers of the terminally differentiated infected epithelium (Schwartz 

2000). The products of these late genes are highly immunogenic and it has been suggested that 

suppression of these products in the early stage of the life cycle may prevent detection of the 

virus by the immune system, leading to persistence of infection. Expression of HPV genes is 
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complex and is tightly regulated by differentiation-dependent transcription and RNA 

processing events. The inhibition of the late genes may be attributed to certain RNA elements 

in the late region which are suggested to regulate various RNA processing events including 

mRNA stability, splicing and translation (Schwartz 2000; Rush et al. 2005). Alternative splicing 

is a fundamental mechanism in the control of gene expression, with specific splicing enhancers 

and suppressors utilised to promote or suppress the recognition of the 5′ and 3′ splice sites, thus 

regulating gene expression (Zheng 2004). It is believed that premature induction of late gene 

expression, through intervening in the regulation of posttranscriptional steps such as splicing, 

could result in detection of the HPV virus by the host. This in turn would lead to successive 

clearance of infection. Therefore, identification of mechanisms to modulate late gene 

expression would be a worthwhile investigation. 

 

Table 1.2 Summary of HPV Genes and Corresponding Functions (Tristram & Fiander 

2007). 
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1.7 HPV Integration  

HPV gains entry to the basal cell layer of the cervical epithelium as a result of epithelial erosions 

or mucosal ulcerations in the transformation zone at the squamocolumnar junction, thus giving 

rise to infection. In order for the virus to attach to the cells, it must first exploit the L1 protein, 

using it to bind to different receptors on the cell surface. Studies have shown that 

glycosaminoglycans (GAGs), in particular heparan sulfate proteoglycans (HSPGs), can be 

utilised to mediate the initial attachment of virus particles to the cells. These HSPGs are located 

on the basement membrane and are exposed following trauma to the epithelium (Joyce et al. 

1999; Schiller et al. 2010). Additional investigations have also identified that HPV can enter a 

cell via interaction with α6 integrin, the main receptor of HPV-16 (Yoon et al. 2001). Once 

attachment has taken place, the virus gains entry to the host cell via L2 dependant, clathrin-

mediated endocytosis (Schiller et al. 2010). The virus then takes advantage of the cell’s 

replication machinery to reproduce its genome multiple times, with a low viral load of 

approximately 50 copies per infected cell. The viral episomes and cellular DNA replicate 

concurrently (Stubenrauch & Laimins 1999).   

In uninfected epithelium, basal cells exit the cell cycle soon after migrating into the suprabasal 

cell layers and undergo a process of terminal differentiation (Doorbar 2005). However, when 

the infected basal cells replicate, the viral DNA is split between the 2 daughter cells. One of 

these cells migrates to the suprabasal layer where differentiation occurs while the other daughter 

cell remains in the basal layer and continues to proliferate. Only low levels of the early E1 and 

E2 proteins, together with the early oncogenes E6 and E7 are expressed at this point, while late 

genes expression is suppressed (Stubenrauch & Laimins 1999). When the cell migrates to the 

upper layers of the epithelium, the viruses, as well as the cells, proliferate. However, the virus 

waits until it’s host cells have begun to differentiate and have safely escaped immune 

surveillance before it switches to late replication and gene expression (Sakakibara et al. 2013). 
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Once the host cell reaches the S-phase of the cell cycle, the virus can commence the process of 

differentiation, late viral gene expression and viral genome amplification. The HPV begins to 

replicate it’s genome to approximately 1000 copies, utilising the E6 and E7 growth promoters 

to stimulate the host cell to this point (Doorbar 2005). Expression of the late genes L1 and L2 

is also induced, which, as stated previously, encode the capsid proteins. These late phase 

proteins encapsidate newly synthesised viral genomes forming virions, which are then released 

from the uppermost layers of the epithelium. These shed viruses have the ability to initiate a 

new infection (Florin et al. 2002). HPV gene expression throughout the different layers of 

cervical epithelium is demonstrated in Figure 1.10.  

                            

 

 

 

 

 

 

 

 

 

Figure 1.10 The Life Cycle of Human Papillomaviruses  

Uninfected epithelium is shown on the left and HPV-infected epithelium is shown on the right. 

HPV gains entry to the basal cell layer of the cervical epithelium through micro-abrasions. Once 

initial infection has occurred, the early HPV genes E1, E2, E6 and E7 are expressed and the 

viral DNA replicates from episomal DNA. As the viral genome migrates towards the upper 

epithelium, it is further replicated and the late genes, L1 and L2, as well as E4, are expressed.  

These L1 and L2 proteins allow the viral DNA to become enclosed into capsids and form virions 

which are the shed from the cell (Moody & Laimins 2010).    
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1.8 E1 and E2 Proteins  

The E1 and E2 proteins are pivotal for transcriptional regulation, replication and segregation of 

papillomaviral DNA, a function which has been characterised via genetic studies (Lusky & 

Botchan 1985) and replication assays (Ustav & Stenlund 1991). Both proteins unite at the viral 

origin of replication (ori), which contains binding sites for the two proteins. This forms an E1-

E2-ori complex which is fundamental for initiation of DNA replication (Berg & Stenlund 1997). 

The HPV E1 protein is the largest and arguably most complex protein encoded by HPV and 

acts as the ‘initiator’ protein for viral DNA replication. It is an ATP-dependent DNA helicase 

and is the only enzyme encoded by papillomaviruses (Hughes & Romanos 1993). This protein 

plays an essential role in the maintenance of the viral genome as an episome during the life 

cycle of the virus (Egawa et al. 2012). It also creates key novel interactions between the viral 

origin of replication and the cellular DNA replication machinery via multiple protein-protein 

and protein-nucleic acid interactions (Bergvall et al. 2014).  E1 is expressed at very low levels, 

with binding to the viral ori very weak, requiring the presence of E2 to be proficiently increased. 

The E2 protein is a multifunctional regulatory protein associated with transcription and 

replication of the viral genome (Longworth & Laimins 2004). It is encoded by all 

papillomaviruses and expressed at early and intermediate stages of the viral life cycle. These 

E2 proteins are DNA-binding proteins with specific sequences that bind to 12bp motifs located 

primarily within the URR of the viral genomes (Mcbride 2013). The E2 protein has a regulatory 

role in the transcription of the E6 and E7 viral genes and has been shown to negatively regulate 

E6 and E7 transcription through repression of the viral early promoter (Thierry & Yaniv 1987). 

Therefore disruption of E2 results in transcriptional activation of the E6 and E7 oncogenes in 

cervical cancer, with over-expression of these oncoproteins thought to encourage the 

development of neoplasia (Cricca et al. 2009). In addition to the down-regulation of the E6 and 

E7 genes, accumulation of high levels of E2 during the HPV-16 life cycle has been shown to 
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induce the expression of the late HPV genes L1 and L2. Induction of HPV-16 late gene 

expression by E2 occurs by inhibiting polyadenylation at the early polyA (pAE) signal on the 

viral genome (Johansson et al. 2012). Further investigation has demonstrated additional 

intrinsic properties of the E2 protein that could contribute to cell transformation. These 

oncogenic features rely on their ability to induce abnormal mitoses, resulting in either a loss or 

surplus of DNA (Bellanger et al. 2011). E2 has also been associated with improvement of the 

efficiency of genome encapsidation during natural infection (Zhao et al. 2000).  

1.9 E4 and E5 Proteins  

Although E4 proteins are found at relatively low levels during the early phase of viral infection, 

a significant increase in expression is noted during the late phase, with the E4 protein the most 

abundantly expressed HPV protein in the differentiating cells of the upper layers of the stratified 

epithelium (Raj et al. 2004). E4 proteins possess an array of activities, such as the ability to 

bind to the cytokeratin network. A reason for this function may be the potential for the virus to 

exit the cell on cytokeratin reorganisation (Doorbar et al. 1991). The E4 proteins have also been 

demonstrated to induce apoptosis through association with the mitochondria (Raj et al. 2004). 

Furthermore, E4 can participate in arresting cells in the G2 phase of the cell cycle, thereby 

averting progression of the cells into mitosis (Davy et al. 2002). Although E4 is part of the early 

region, it is expressed later in the virus life cycle (Stern et al. 2001) and may be accompanied 

by E5, which is also present in the late stage of infection. E5 proteins are membrane proteins 

primarily located in the endoplasmic reticulum, Golgi apparatus and nuclear membrane (Conrad 

et al. 1993). HPV E5 has been shown to interact with growth factor receptors such as epidermal 

growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and the 

colony stimulating factor-1 receptor (CSF1R) as well as gap junction proteins (Hwang et al. 

1995). The E5 protein is also considered to play a role during the initiation of neoplasia (D.-H. 

Yang et al. 2003) and appears to inhibit programmed cell death (Bubb et al. 1988). However, 
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the open reading frame coding for E5 is often deleted in cervical carcinoma cells (Schwarz et 

al. 1985), thus signifying that E5 has no essential role in maintaining the malignant phenotype 

(Malik 2005). 

1.10 E6 and E7 Proteins  

The E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses. 

These proteins work by forming specific complexes with tumour suppressors, in turn inhibiting 

their activity. The E6 proteins of high-risk HPV types have the potential to combine with 

the p53 tumour suppressor protein, a protein that controls responses to various incidents of 

cellular stress and initiates pathways for DNA repair, cell cycle arrest and apoptosis, depending 

on the type and extent of damage incurred (Howie et al. 2009). The formation of a complex 

comprising of E6, p53 and the cellular ubiquitination enzyme E6-AP promotes the degradation 

of the p53’s oncosuppressive functions, a process which is ATP-dependent and involves the 

ubiquitin-dependent protease system (Scheffner et al. 1993). This process results in 

considerably diminished levels of p53 in cervical carcinoma cell lines ,with the normal 

response to DNA damage by the protein abolished (Matlashewski et al. 1986; Kessis et al. 

1993). The E7 protein inhibits the retinoblastoma protein (pRb). pRb tumour suppressor 

proteins are negative cell-cycle regulators and function by blocking the activity of transcription 

factors, in particular E2F, thus preventing cell division (Dyson et al. 1989). One of the primary 

roles of pRb protein is to inhibit the expression of replication enzyme genes by binding to the 

E2F-family of transcription factors (Lipinski & Jacks 1999). However, pRb destruction results 

in the release of these E2F factors in their transcriptionally active forms and the subsequent 

activation of genes promoting cell proliferation (Chellappan et al. 1992). High-risk E7 proteins 

bind to pRB with a higher affinity than E7 proteins derived from low-risk HPVs, with a stronger 

affinity for the under-phosphorylated, "active" form of pRB (Münger et al. 1992). The 
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combined functional inactivation of p53 and pRb by the E6 and E7 oncoproteins, respectively, 

make cells susceptible for uncontrolled division and consequently cervical carcinogenesis.  

1.11 L1 and L2 Proteins  

The viral capsid, or outer shell, of HPV consists of a major and minor capsid protein. These 

proteins are the products of late gene expression and are referred to as the L1 and L2 proteins 

respectively. They are expressed in the upper layers of infected epithelium once viral genome 

amplification is complete (Ozbun et al. 1998). These L1 and L2 proteins play critical roles in 

mediating efficient virus infectivity and are essential for functions such as virus transmission, 

transfer and survival in the environment. The L1 protein is the principal structural element of 

the HPV virion, with 360 copies of the protein organised into 72 capsomeres (Becker et al. 

2004). L1 provides viral entry ability via interaction with heparan sulfate proteoglycan  

(Giroglou et al. 2001; Joyce et al. 1999) and subsequent internalisation by endocytosis, a 

process which is clathrin-dependent (Bousarghin et al. 2003). L2 is the minor virion component 

with the 72 capsomere shell composed of approximately 12 copies of the protein (Becker et al. 

2004).  L2 has an important role in transferring viral DNA to the nucleus, following disassembly 

of the HPV particles. In addition to L1 and L2, studies have also suggested that E2 is necessary 

for the assembly of infectious virions in the upper epithelial layers (Day et al. 1998). As 

previously discussed, HPV late gene expression is found only in terminally differentiated 

epithelial cells, with the production of the L1 and L2 structural proteins strongly suppressed in 

the lower layers of the infected epithelium. As these L1 and L2 proteins are highly 

immunogenic it has been suggested that suppression of these products may prevent detection 

of the virus by the immune system, leading to persistence of infection. 
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1.12 HPV Vaccination  

Cervarix (GlaxoSmithKline, Middlesex, UK) and Gardasil (Merck, NJ, USA) are two 

prophylactic HPV vaccines designed primarily for the prevention of cervical cancer. These 

vaccines are based on the HPV L1 major capsid protein, which has the ability to assemble into 

virus-like particles (VLPs). These VLPs closely resemble native HPV particles and include the 

conformational epitopes that generate strong virus-neutralising antibodies and consequently 

prevent HPV infection (Figure 1.11) (Ma et al. 2010). These VLPs contain no viral DNA, 

therefore they cannot infect cells, reproduce or cause disease. The antibody-mediated response 

elicited by these vaccines are type-restricted. Cervarix responds to HPV types 16, 18, 31, 33 

and 45, which are responsible for 82% of cervical cancers globally, as well as adenocarcinoma 

for which we cannot adequately screen (Schwarz 2009). Gardasil is effective against HPV types 

16, 18 and 31, responsible for squamous cell carcinoma and HPV types 6 and 11 which are the 

causative agents of genital warts and respiratory papillomatosis. Data states that Cervarix’s 

efficacy is proven for 7.3 years (Schwarz 2009) and Gardasil’s for 5 years (Romanowski 2011), 

figures which are imperative to assess the impact of the vaccines in question.   

This year, a third vaccine against cervical cancer has also been approved. Gardasil 9 (Merck, 

NJ, USA) protects against 9 types of HPV, greater than that offered by Gardasil and Cervarix. 

This new vaccine will guard against approximately 90% of cervical cancers, while still 

providing protection against genital warts (Centers for Disease Control and Prevention 2015).  

The development of these vaccines has been a milestone for the prevention of cervical cancer, 

with another promising method involving the L2 minor capsid protein, which is highly 

conserved across HPV genotypes, currently underway. However, although multimeric L2 

shows robust antibody responses in preclinical models against multiple HPV types, it is not as 

immunogenic as the VLPs (Ma et al. 2010). While these vaccines act as preventative agents, 

they exert no therapeutic qualities. It would also require years of vaccination before any 
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significant impact would be made on cervical cancer rates due to the high prevalence of HPV 

infections and slow rate of cervical carcinogenesis. Furthermore, since its introduction, the HPV 

vaccine has been a topic of controversy, with a number of questions being posed regarding its 

safety. Although studies suggest that the benefits of HPV vaccination far outweigh the risks, 

numerous cases of serious adverse reactions in response to the vaccine have been reported 

(Hawkes et al. 2013). This emphasises the urgent need for further investigation into safe 

protective and therapeutic agents against HPV-associated lesions and cervical cancer. 

 

Figure 1.11 Vaccination Against HPV Infection Utilising HPV L1 VLPs  

Recombinant L1 capsid protein self-assembles to form VLPs, which are particularly potent at 

inducing neutralising antibodies. As they do not possess any viral nucleic acid, they lack the 

ability to induce infection. VLP vaccines have shown potential for prevention of HPV infection 

and HPV-associated cervical cancer. The cells shown in the vaccinated subject include dendritic 

cells that present antigen to helper T cells and B cells which stimulate the generation of 

antibodies, which are capable of neutralising the virus (Berzofsky et al. 2004). 

 

In addition to its use in vaccines, expression of the L1 capsid protein can also be utilised in a 

prognostic capacity. Immunohistochemical evaluation of HPV L1 positivity on Pap smears has 

shown disease progression in 9% of L1+ patients and 26% of L1- patients with CIN1 and CIN2 

lesions (Origoni et al. 2013). HPV L1 positivity is more highly associated with low-risk HPV 
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subtypes than high-risk HPV subtype and cytological diagnosis has discovered that a higher 

expression rate of L1 is observed in LSILs than in HSILs and cervical cancers (Lee et al. 2008). 

For these reasons, it is reasonable to suggest that L1 capsid expression may be related to a 

favourable disease prognosis.  

1.13 HPV DNA Integration   

High-risk  HPV DNA is integrated into the host genome in the majority of invasive cervical 

carcinomas, whereas the viral genome is maintained as an episome in preinvasive cervical 

lesions. The opposite occurs with low-risk HPV types, where integration is rare as is the 

potential to cause carcinomas (Burd 2003). It is the genetic alteration caused by high-risk HPV 

integration which is most likely a contributing factor to tumour progression, with integration 

transferring selective growth advantage to affected cells (Kessis et al. 1993). One significant 

result of HPV integration is the loss of the viral E2 gene, a transcriptional repressor of the E6 

and E7 transforming genes. This in turn leads to an elevated and uncontrolled expression of E6 

and E7, a factor which contributes greatly to the malignant transformation of the host cells and 

tumour formation (Bosch et al. 1992). Therefore, HPV DNA integration is determined to have 

a significant effect on cellular proliferation and the carcinogenic process.    

1.14 Regulation of Gene Expression  

Gene expression is the method by which genetic instructions are used to synthesise gene 

products. The process of gene expression involves two key stages i.e. transcription and 

translation. Transcription involves the production of messenger RNA (mRNA) from DNA by 

the enzyme RNA polymerase and the processing of the resulting mRNA molecule. Translation 

refers to the subsequent use of this mRNA to direct protein synthesis, and the successive post-

translational processing of the protein molecule (Strachan & Read 1999). Gene regulation is a 

fundamental function employed by cells to increase their versatility and adaptability. Gene 

http://europepmc.org/abstract/MED/8710383/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0018995
http://europepmc.org/abstract/MED/8710383/?whatizit_url=http://europepmc.org/search/?page=1&query=%22cervical%20carcinomas%22
http://europepmc.org/abstract/MED/8710383/?whatizit_url=http://europepmc.org/search/?page=1&query=%22cervical%20carcinomas%22
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expression can be controlled at several different stages. The majority of mechanisms that 

regulate gene expression do so by controlling transcription. Examples include regulation of the 

rate of transcription and regulation of the processing of RNA molecules, for example employing 

alternative splicing to produce multiple protein products from a single gene. The stability of 

mRNA molecules can also be affected, in addition to the regulation of mRNA translation 

efficiency, stability and localization (Ward & Cooper 2010). In eukaryotic cells, the first step 

in transcription is the formation of pre-mRNA from a DNA template. This pre-mRNA must 

undergo three major processing events, referred to as capping, splicing and polyadenylation, 

before it can become a mature and stable mRNA and be exported to the translation machinery 

in the cytoplasm (Mandel et al. 2008) (Figure 1.12).  

 

Figure 1.12 mRNA Processing  

The processing of pre-mRNA includes capping, splicing and polyadenylation before eventual 

construction of a protein (Nature 2014). 
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 Capping involves the addition of 7-methyl guanosine groups (mRNA "cap") to the 5′ 

ends of the newly synthesized pre-mRNA. This occurs once approximately 20-30 

nucleotides of the molecule have been transcribed and requires removal of the terminal 

5' phosphate, which is achieved with the aid of a phosphatase enzyme. The process of 

capping converts the 5’ end to a 3’ end by 5'-5' linkage, protecting the mRNA from 

5' exonuclease, which degrades foreign RNA. The newly formed complex assists with 

the binding of ribosomes to the mRNA during translation and also aids in the protection 

of the mRNA from premature degradation (Decroly et al. 2012).  

 

 Splicing is a modification of pre-mRNA  in which introns, the noncoding regions of 

RNA, are removed with remaining exons left to form a continuous strand (Will & 

Lührmann 2011).  The areas at which introns are removed from primary transcripts are 

referred to as splice sites which are found at the 5′ and 3′ ends of introns. Splicing occurs 

in several steps and is catalysed by a spliceosome, a large protein complex composed 

of small nuclear ribonucleoproteins (snRNPs). The spliceosome functions by binding to 

the splice sites on either end of the intron, looping the intron into a structure referred to 

as a lariat and subsequently cleaving it off. The remaining ends of the exons are then 

joined together, the edited RNA and intron are released and the spliceosome 

disassembles (Figure 1.13) (Cooper 2000). 

http://en.wikipedia.org/wiki/Phosphatase
http://en.wikipedia.org/wiki/Exonuclease
http://en.wikipedia.org/wiki/Intron
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Figure 1.13 Splicing  

The figure illustrates the exons and introns in pre-mRNA and the formation of mature 

mRNA through the removal of noncoding introns as occurs with splicing (OpenStax 

2014). 

 

 
 Polyadenylation is a method utilised in gene regulation in which a sequence of 

adenosine ribonucleotides are added to the 3’ end of a spliced mRNA to form a poly 

(A) tail. The primary transcript is cleaved at the polyadenylation signal sequence, an 

AAUAAA sequence, by the cleavage and polyadenylation specificity factor (CPSF). 

The poly (A) tail is a useful tool in the protection of mRNA from digestion with nuclease 

and greatly increases the efficiency of translation (Birnstiel et al. 1985).  
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 Alternative splicing of mRNA precursors provides a significant means of genetic 

control and is a crucial step in the expression of the majority of genes, with analysis 

indicating that 92-94% of human genes undergo alternative splicing (Wang et al. 2008). 

The process involves exons or portions of exons or noncoding regions within a pre-

mRNA transcript becoming differentially joined or excluded, resulting in multiple 

protein isoforms being encoded by a single gene (Nancy et al. 2015). As well as 

providing an opportunity for gene regulation, this practice of alternative splicing 

increases the informational diversity and functional capacity of a gene during post-

transcriptional processing. Six methods of alternative splicing have been described: 

constitutive, exon skipping, alternative donor site, alternative acceptor site, mutually 

exclusive exons and intron retention (Figure 1.14). Viruses competently exploit 

alternative splicing to order to produce many functional mRNAs from small genomes. 

Defects in alternative splicing have been linked to numerous genetic diseases including 

muscular dystrophy, Alzheimer's disease and cancer. Interestingly, a complex pattern 

of alternatively spliced and polyadenylated mRNAs is observed during the HPV life 

cycle (Li, Johansson, et al. 2013). During alternative splicing, cis-acting regulatory 

elements in the mRNA sequence determine which coding sequences are retained and 

which coding sequences are spliced out. These cis-acting regulatory elements have been 

identified in the coding regions and the late 3′ untranslated regions (UTRs) of several 

papillomaviruses (Graham 2010). It is proposed that these elements employ different 

RNA-based mechanisms to regulate viral late gene expression. Research has also been 

carried out investigating the link between alternative splicing and cancer, with many 

splicing factors up-regulated in cancer cells (Faustino & Cooper 2003; Philips & Cooper 

2000). For this reason, further examination of the mechanisms which influence splicing 

and alternative splicing would be highly beneficial. 
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Figure 1.14 Alternative Splicing 

The diagram shows different types of alternative splicing including exon inclusion or 

skipping, alternative splice-site selection, mutually exclusive exons and intron retention 

(Cartegni et al. 2002). 

 

1.15 Regulation of HPV Late Gene Expression  

As previously discussed, expression of the human papillomavirus capsid genes, L1 and L2, as 

well as amplification of viral DNA and virion assembly occur only in the terminally 

differentiated layers of infected epithelium. Furthermore, it has also been established that HPV-

16 late genes are not expressed in cervical cancer containing HPV-16 DNA (Doorbar 2005). 

Therefore, as cervical cancer cells do not express the late viral mRNAs or proteins, it can be 

speculated that inhibition of late gene expression is a prerequisite for cancer progression. 
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During transcription all mRNAs are regulated through the use of splicing and polyadenylation 

signals. In relation to HPV-16, 20 different transcripts have been identified, 14 of which are 

produced from the early promoter to the early polyadenylation signal (Zheng & Baker 2006). 

Eleven splice sites have also been identified, 10 located in the early region and only 1 in the 

late region, as displayed in Figure 1.15 (Doorbar et al. 1990). E4 mRNA is one of the most 

abundant HPV-16 mRNAs produced and is generated from splice donor (SD880) to splice 

acceptor (SA3358). The most efficient splice site utilised by HPV-16 is this major 3'-splice site 

SA3358, which is involved in the production of E4, E6, E7, L1 and L2. Late mRNAs are 

transcribed from the late promoter and are thought to be spliced either from SD880 to SA3358 

and from SD3632 to SA5639 or directly from SD880 to SA5639. The SD3632 and SA5639 are 

used exclusively by the late mRNAs and the presence of an adjacent splicing silencer that 

actively suppresses the use of these splice sites has been shown to inhibit late gene expression 

(Zhao et al. 2007; Rush et al. 2005).  In vivo, HPV-16 splicing between SD880 and SA3358 

has been determined as the most-common splicing event in both low and high grade cervical 

lesions (Schmitt et al. 2010), suggesting that SA3358 plays a significant role during a 

productive HPV-16 infection and is also likely to be important for pathogenesis. Alternative 

splicing appears crucial for the production of L1, since the 3′ end of L2 and the 5′ end of L1 

overlap. As mentioned, late viral mRNAs are expressed only in differentiating cells and it has 

been demonstrated that posttranscriptional events are highly involved in late gene regulation 

(Zheng & Baker 2006). In contrast to the inhibitory factors of late gene expression, 

overexpression of certain proteins, such as adenovirus E4orf4 (E4orf4), polypyrimidine tract 

binding protein (PTB) and alternative splicing factor/splicing factor 2 (ASF/SF2) have been 

indicated as inducers of late gene expression (Somberg & Schwartz 2010; Somberg et al. 2009; 

Somberg et al. 2008). Additionally, studies have shown that protein kinase C (PKC) activation 

is essential for the efficient completion of the late phase of the HPV life cycle in vitro (Meyers 
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et al. 1992). These proteins are a source of specific interest, as, should a method be determined 

to induce their expression, late gene products could be subsequently up-regulated.  

 

 

Figure 1.15 Splicing and Gene Regulation in HPV  
The viral genome encodes the early (E) genes, designated E1–E7, and the late (L) 

genes L1 and L2. The non-protein-coding sequence between the L1 stop codon and the 

E6 AUG is termed the long control region (LCR) and contains the origin of DNA replication 

(ori) in addition to the early viral promoter, p97. The late promoter, p670, which is 

differentiation-dependent, is found in the E7 coding region. Two polyadenylation signals are 

present in the HPV genome. The early polyadenylation signal (pAE) is located downstream 

of E5 and preceded by the early 3′ untranslated region (eUTR). The late polyadenylation signal 

(pAL) is located downstream of L1 and preceded by the late 3′ untranslated region (lUTR). 

Known 5′ splice sites (splice donor 226 (SD226), SD880, SD1302 and SD3632) and known 3′ 

splices sites (splice acceptor 409 (SA409), SA526, SA742, SA2582, SA2709, SA3358 and 

SA5639) are indicated as are early and late mRNAs (Orrù 2012). 
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1.16 Protein Involved in Splicing  

1.16.1 SR Proteins  

The SR protein family consists of a group of structurally related proteins which play a crucial 

role in pre-mRNA splicing. As well as this, they are also important in the regulation of 

alternative splicing and post-splicing activities, including mRNA nuclear export, nonsense-

mediated decay and mRNA translation. These proteins are referred to as SR proteins as they 

contain a protein domain with long repeats of serine and arginine amino acid residues, 

whose standard abbreviations are "S" and "R" respectively. As these SR proteins have a wide 

number of roles, they are deemed significant in the regulation of mRNA metabolism (Long & 

Caceres 2009). The SR protein family is encoded by nine genes, namely ASF/SF2, SC35, 

SRp20, SRp40, SRp55, SRp75, SRp30c, 9G8, and SRp54 with ASF/SF2 and SC35 two of the 

best characterised. SR proteins are identified by their ability to interact simultaneously with 

RNA and other protein components through an RNA recognition motif (RRM) and through a 

domain rich in arginine and serine residues, referred to as the RS domain (Shepard & Hertel 

2009).  

i) ASF/SF2  

Alternative splicing factor 1 (ASF1)/pre-mRNA-splicing factor SF2 (SF2) or ASF1/SF2, also 

known as serine/arginine-rich splicing factor 1 (SRSF1), is an essential sequence-

specific splicing factor involved in pre-mRNA splicing. It is approximately 33 kDa in size and 

binds to pre-mRNA transcripts and components of the spliceosome. It has the potential to either 

activate or repress splicing depending on the location of the pre-mRNA binding site.  ASF/SF2 

promotes recruitment of U1 snRNP to 5’ splice sites (Kohtz et al. 1994) and can also help bridge 

5’ and 3’ splice sites (Wu & Maniatis 1993). It has been discovered that the splicing factor 

ASF/SF2 is a proto-oncogene and is up-regulated in various human tumours (Karni et al. 2007) 

http://en.wikipedia.org/wiki/Splicing_factor
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including cervical carcinoma (Fay et al. 2009). It has also been noted that the most frequently 

used 3′-splice site on the HPV-16 genome, SA3358, is dependent on ASF/SF2.  SA3358 is used 

to produce HPV-16 early mRNAs encoding E4, E5, E6 and E7 and late mRNAs encoding L1 

and L2 (Li, Cardoso Palacios, et al. 2013). ASF/SF2 regulates SA3358, specifically binding to 

exonic sequences located between SA3358 and SD3632. In particular ASF/SF2 enhances 

splicing to SA3358 and inhibits usage of the splice donor SD3632. High levels of ASF/SF2 

may also down-regulate expression of E2 (Somberg & Schwartz 2010). As a means of 

investigating modulation of splicing factor expression, valproic acid has been shown to increase 

the expression of ASF/SF2 (Harahap et al. 2012). 

ii) SC35  

Serine/arginine-rich splicing factor 2, or the SC35 protein is necessary for the splicing of pre-

mRNA. SC35 regulates alternative splicing in a concentration-dependent manner both in 

vitro and in vivo (Sureau et al. 2001). It is essential for formation of the earliest ATP-dependent 

splicing complex and possesses the ability to interact with spliceosomal components bound to 

both the 5'- and 3'-splice sites during spliceosome assembly (Kim et al. 2011). It is required for 

ATP-dependent interactions of both U1 and U2 snRNPs with pre-mRNA and affects 

transcriptional elongation in a gene-specific manner (Lin et al. 2008). Additionally, it has also 

been deduced that overexpression of SC35 in HeLa cells results in a significant decrease of 

endogenous SC35 mRNA levels together with alterations in the abundance of SC35 

alternatively spliced mRNAs (Sureau et al. 2001). 
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1.16.2 hnRNP Proteins  

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are complexes of RNA and protein which 

are located in the nucleus during both gene transcription and post-transcriptional 

modification of the newly synthesized pre-mRNA. These proteins have molecular masses of 

34-120 kDa and play a critical role in regulating gene expression. They are involved in the 

processing of heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs as well as DNA 

repair and telomere regulation (Piñol-Roma & Dreyfuss 1993). These RNA-binding proteins 

are among the most abundant proteins in the nucleus, with their presence, when bound to pre-

mRNA, indicative of the fact that processing is still underway. hnRNPs bind to pre-mRNA with 

sequence specificity to high-affinity binding sites consisting of sequences that code for 5´- and 

3´splice sites, polyadenylation elements and the polypyrimidine tract (PPT) (Ghetti et al. 1992). 

i) hnRNP A2/B1  

hnRNP A2/B1 proteins belong to the hnRNPs A/B family; RNA-binding proteins imperative 

for alternative splicing. They are among the most abundant pre-mRNA binding proteins of 

vertebrates and play significant roles in RNA processing, mRNA trafficking, and telomere 

maintenance (He & Smith 2009). In most tissues, they are located in the nucleus; however, in 

the squamous epithelium of the skin and oesophagus, A2 is also distributed in the cytoplasm 

(Kamma et al. 1999). hnRNP A2/B1 proteins are up-regulated in several cancers and can act as 

oncogenes when up-regulated (Shilo et al. 2014). Studies have shown that hnRNP A2/B1 is 

overexpressed in glioblastomas and is correlated with poor prognosis, while patients with 

deletions of the HNRNPA2B1 gene show better prognosis than average (Golan-Gerstl et al. 

2011). In relation to HPV-16, investigations have shown that the 5′ splice site SD3632 is 

negatively regulated by two AUAGUA motifs located immediately upstream of SD3632 (Li, 

Johansson, et al. 2013). These sites interact specifically with members of the hnRNP D family 

and hnRNP A2/B1. It is concluded that hnRNP D proteins and hnRNP A2/B1 inhibit SD3632, 
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with results demonstrating that knock-down of these factors induced HPV-16 late gene 

expression, whereas overexpression of hnRNP A2/B1 further suppressed HPV-16 late gene 

expression (Li, Johansson, et al. 2013). Further studies have shown that hnRNP A2/B1 

expression in human neuroblastoma cell lines is down-regulated by retinoic acid (Liang et al. 

2011).  

ii) PTB  

Polypyrimidine tract-binding protein (PTB), also referred to as hnRNP I, is a 57 kDa, ubiquitous 

RNA-binding protein that binds to the pyrimidine tract typically found near the 3′ end of introns 

(Pérez et al. 1997). It has the ability to shuttle between the nucleus and the cytoplasm, a 

characteristic which must be carefully regulated as the processes which require PTB are 

dependent on its location (Sawicka et al. 2008). PTB has a regulatory role in alternative splicing 

and functions in a large number of diverse cellular processes such as polyadenylation, mRNA 

stability and translation initiation (Castelo-Branco et al. 2004; Wollerton et al. 2004). Fay et al. 

have recently shown that PTB is highly up-regulated in cervical cancer cells while it is down-

regulated in the superficial layers of the cervical epithelium (Fay et al. 2009). Studies have also 

demonstrated that overexpression of polypyrimidine tract binding protein induces HPV-16 late 

gene expression. PTB has the potential to activate SD3632, the only 5′ splice site on the HPV-

16 genome that is used exclusively by late mRNAs. PTB interferes with splicing inhibitory 

sequences located immediately upstream and downstream of this SD3632 site, consequently 

activating late gene expression (Somberg et al. 2008). It has also been demonstrated that the 

small molecule drug tannic acid, increases the expression of PTBP1 mRNA, the gene which 

encodes PTB, in a dose-dependent manner  (Bian et al. 2009). 
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1.16.3 Protein Kinase C  

Protein kinase C (PKC) isoforms consist of a family of lipid-activated enzymes that are 

associated with a wide range of cellular functions (Steinberg 2008). Protein kinase C is 

particularly important in differentiation, with the various PKC isoforms expressed in 

keratinocytes having distinct functions in keratinocyte differentiation (Yang et al. 2003; Ohba 

et al. 1998; Dlugosz & Yuspa 1993). The tumour-promoting phorbol ester TPA has the 

potential  to activate PKC (Niedel et al. 1983). Stimulation of protein kinase C by TPA is due 

to the fact that TPA is an analog of diacylglycerol, the natural activator of PKC. Studies have 

indicated that PKC activation is essential for the efficient completion of the late phase of the 

HPV life cycle in vitro (Meyers et al. 1992), most likely through regulating the expression of 

late genes via post-transcriptional mechanisms (Hummel et al. 1995; Terhune et al. 1999). 

Hummel et al. have demonstrated regulation of HPV-31b late gene expression by PKC-

dependent changes in post-transcriptional RNA processing while additional studies have shown 

that HPV-31 genome amplification in the intermediate phase of the life cycle is dependent on 

PKC activity (Bodily & Meyers 2005). Further research has also indicated that the PKC 

pathway is an important regulator of differentiation-dependent HPV-31 replication and 

transcription (Bodily et al. 2006).  
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1.17 Transient and Stable Transfection  

Transfection is the process by which nucleic acids are artificially introduced into mammalian 

cells, a procedure first described by Vaheri and Pagano in 1965. Transfection is an influential 

and invaluable tool used widely in biomedical research to study and control gene expression. 

Through the process of selectively enhancing or inhibiting the expression of a certain gene, 

transfection permits investigation of gene function and offers insights into the role of certain 

genes in a variety of biological processes and diseases (Kim & Eberwine 2010). Cloned genes 

can be transfected into cells and be utilised for biochemical characterisation and mutational 

analyses as well as for the investigation of gene regulatory elements, the effects of gene 

expression on cell growth and specific protein production. Meanwhile transfection of RNA can 

be used to induce protein expression, or to repress its expression through antisense or RNA 

interference (RNAi) procedures. Methods of transfection can be broadly classified into 

biologically, chemically and physically mediated methods. Biological methods typically 

employ a viral vector, most commonly based on adenoviruses, to deliver nucleic acid into a 

target cell. This process is also known as transduction (Pfeifer & Verma 2001) and tends to 

have a high transfection efficiency although cytotoxicity is possible. Chemical methods are the 

most widely employed in contemporary research and were the first to be utilised in the 

introduction of foreign genes into mammalian cells (Schenborn & Goiffon 2000). These 

methods facilitate entry of foreign DNA into the target cell by forming positively charged 

complexes with the foreign DNA that is attracted to the negatively charged cell membrane (Kim 

& Eberwine 2010). Various different chemical transfection techniques are utilised including 

calcium phosphate and cationic lipid as well as GeneJuice® Transfection Reagent, which is 

based on a nontoxic cellular protein and a small amount of a novel polyamine. This reagent is 

optimised for maximal transfection efficiency, ease of use and minimal cytotoxicity. Physical 

transfection methods include electroporation, biolistic particle delivery and direct injection 
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(Kim & Eberwine 2010). Genetic material which has been introduced into the cells exist in 

either a stable or transient manner, depending on the nature of the material (Recillas-Targa 

2006) (Figure 1.16). Products introduced in stable transfection are integrated into the host 

genome and commonly possess a marker gene for selection, referred to as a transgene. These 

cells can sustain transgene expression even after host cells replicate (Glover et al. 2005). 

Meanwhile, transiently transfected genes are only expressed for a limited period of time, usually 

up to 72 hours and are not integrated into the genome (Recillas-Targa 2006).  

 

 

Figure 1.16 Stable and Transient Transfection  
A) Stable Transfection: Foreign DNA (red wave) is delivered to the nucleus by passage 

through the cell and nuclear membranes. Foreign DNA is integrated into the host genome (black 

wave) and sustainably expressed.  

B) Transient transfection: Foreign DNA is delivered into the nucleus but is not integrated into 

the genome. Foreign mRNA (blue wave) may also be transfected and translated in a transient 

transfection. Hexagons shown are expressed proteins from transfected nucleic acids while 

the black arrows indicate the delivery of foreign nucleic acids (Kim & Eberwine 2010). 



 

48 
 

The choice of transfection is dependent on the objective of the experiment. The generation of 

stably transfected cells begins with transient transfection. Foreign DNA is delivered into the 

nucleus for both processes but in stable transfection a minority of these transfected cells 

integrate the exogenous nucleic acid into the chromosomal DNA. To aid in the identification 

of stable transfection, a selectable marker is co-expressed with the gene of interest, allowing 

cells with the new gene to be recognised. As this foreign gene becomes part of the host gene it 

is consequently replicated. This is the hallmark of stable transfection, with replicated cells also 

expressing the new gene, thus generating a stably transfected cell line. Foreign DNA integrates 

in the chromosomal DNA randomly at one or very few sites (Murnane et al. 1990) with site 

integration having a significant influence on the transcription rate of the gene of interest (Wurm 

2004). Cellular DNA in the nucleus is combined with proteins for a multitude of reasons, 

including protection of the DNA from damage, control of gene expression and DNA replication 

and to ensure it fits correctly within the nucleus. This compact structure is referred to as 

chromatin. There are two varieties of chromatin: ‘open’ euchromatin and ‘compacted’ 

heterochromatin (van Steensel 2011). Euchromatin consists of DNA associated with several 

nucleosomes, which are composed of proteins called histones. Histones have short sequences 

of DNA wrapped around them loosely, allowing RNA polymerase and gene regulatory proteins 

to bind to DNA sequences, initiating gene transcription (van Steensel 2011). In 

heterochromatin, the DNA is tightly wound which impedes the binding of protein factors and 

RNA polymerase complexes to the DNA, thus inhibiting gene expression. Heterochromatin is 

only found in eukaryotes. The integration site of transfected DNA is therefore crucial. If the 

transfected DNA becomes integrated into heterochromatin, expression of the target gene is 

unlikely, while integration into cellular euchromatin is much more likely to yield target gene 

expression. ‘Integrational hotspots’ is the name given to regions of the endogenous genome in 

which DNA integration is likely to occur (Woychik & Alagramam 1998). Although integration 
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of foreign DNA into the cellular genome generally does not cause damage to its integrity, 

detrimental outcomes sporadically occur such as deleterious rearrangement of the endogenous 

DNA at the site of integration,  potentially leading to deletions, duplications and translocations 

which can interfere with coding sequences (Hamada et al. 1993; Covarrubias et al. 1987; 

Woychik & Alagramam 1998). The successful development of genome manipulation and 

establishment of stable cell lines is a noteworthy achievement, allowing for investigations into 

therapeutic mechanisms through large scale recombinant protein production and analysis. For 

use in this study, stable cell lines were generated with specific reporter plasmids based on the 

HPV-16 genome integrated in the cellular genome. 
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1.18 Establishment of HPV-16 Reporter Cell Lines  

Inhibition of HPV-16 late gene expression in the early stage of the life cycle may be a 

prerequisite for persistence of infection. Therefore, it is speculated that activation of L1 and L2 

late gene expression in persistently infected cells could alert the host immune system to the 

presence of the virus, potentially clearing the infection. In order to investigate factors affecting 

the regulation of HPV-16 late gene expression, previous work was performed in which stable 

cell lines containing reporter plasmids for the L1 gene were created. The 2 plasmids utilised 

were pBEL and pBELM (Zhao et al. 2004). Both of these plasmids carry viral early and late 

genes, except E6 and E7, with the weak viral promoters replaced by the strong human 

cytomegalovirus (CMV) immediate early promoter. Early and late splice sites are also present 

in the plasmid, allowing for the examination of the splicing events that can occur in HPV-16. 

Similar to the HPV-16 genome during an infection, pBEL transfected into proliferating cells 

express high level of the early genes, primarily E4, whereas expression of late genes is 

undetectable. In pBELM however, the splicing silencer elements adjacent to the late 3′ splice 

site SA5639 (located in the L1 coding region) have been mutated. This mutation reduces 

silencing on the SA5639 splice acceptor therefore activating late gene expression (Zhao et al. 

2004). In order to detect the HPV-16 L1 gene, the plasmids pBEL and pBELM were modified 

by replacing the L1 late gene with the easily detectable reporter gene chloramphenicol 

acetyltransferase (CAT) (Orrù 2012). The structure of the pBELCAT and pBELMCAT 

plasmids is displayed in Figure 1.17. 
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Figure 1.17 Structure of the pBELCAT and pBELMCAT Plasmids (Orrù et al. 2012). 

 

Studies performed on the stable cell lines transfected with these pBELCAT and pBELMCAT 

plasmids identified that both lines are functional and express detectable levels of CAT, with the 

CAT reporter mimicking the expression patterns of the L1 gene in the intact viral genome (Orrù 

2012). These cell lines therefore provide an excellent means of investigating late gene 

expression. With regards to this study, the effects of specific small molecule drugs as potential 

inducers of late gene expression can be easily analysed through treatment of the cell lines and 

analysis of CAT expression utilising the CAT ELISA assay. pBELMCAT31 and pBELCAT67 

were selected for use as representatives of reporter cell lines containing a plasmid with and 

without a mutation. The pBELMCAT31 and pBELCAT67 cell lines show high and low CAT 

expression levels respectively as displayed in Figure 1.18.  
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Figure 1.18 Expression of CAT in pBELCAT- and pBELMCAT- Derived Stable Cell 

Lines  

The graph indicates high levels of CAT expressed by pBELMCAT31 with minimal expression 

by pBELCAT67 (Orrù et al. 2012).  

 

1.19 Small Molecule Drugs Utilised in this Study  

i) TPA  

TPA (12-O-tetradecanoylphorbol-13-acetate), also called PMA (phorbol-12-myristate-13-

acetate), is a small molecule drug and the most commonly used phorbol ester. TPA is a potent 

tumour promoter and is employed to activate protein kinase C (PKC), a signal transduction 

enzyme with numerous effects on cells and tissues. PKC activation is essential for the efficient 

completion of the late phase of the HPV life cycle in vitro (Meyers et al. 1992), possibly by 

regulating the expression of late genes via post-transcriptional mechanisms (Hummel et al. 

1995). Investigations have been carried out to explore the therapeutic potential of TPA in 

patients with a variety of malignant and non-malignant diseases. TPA has been shown to cause 

differentiation of cells of the human leukaemia cell line HL60 to non-dividing macrophage-like 

cells, with these differentiated cells cytotoxic for tumour cells (including parent, untreated 
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HL60 cells) in vitro (Weinberg 1981). Additional studies have also identified TPA as a 

therapeutic drug for patients with leukaemia (Strair et al. 2002; Han et al. 1998). Furthermore, 

research performed has demonstrated that TPA transactivates the epidermal growth factor 

receptor (EGFR) and increases cell proliferation by activating the PKCδ/c-Src pathway in 

glioblastomas. (Amos et al. 2005). 

ii) Tannic Acid  

Tannic acid (TA) belongs to the class of hydrolysable tannins and is the most commonly used 

standard for quantitation of tannins. TA has been identified as a potential anticancer agent. 

There is evidence that tannic acid inhibits the cytokine CXCL12 together with its receptor 

CXCR4, powerful mediators of metastasis, a function which may contribute to its antitumour 

properties (Chen et al. 2003). It has also been shown that apoptotic activity is increased in breast 

cancer and prostate cancer cells in response to exposure to tannin extracts (Losso et al. 2004; 

Bawadi et al. 2005) with investigations showing that breast cancer cells expressing the estrogen 

receptor are more susceptible to the effects of TA (Booth et al. 2013). It has also been reported 

that tannic acid increases the levels of polypyrimidine tract binding (PTB) protein by activating 

its promoter region (Bian et al. 2009). PTB has previously been characterised with the ability 

to induce HPV-16 late gene expression by interfering with cellular factors that interact with the 

inhibitory sequences (Somberg et al. 2008). 
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iii) Valproic Acid  

Valproic acid (VPA) is an analogue of valeric acid, found naturally in valerian and initially 

used as an organic solvent. It is a histone deacetylase inhibitor and has therapeutic use as an 

anticonvulsant and mood stabilising drug, particularly useful in the treatment of epilepsy, 

bipolar disorder, schizophrenia and in the prevention of migraine headaches (Yatham 2004; 

Jeavons & Clark 1974). Studies have also revealed that VPA is of therapeutic benefit for 

patients with myelodysplastic syndromes (Kuendgen et al. 2004) in addition to displaying 

potent antitumour effects in a selection of in vitro and in vivo systems (Duenas-Gonzalez et al. 

2008). VPA has been identified with potential as a treatment for various cancers such as 

multiple myeloma (Schwartz et al. 2007) and breast cancer (Munster et al. 2007). It has also 

been shown to induce apoptosis in HeLa cervical cancer cells through the inhibition of Akt1 

and Akt2 gene expression.  VPA impedes Akt1 and Akt2, essential pro-survival factors in cell 

proliferation, leading to deactivation and consequent apoptotic cell death (Chen et al. 2006). 

Furthermore, VPA has been shown to impact the expression of a number of splicing factors 

such as ASF/SF2 and hnRNPA1, increasing ASF/SF2 and decreasing hnRNPA1 levels 

(Harahap et al. 2012). Similar studies have shown that various SR and SR-like splicing factors 

(ASF/SF2, SRp20 and Htra2-β1) are up-regulated by VPA, which may have important 

implications for disorders affected by alternative splicing. Notably, the most commonly used 3′ 

splice site on the HPV-16 genome, SA3358, is dependent on ASF/SF2 with this splice site 

utilised to produce late mRNAs encoding L1 and L2 (Li, Cardoso Palacios, et al. 2013).  
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iv) Retinoic Acid   

Retinoic acid (RA) is a vitamin A (retinol) derivative that mediates the functions of vitamin A 

required for growth and development. It exists as several isomers in vivo including all-trans, 

13-cis and 9-cis RA (Krysta et al. 2013). Retinoic acid is essential for the regulation of epithelial 

cell differentiation and has been proven to be an inhibitor of carcinogenesis. RA acts by 

blocking the promotion of initiated or transformed cells through three mechanisms: induction 

of apoptosis, the arrest of further growth of abnormal cells and induction of abnormal cells to 

differentiate back to normal (Siddikuzzaman et al. 2011). Retinoids are effective 

chemopreventive agents against certain types of cancer including skin, head and neck, breast 

and liver (Hansen et al. 2000). Research has demonstrated that retinoic acid can induce 

differentiation and terminal cell division of leukemic promyelocytes and be utilised as a 

therapeutic agent in acute promyelocytic leukaemia (Koeffler 1983). RA has also been shown 

to decrease expression of the HPV proteins E6 and E7, subsequently restoring the tumour-

suppressive roles of pRB and p53 proteins. Therefore, retinoids may have a potential 

therapeutic role in the management of CIN (Pirisi et al. 1992). Treatment with RA was also 

revealed to down-regulate the expression of hnRNP A2/B1 (Liang et al. 2011), an RNA binding 

protein which inhibits the HPV-16 splice site SD3632. Significantly, knock-down of hnRNP 

A2/B1has been proven to induce HPV-16 late gene expression (Li, Johansson, et al. 2013). 

Furthermore, RA also plays a role in the immune response, with studies showing that RA 

promotes the proliferation and activation of NKT cells indirectly in vitro by increasing CD1d 

expression in APCs (Chen & Ross 2015). As well as this, RA can differentially modulate the 

production of effector cytokines by NKT cells in hepatitis, signifying a potential role for RA as 

a therapeutic drug in the protection against liver damage by various agents (Lee et al. 2012). 

The intracellular effects of RA are mediated through two classes of nuclear receptors, retinoic 

acid receptors (RARs) and retinoid X receptors (RxRs). Both receptor classes contain three 
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subtypes, namely α, β and γ, each of which are encoded by a distinct gene (Chambon 1994). 

The three RAR types have a strong affinity for all-trans and 9-cis isomers of retinoic acid while 

all RXR types have demonstrated strong specificity for the 9-cis isomers only (Myga-Nowak 

et al. 2011). RARs and RXRs are ligand-dependent transcription factors and function primarily 

as RXR-RAR heterodimers. After ligand binding, activated receptors bind to cis-acting DNA 

sequences called retinoic acid response elements (RAREs) located in the promoter regions of 

target genes and induce transcription (Xu et al. 1999). In the absence of ligand, RARs have the 

potential to repress transcription (Wolffe 1997). Interestingly, the level of RAR expression may 

vary during the development of cancer. Alterations in the RARα and RARβ genes and their 

expression is linked to several diseases including acute promyelocytic leukaemia and 

hepatocellular carcinoma (Sano et al. 2003; Ferrucci et al. 1997). RARβ in particular has been 

demonstrated to play a significant role in mediating the anticancer effect of retinoids in 

numerous cancer cells.  Expression of RARβ is strongly up-regulated by RA treatment, through 

a RARE (βRARE) present in its promoter, which is activated by RAR-RXR heterodimers (de 

Thé et al. 1990; Valcárcel et al. 1994). Additionally, alterations in RARβ gene expression can 

give rise to unusually low mRNA levels and loss of ligand inducibility, features identified in 

several human cancers and tumour derived cell lines, including cervical cancer (Geisen et al. 

2000). One particular study has demonstrated that in normal cervical cells, basal RARβ mRNA 

levels are high and can be induced further by RA treatment while conversely, in the cervical 

carcinoma cells, the basal RARβ mRNA levels are low and not inducible or only slightly 

inducible by RA. Furthermore, the same study also shows that the RA-dependent increase of 

RARβ mRNA levels is mediated by RARα (Geisen et al. 1997). The potential influence of each 

small molecule drug on late gene expression is summarised in Figure 1.19. 
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Figure 1.19 The Influence of Small Molecule Drugs on Factors Associated with Late Gene 

Expression  
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1.20 The Immune System  

The immune system has a pivotal function in the response to HPV infection, as indicated by the 

effects induced by the highly immunogenic HPV late genes L1 and L2. The immune system, a 

complex system comprising of a network of different organs, tissues, cells and proteins, works 

to protect and defend the human body from harmful influences (Figure 1.20). The components 

of the immune system are connected via the blood and lymphatic circulatory systems with 

organs such as the bone marrow, thymus, spleen, lymph nodes and mucosa-associated lymphoid 

tissues occupied in the manufacturing, maturation, differentiation, proliferation and storage of 

immune cells (Elsabahy & Wooley 2013). Through an intricate series of steps known as the 

immune response, the immune system has the ability to attack invading pathogens which may 

have the potential to cause disease. When working efficiently, the immune system can 

differentiate self from non-self; recognising a variety of threats such as viruses, bacteria and 

parasites and distinguishing them from the healthy tissue of the body. The substances which 

activate the immune system are referred to as antigens. These antigens are macromolecules that 

elicit an immune response in the body. Antigens can be proteins, polysaccharides or lipids and 

when recognised by special receptors on the defence cells, stimulate an immune reaction. The 

defence against invading antigens is divided into two general types of immune reactions, 

namely the reactions of innate immunity and reactions of adaptive immunity. Although they 

vary in terms of response times and specificity, both aspects are equally important (Janeway et 

al. 2001).   
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Figure 1.20 The Immune System  

The human body displaying the organs of the immune system and the distribution of the various 

immune cells (Elsabahy & Wooley 2013).  

 

1.21 Innate Immune System  

The innate immune system is an evolutionary system that is constantly present and ever ready 

to provide a general defence against invading pathogens. This system does not require antigen 

specificity and has the potential to induce a generic immune response against a variety of 

organisms. However, it is lacking the ability to demonstrate immunological memory and does 

not confer long-lasting protection to the host. The main components of this nonspecific system 

include physical epithelial barriers, phagocytic leukocytes, dendritic cells (DC), natural killer 

(NK) cells and circulating plasma proteins (Clark & Kupper 2005). Research has established 

that the innate immune response plays an essential role in the clearing of HPV, acting as the 

first line of defence against infection. Innate immune cells including Langerhans cells (the 
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dendritic cells of the skin and mucosa), NK cells, natural killer T (NKT) cells and keratinocytes 

are all crucial for the promotion of an efficient adaptive immune response against HPV. These 

cells have the capacity to stimulate a cytokine-mediated pro-inflammatory process, therefore 

linking the innate with the adaptive immune response (Amador-Molina et al. 2013). 

Keratinocytes, the cells primarily infected by HPV, possess the ability to secrete cytokines 

including transforming growth factor-β (TGF-β), tumour necrosis factor-α (TNF-α) and 

interferons (IFNs). TGF-β inhibits viral growth in normal cervical cells while TNF-α may have 

an antiproliferative effect on HPV-16 infected cells through cell cycle arrest (Mendoza et al. 

2008; Scott et al. 2001). TNF-α is also shown to repress expression of E6 and E7 HPV proteins 

(Kyo et al. 1994), which are crucial for malignant transformation of infected cells (Hawley-

Nelson et al. 1989). Furthermore, the direct elimination of HPV-infected cells can be carried 

out by NK cells, through either granule-dependent cytotoxicity or the apoptosis pathway in the 

target cell (Sutlu & Alici 2009). Significantly, HPVs possess the ability to evade the immune 

response, mainly through the action of the previously mentioned E6 and E7 proteins. Viral 

mechanisms of immune evasion include the modulation of cytokine expression, alteration of 

antigen presentation and down-regulation of IFN-pathways and adherence molecules (Kanodia 

et al. 2007). As successful infection by HPV is dependent on this immune evasion, studies have 

suggested that the stimulation of the innate immune response through strong adjuvants is a 

promising therapeutic strategy for disrupting the evasion mechanisms utilised by HPV 

(Amador-Molina et al. 2013). 
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1.22 Adaptive Immune System  

In comparison to the innate immune response, adaptive immunity is involved in the 

implementation of a specific immune reaction and reacts only with the organism which induced 

its response. This highly specialised system includes aspects of both humoral 

immunity and cell-mediated immunity. B cells mediate the humoral immune response and on 

activation differentiate into antibody-secreting plasma or effector B cells (Alberts et al. 

2002).  Antibodies are imperative tools in the identification and neutralisation of foreign 

pathogens and possess the notable ability to combine with the antigen that triggered its 

production. Conversely, T cells regulate the cell-mediated immune response. Antigen-specific 

cytotoxic T-lymphocytes have the ability to induce apoptosis in cells presenting epitopes of 

foreign antigen on their surface (Janeway et al. 2001b). As well as this, protection by cellular 

immunity employs the activation of macrophages and natural killer (NK) cells, enabling them 

to destroy invading pathogens. It also involves stimulation of cells to secrete cytokines that 

influence the function of other cells and help coordinate an appropriate immune response 

(Dinarello 2007). Although this adaptive system needs some time to react to invading 

pathogens, adaptive immunity creates immunological memory after the initial response to a 

specific pathogen, resulting in an enhanced reaction to subsequent encounters with that same 

pathogen (Janeway et al. 2001c). Adaptive immunity plays a pivotal role against HPV infection. 

In relation to the cell-mediated adaptive immune response, there are two phases involved; the 

recognition of the antigen and the response to the antigen. In the recognition phase, Langerhans 

cells (LCs) are the major antigen presenting cells (APCs) utilised for presentation of the antigen 

to the naïve T cells, with studies showing that a depletion of these LC cells is associated with 

enhanced HPV survival, extended infection and potential malignancy (Memar et al. 1995; 

Matthews et al. 2003; Mendoza et al. 2008). T-helper cells (CD4+) set the cytokine milieu and 

therefore determine the direction of the immune response. IFN-γ and interleukin-12 (IL-12) are 
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required for the differentiation of the naïve lymphocyte to a Th1 response, which produces IFN-

γ, IL-2, IL-10, TNF-α and lymphotoxin and leads to the activation of cell-mediated immunity. 

Conversely, IL-4 and IL-2 are essential for the Th2 phenotype, resulting in the production of 

cytokines such as IL-5, IL-10 IL-13 and IL-25, contributing to the development of humoral 

immune response (Steele et al. 2005; Zhu & Paul 2008). CD8+ cytotoxic T cells are the primary 

agents in eliciting antigen-specific immunity and recognise the antigens with the assistance of 

MHC class I. Cell-mediated immunity plays a critical role in the clearance of the HPV lesion 

with the majority of T-cell activation caused by HPV E6 and E7 proteins (Deligeoroglou et al. 

2013). The humoral immune response is mediated by B cells, which neutralise and opsonise 

viral agents. Stimulation of this response is caused by APCs and the Th2 cytokine pattern as 

previously mentioned. The antibodies against HPV target mainly the L1 capsid protein although 

weak antibodies directed against E2, E6, E7, and L2 have also been detected (Deligeoroglou et 

al. 2013). However, antibodies can only attach to HPV that are free in the body and not those 

that have already infected the cell (Stanley 2006). As previously discussed, HPV vaccinations 

have been created which elicit an antibody-mediated immune response. Interestingly, studies 

have discovered that upon completion of a 3-dose regimen with a quadrivalent HPV L1 virus-

like particle vaccine, anti-HPV 6, 11, 16 and 18 antibody levels were 10-104-fold higher than 

those in natural infection (Villa et al. 2006).   

Despite their differences, the innate and adaptive immune responses do not function 

independently of one another but complement each other in any reaction against a potentially 

harmful pathogen. One specific means of bridging the gap between innate and adaptive 

immunity is through a class of lymphocyte entitled NKT cells. Although identified as potent 

activators of the immune system, the role of NKT cells in HPV-infected lesions has yet to be 

discovered. 
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1.23 NKT Cells  

Natural killer T cells (NKT cells) are a small subset of CD3+ lymphocytes that express surface 

markers characteristic of both T cells and natural killer cells. These NKT cells possess attributes 

of both innate and adaptive immunity and can therefore mediate efficient and amplified immune 

responses (Berzofsky & Terabe 2008) (Figure 1.21). Furthermore, NKT cells have both 

immune enhancing and immunosuppressive roles in the body (Robertson et al. 2014). 

 

Figure 1.21 Natural Killer T Cells Span the Interface of Innate and Adaptive Immunity 

(Dranoff 2004). 

 

In a similar fashion to innate immune cells, NKT cells are rapid responders when the immune 

system is activated, and help recruit other cells into action. NKT cells activate transcription of 

cytokine genes during early development in the thymus, providing the ability to produce 

cytokines promptly on activation (Stetson et al. 2003). Upon antigenic stimulation, NKT cells 

have the potential to produce an array of cytokines including IFN-γ, IL-2, IL-4, IL-10, IL-13, 

IL-17, IL-21 and IL-22, granulocyte-macrophage colony-stimulating factor (GM-CSF) and 

TNF-α (Parekh et al. 2013). The nature and class of the antigen-specific T cell response that 

ensues is determined by the cytokines produced (Terabe & Berzofsky 2008). Remarkably, NKT 
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cells can simultaneously secrete Th1/pro-inflammatory and Th2/anti-inflammatory cytokines 

(Figure 1.22). Within 2-4 hours of initial stimulation, NKT cells secrete copious amounts of IL-

4 and IL-13, promoting T helper 2 (Th2) immunity and IFN-γ, promoting T helper 1 (Th1) 

immunity. This in turn facilitates in vivo priming of antigen-specific immunity and stimulates 

downstream activation of dendritic cells, NK cells, B cells, and conventional T cells (Carnaud 

et al. 1999; Galli et al. 2003).  As these cytokines determine which immune cells are activated, 

NKT cells are imperative for guiding the adaptive immune system in the desired direction. With 

regard to the effector functions of NKT cells, research has shown that these cells can mediate 

both protective and regulatory immunologic functions, such as anti-tumour responses, 

protection against pathogens, maintenance of transplant tolerance and inhibition of 

autoimmunity (Taniguchi et al. 2003). Loss of NKT cells has detrimental consequences on the 

immune response, with studies suggesting that the deficiency of CD1d-restricted NKT cells in 

HIV-1 infected patients could have numerous pathologic effects, including impaired tumour 

immunity and compromised immune responses against opportunistic infections (Moll et al. 

2006). Additionally, research utilising CD1d gene knockout (GKO) mice, which lack CD1d-

restricted NKT cells, indicate that these cells play an important role in immunity to herpesvirus. 

GKO mice displayed amplified morbidity, enhanced spread of the virus in the nervous system 

and significantly diminished clearance of virus from the skin and nervous system (Grubor-Bauk 

et al. 2003). NKT cells can be grouped into several subsets but the most commonly described 

group is the type 1, CD1d-restricted, invariant NKT (iNKT) subset. Although iNKT 

cells constitute only approximately 0.1% of all peripheral blood T cells in humans, they are 

proven to have a significant impact in many disease settings far beyond their strength in number 

(Terabe & Berzofsky 2008).   
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Figure 1.22 iNKT Cytokine Production                                                                                                               

A series of events ensues once NKT cells recognise a glycolipid antigen presented by CD1d, 

including the production of cytokines and co-stimulatory molecules resulting in the activation 

of antigen-presenting cells as well as NK, T and B cells. The release of these cytokines induces 

a broad range of diverse effects, ranging from enhanced cell-mediated immunity (Th1-type 

responses) to suppressed cell-mediated immunity (Th2-type responses). Shown in green are the 

responses beneficial to the host, while the actions indicated in red demonstrate the detrimental 

effects (Godfrey & Berzins 2007).  

 

1.24 Invariant Natural Killer T Cells   

NKT cells are similar to NK cells in that they share expression of certain cell surface antigens, 

such as the NK-associated receptor, CD161, both in humans (NKR-P1A) and in mice (NK1.1) 

(Godfrey & Kronenberg 2004; Tarazona et al. 2003). However NKT cells also express a TCR 

which is absent on NK cells, therefore establishing NKT cells as specialised T cells.  

The T cell receptor (TCR) is a molecule found on the surface of T lymphocytes and is 

responsible for recognising antigens bound to major histocompatibility complex (MHC) 

molecules on antigen presenting cells. The TCR repertoire of human NKT cells consists of an 

invariant Vα24-Jα18 alpha chain together with a diverse Vβ11 beta chain, giving rise to the 

name invariant NKT cells (iNKT cells). This expression of Vα24-Jα18 in humans is a unique 
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iNKT cell signature  (Fujii et al. 2013). It is standard practice that iNKT cells be identified via 

flow cytometry, simply by co-expression of TCR-Vα24 and TCR-Vβ11 or through the use of 

the monoclonal antibody (mAb) 6B11, which has the ability to recognise the invariant CDR3 

loop of the TCR α chain (Metelitsa 2004). Like true T cells, the antigen-specific TCR on iNKT 

cells allows them to recognise both self and foreign antigens. However their TCR does not 

interact with peptide antigen presented by classical MHC molecules, but instead provides the 

immune system with a unique mechanism for identifying lipid and glycolipid antigens which 

go undetected by conventional T cells. These lipids and glycolipids are presented to iNKT cells 

by a nonclassical MHC-like antigen presenting molecule called CD1d, as shown in Figure 1.23. 

iNKT cells are CD1d-restricted (Matsuda et al. 2008). 

 

Figure 1.23 T Cell and NKT Cell Antigen Recognition  

In comparison to the CD8+ and CD4+ T cells, which are shown to display diverse TCRs 

recognising peptide antigens, the NKT cells display an invariant TCR which is employed to 

recognise glycolipid antigens (Van Kaer 2005). 
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1.25 CD1d  

CD1d is an MHC-like molecule, utilised to present glycolipid and lipid molecules to iNKT 

cells. It is detected on several cells of the body, including the majority of thymocytes, peripheral 

lymphocytes, epithelial cells in the gastrointestinal tract and hepatocytes (Bleicher et al. 1990). 

CD1d is not only important for antigen presentation but also plays a pivotal role in the 

development of iNKT cells, with studies discovering that mice lacking CD1d are severely 

depleted in their NKT cell pools (Chen et al. 1997). Similar in structure to MHC class I, the 

CD1 glycoprotein consists of a 45 kDa heavy chain noncovalently associated with beta-2-

microglobulin (β2m), forming a heterodimer that is expressed on the cell surface of the antigen-

presenting cell (APC) (Chen et al. 1997). Newly assembled CD1d–β2m complexes contain 

endoplasmic reticulum (ER)-derived endogenous lipid antigen, which upon arrival in the 

endosomal pathway is exchanged for antigenic lipids (Subleski et al. 2011). These 

endogenous lipids are believed to stabilise the CD1/β2m complexes until exchange for 

antigenic lipids is achieved (De Silva et al. 2002). Initial self-lipid binding by CD1d molecules 

occurs in the ER and is mediated by the ER-resident lipid transfer protein microsomal 

triglyceride transfer protein (MTP). During assembly in the ER, MTP lipidates CD1d in a step 

that is critical for CD1d to present both endogenous (ER-loaded) and exogenous (endosomal or 

surface-loaded) antigens to CD1d-restricted NKT cells (Kaser et al. 2008). On stimulation, 

CD1d molecules are loaded with antigenic lipid antigen in late endosomes/lysosomes. 

However, as a result of their bio-physical properties, lipid antigens require a number of 

mechanisms to control their uptake into cells, extraction from membranes and eventual loading 

onto CD1d (Salio et al. 2010). Some complex lipids also require processing by resident 

lysosomal lipases and glycosidases, such as α-Galactosidase A, mannosidase and 

hexosaminidase, which are shown to be involved in the trimming of glycolipid antigens (Zhou 

et al. 2004; Prigozy et al. 2001). Furthermore, lipids have a tendency to insert into the lysosomal 

http://www.copewithcytokines.de/cope.cgi?key=CD1d
http://www.copewithcytokines.de/cope.cgi?key=Cytokine%20Inter%2dspecies%20Reactivities
http://www.copewithcytokines.de/cope.cgi?key=CD1d
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membrane bilayer and therefore require assistance from helper molecules to facilitate lipid 

extraction from the membranes and loading onto CD1d. Sphingolipid activator proteins (SAPs) 

such as saposins, the GM2-activator protein and the Niemann-Pick C2 protein (NPC2) are 

crucial for the loading of lipid antigen onto CD1d molecules (Kang & Cresswell 2004; Zhou 

2004). After binding, the antigenic lipid-CD1d-β2m complexes relocate to the cell surface and 

present to iNKT cells (Sillé et al. 2009).  

1.26 α-GalCer   

The best characterized CD1d ligand is the synthetic glycolipid α-Galactosyl Ceramide (α-

GalCer), a compound originally derived from marine sponge (Hayakawa et al. 2003). α-GalCer 

is deemed the most efficient antigen for the activation of the majority of iNKT cells (Godfrey 

& Kronenberg 2004). It functions by firstly binding to the CD1d molecule on antigen presenting 

cells and subsequently combining with the TCR of the iNKT cell. This in turn induces activation 

of both iNKT cells and various other immune-competent cells as well as the rapid production 

of regulatory and proinflammatory cytokines (Figure 1.24), therefore bestowing α-GalCer with 

therapeutic potential. Research has been performed utilising synthetic α-GalCer, or its variants, 

in mouse models to prevent tumour metastases, to reduce autoimmunity in experimental 

autoimmune encephalomyelitis (EAE) and diabetes models and to enhance the responses to 

viral and parasitic infections (Godfrey & Kronenberg 2004). α-GalCer has also been 

investigated in numerous phase I cancer clinical trials with the aim of elucidating whether the 

antitumour effects of iNKT cells obtained in mice are also observed in humans (Giaccone et al. 

2002; Ishikawa et al. 2005; Chang et al. 2005). As well as being the first antigen discovered 

that could bind to the CD1d molecule and activate NKT cells, (Kawano 1997) α-GalCer was 

also the first antigen used to load CD1d tetramers for the detection of NKT cells (Sidobre & 

Kronenberg 2002). While α-GalCer is one molecule that has been determined to strongly 

stimulate NKT cells, endogenous antigens can also stimulate NKT cells, however their 
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activation capacity is lower than that of α-GalCer (Mattner et al. 2005). Although HPV does 

not have NKT-stimulating glycolipids, HPV infection may have potential to modify the profile 

of endogenous glycolipids, which can in turn be presented to and activate iNKT cells (Amador-

Molina et al. 2013). Since HPV is a local infection, understanding the contribution of iNKT 

cells in infected cervical tissue is essential to identify the factors involved in HPV clearance.

  

          

 

Figure 1.24 NKT Cells Reactive to CD1d-Bound α-GalCer  

Stimulation of NKT cells by CD1d-bound α-GalCer results in the production of copious 

amounts of cytokines such as IL-4 and IFN-γ (Wu et al. 2005).  
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1.27 iNKT Subsets - Cytokine Production  

In the same way as conventional T cells develop, iNKTs expand in the thymus from CD4+ CD8+ 

thymocytes. Expression of the iNKT TCR is selected by reactivity with CD1d-presented 

endogenous lipid, which directs cells to the iNKT lineage (Juno et al. 2012). In both mice and 

humans, iNKT cells can be CD4+CD8− or CD4−CD8− double negative (DN), while humans 

possess an additional CD4−CD8+ subset (Gumperz et al. 2002). In humans, this broad 

classification of CD4+ and CD4− subsets provides an important functional distinction, due to 

the fact that CD4+ NKT cells make both Th1 and Th2 cytokines (such as IFN-γ, TNF, IL-4, IL-

10, IL-13), whereas CD4− NKT cells primarily make Th1 cytokines (IFN-γ and TNF) (Lee 

2002; Godfrey & Kronenberg 2004). Studies performed have identified these subsets of iNKT 

cells and determined their unique cytokine production and cytotoxicity capabilities. Both 

CD4+CD8− and CD4−CD8− subsets produce high levels of IL-4 and IFN-γ, in comparison to 

CD8+ iNKT cells (Hammond et al. 1999). Additional research utilising CD1d tetramers has 

confirmed that CD4- iNKT cells have the potential to selectively produce the Th1 cytokines 

IFN-γ and TNF-α and up-regulate perforin after exposure to IL-2 or IL-12. In comparison, CD4+ 

iNKT cells can produce both Th1 and Th2 cytokines as well as up-regulate perforin as a result 

of stimulation with phorbol myristate acetate and ionomycin, but not IL-2 or IL-12. Antigenic 

stimulation of these iNKT cells resulted in cytokine production while exposure to inflammatory 

factors enhanced perforin expression (Gumperz et al. 2002; Tarazona et al. 2003). iNKT cells 

have been implicated as immunosuppressive cells in certain systems, primarily through their 

production of the Th2-type cytokines or IL-10, while in other systems, they appear to promote 

enhanced cell-mediated immunity via production of Th1-type cytokines (Wilson & Delovitch 

2003; Godfrey & Kronenberg 2004).  
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1.28 Detection of iNKT Cells  

Further to the use of TCR-Vα24, TCR-Vβ11 and 6B11 antibodies, previously mentioned as 

standard mechanisms for the detection of iNKT cells by flow cytometry, the recent development 

of CD1d-α-GalCer tetramers has made it possible to uniquely and explicitly characterise iNKT 

cells, again through flow cytometry (Gumperz et al. 2002; Sidobre & Kronenberg 2002). The 

tetramer combines four CD1d molecules and a fluorescent label, which is recognised by the 

TCR of the iNKT cell. As well as this, they are loaded with α-GalCer to improve staining 

efficiency as shown in Figure 1.25. 

 

 

Figure 1.25 CD1d Tetramers  
CD1d tetramers consist of four CD1d molecules joined together and loaded with α-GalCer. 

They are fluorescently labelled and useful for NKT cell identification (MBL International 

2014). 

 

The invention of these tetramers has greatly facilitated the identification of iNKT cells, although 

in humans, the tetramer must be teamed with an additional antibody to provide a diagnostic 

service for type I NKT cells. This is due to the fact that some type II NKT cells, despite lacking 

the invariant TCR, may still respond to α-GalCer. Therefore the combination of the CD1d 

tetramer with anti-Vα24 would provide a more definitive means of identification (Terabe & 
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Berzofsky 2008). Despite the success of iNKT cell identification in cell suspensions, there is 

currently no available method for the detection of iNKT cells in tissue sections, a technique 

which would be an invaluable tool for further research into this cell population. An interesting 

possibility is the potential of the 6B11 flow cytometry approved antibody (obtained from 

eBioscience) for iNKT identification in tissue sections through immunohistochemical analysis. 

1.29 iNKT Cell Distribution  

Type I NKT cells are detected where conventional lymphocytes normally reside, although the 

proportion of iNKT cells alter in a tissue-specific manner. The distribution of iNKT cells in 

human tissue is under evaluation, however it is particularly difficult owing to their low 

frequency (0.01%-1%) amongst peripheral blood T cells, as well as the lack of a single, defining 

cell-surface marker specific for iNKT cells (Godfrey et al. 2000). Extensive analysis has 

however been performed in mouse models. While the distribution of iNKT cells is similar 

between humans and mice, the frequency varies significantly, with far fewer cells present in 

the human body. Although usually found only at trace levels in many organs, these iNKT cells 

are enriched in the liver, accounting for 30–50% of hepatic T cells in mouse liver lymphocytes. 

This is in comparison to approximately 0.5% of the total T cell population in the human liver, 

the highest concentration of iNKT cells found in the human body (Kenna et al. 2003). Other 

locations where iNKT cells are most frequently distributed, as a percentage of mature T cells 

in mice, include the bone marrow (20–30%) and thymus (10–20% of mature T cells, but only 

0.3–0.5% of total thymocytes), spleen (3%), lymph node (0.3%), blood (4%) and lung (7%) 

(Godfrey et al. 2000; Tarazona et al. 2003). As well as this, it has also been proven that iNKT 

cells are highly enriched in human and murine adipose tissue. Studies performed on TCR 

expression by human omental tissue have shown that frequencies as high as 50% express the 

Vα24Jα18 TCR chain found on iNKT cells. This high iNKT frequency was established by flow 

cytometry using the 6B11 mAb and confirmed in some samples by detecting co-expression of 
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the Vα24 and Vβ11 chains and using the α-GalCer-loaded CD1d tetramer (Lynch et al. 

2009).  Research has also shown that the proportion of iNKT cells in the human intestine is 

<0.4% of all T cells and that they are located mainly in the lamina propria. Although the 

population is low, this study provides evidence for a role for iNKT cells and CD1d expression 

in intestinal mucosal immunity and inflammation (Wingender & Kronenberg 

2008).  Significantly, studies have also demonstrated the presence of innate cellular defences 

including NKT cells in the epithelial layers of the lower female genital tract (Kaul & Hirbod 

2010), while further investigations identify iNKT cells as crucial regulatory cells in cutaneous 

tissue, a role which is dependent on CD1d recognition and IFN-γ production (Mattarollo et al. 

2009). Additionally, the population of circulating Vα24+ Vβ11+ NKT cells also varies with 

certain types of tumours, with the number of circulating Vα24+ NKT cells significantly 

decreased in patients with colon cancer, head and neck cancer, breast cancer, renal cell cancer 

and melanoma (Tan et al. 2010). To help understand the contribution of iNKT cells in infected 

cervical tissue and cervical carcinoma, further characterisation of iNKT cells presence in genital 

mucosa and in particular cervical epithelium is required. 

1.30 Role of iNKT Cells in Tumour Immunity  

 iNKT cells induce an adjuvant effect on antitumour immunity by activating other antitumour 

cytolytic cells primarily through the Th1 cytokine cascades (Tan et al. 2010).  Investigations 

imply that NKT cells may not necessarily kill the tumour cells directly, but instead may recruit 

and promote a response by downstream effectors in an IFN γ-dependent manner. NK cell and 

cytotoxic T lympocyte activity is enhanced through α-GalCer–stimulated NKT cells, with both 

effector cell types playing a role in the antitumour response (Smyth et al. 2002). However, other 

research performed has suggested that human iNKT cells also possess their own cytotoxic 

characteristics, which may be used to stimulate direct lysis of various tumour cells lines. 

Numerous cytotoxic molecules such as perforin, granzyme, Fas ligand and tumour necrosis 
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factor-related apoptosis inducing ligand (TRAIL) are expressed by iNKT cells, all of which 

have the potential to activate cytotoxicity (Smyth 2002; Kawano et al. 1999). Additionally, 

studies have shown that long-term administration of soluble α-GalCer, spanning the time of 

tumour initiation, has the potential to inhibit primary tumour formation in three different mouse 

models  (Hayakawa et al. 2003).  Further examinations have also been carried out wherein the 

administration of exogenous IL-12 (Cui 1997) or α-GalCer (Kawano 1997) in vivo strongly 

implicate a vital role for NKT cells in tumour immunity, with the antitumour activity mediated 

by IL-12 resembling that of α-GalCer. It has also been shown that IL-12 induces production of 

perforin in these cells (Kawamura et al. 1998).  Additional work investigating the role of iNKT 

cells in protection from spontaneous tumours initiated by the chemical carcinogen 

methylcolanthrene (MCA) was also performed. Impaired protection in Vα14 deficient mice 

indicated that NKT cells are crucial in natural immune responses to certain spontaneous 

tumours, the first finding of NKT antitumour activity in the absence of exogenously 

administered IL-12 or α-GalCer (Smyth et al. 2000). In other murine studies, NKT cells have 

again been shown to play a critical role in the cytotoxicity against tumour cell lines. Expanded 

CD8+ NKT cells, which are CD1d independent and produce Th1 cytokines such as IFN-γ and 

TNFα have been demonstrated to display potent in vitro cytotoxicity and provide lifesaving 

protection from an otherwise fatal tumour challenge (Baker 2001). Conversely, it has been 

indicated that CD1d dependent CD4+ NKT cells, together with IL-13, possibly produced by the 

NKT cells, have the ability to down-regulate tumour immunosurveillance leading to tumour 

progression (Terabe et al. 2000). Therefore, as it remains uncertain whether iNKT cells always 

mediate antitumour immunity, further evaluation is required to elucidate the immune 

contributions to the outcomes of various tumour types. Significantly, the potency of the anti-

tumour effect mediated by NKT cells may also be impacted by the type, complexity and 

composition of the tumour microenvironment, with the presence of cell surface proteins, 
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suppressor cells, infiltrating blood vessels and varying cytokine patterns all influencing the 

response (Schiavoni et al. 2013). 

1.31 Role of iNKT cells in HPV Infection  

Studies performed on immunodeficient or immunocompetent individuals have indicated that 

the immune system has a critical role in the success or failure of spontaneous clearance of HPV 

(Monnier-Benoit et al. 2006). Although the function and distribution of iNKT cells in HPV-

infected lesions has not yet been fully investigated, it has been discovered that the expression 

of CD1d, the MHC-like glycoprotein that presents lipid antigen to iNKT cells, is significantly 

suppressed in HPV-infected tissue (Miura et al. 2010). This reduced expression of CD1d may 

contribute to viral immune evasion, by preventing iNKT cell activation. CD1d has been 

demonstrated to be down-regulated in HPV-positive cells both in vivo and in vitro (Miura et al. 

2010). Research has established that CD1d immunoreactivity is strong in HPV-negative normal 

cervical epithelium but absent in the presence of both high-risk and low-risk HPV types, namely 

HPV16-positive CIN1 and HPV6-positive condyloma lesions. The hypothesis for the decreased 

cell surface expression of CD1d in HPV-infected cells is the inhibition of calnexin folding 

capabilities by HPV E5 (Miura et al. 2010). This CD1d down-regulation allows the infecting 

virus to evade the protective immunological surveillance of the host and establish persistent 

infection at the primary transmission site. Therefore, despite the unclear role of NKT cells in 

HPV infections, reduced CD1d expression provides important indirect evidence of immune 

evasion mechanisms developed by HPV to avoid the protective role of iNKT cells during early 

stages of infection. From this, it can be speculated that the diminished levels of CD1d may have 

a negative impact on the population of iNKT cells in HPV-infected cervical tissue. However, 

at present, there is no available method for the detection of iNKT cells in tissue samples to 

investigate this hypothesis further. Should a novel method be established it would prove an 

invaluable tool for future iNKT cell exploration.  
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1.32 Flow Cytometry  

At present, the only means of investigating iNKT cell distribution in the body is through flow 

cytometry. Flow cytometry is a useful tool which provides rapid analysis of multiple 

characteristics of single cells. To perform flow cytometric analysis, prepared single cell or 

particle suspensions are required. Fluorescent dyes may bind or intercalate with different 

cellular components such as DNA or RNA while antibodies may also be conjugated to 

fluorescent dyes which can bind to specific proteins on the cells.  Fluorescein isothiocyanate 

(FITC), Texas Red and phycoerythrin (PE) are the most common fluorescent dyes used for flow 

cytometry (Titus et al. 1982). The cell suspension is aspirated into a flow cell, where they are 

surrounded by a fluid stream and move individually through a focused laser beam. When 

labelled cells are passed through this light source, the fluorescent molecules are excited to a 

higher energy state. Upon returning to their resting states, the fluorochromes emit light energy 

at higher wavelengths. Emitted light is scattered in all directions and collected via optics that 

direct the light to a series of filters and dichroic mirrors that isolate particular wavelength bands 

(Brown & Wittwer 2000). The light signals are detected, with data stored, analysed and 

displayed through an associated computer system. Electronic gating permits separation of the 

total cell population into individual components, allowing for specific analysis. Physical 

properties, such as size (represented by forward angle light scatter) and internal complexity 

(represented by side angle scatter) can be determined by flow cytometry and be used to identity 

certain cell populations (Shapiro 2005). Flow cytometry facilitates analysis of a large numbers 

of cells in a short period of time (>1,000/sec), providing statistically valid information about 

cell populations in a quick and efficient manner. However, to fully elucidate the presence and 

distribution of iNKT cells in tissue sections, additional methods of detection must be developed.  
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Figure 1.26 Flow Cytometric Analysis  

This diagram of flow cytometry indicates focusing of the fluid sheath, the laser beam and the 

fluorescence, forward scatter (FSC) and side scatter (SSC) detectors. Signals detected are 

analysed on the associated computer system (Czader 2012) . 

 

1.33 Immunohistochemistry  

Immunohistochemistry (IHC) is performed by combining immunological and chemical 

reactions, with the fundamental concept behind IHC the demonstration of antigens within tissue 

sections by means of specific antibodies (Ramos-Vara 2005). This technique is considered a 

highly sensitive and specific method and is widely utilised to identify the distribution and 

localisation of antigens. The principle of detecting tissue antigens using a direct fluorescence 

protocol was first described in pioneering publications by Albert H. Coons and his colleagues 

(Coons et al. 1941). Following this, as a means of improving detection sensitivity, variations of 

the fluorescent protocol were established, such as the use of horseradish peroxidase and the 

avidin-biotin complex, however the original procedure has remained the same since its 

invention.   

Current practice for IHC involves incubation of the primary antibody on tissue sections which 

have been pretreated to encourage optimal antibody binding. Essential pre-treatments to the 
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staining process include blocking steps for endogenous activities and antigen retrieval. Antigen 

retrieval is carried out to counteract alterations in protein biochemistry caused by the fixation 

process and offers numerous advantages to the staining process (Shi et al. 1991). Although 

essential for the preservation of tissue morphology, fixation may result in the epitope of interest 

becoming masked by cross linking of peptides. The antibody is therefore unable to bind and the 

IHC technique will be unsuccessful. To enable efficient antibody binding, two methods 

employed for antigen retrieval include protease-induced epitope retrieval (PIER) and heat-

induced epitope retrieval (HIER).  The use of enzyme in PIER allows cleavage of the peptides 

that are masking the epitope, however its success rate is low with potential to damage both 

tissue morphology and the antigen of interest. On the other hand, HIER has proved a very 

effective means of antigen retrieval, working by reversing some cross-links and allowing for 

restoration of secondary or tertiary structure of the epitope. Time, temperature, buffer and pH 

are all crucial factors in the successful optimisation of the HIER protocol, with citrate buffer, 

EDTA buffer or Tris-EDTA buffer the most widely employed for the enhancement of antibody 

staining (Krenacs et al. 2010). Visualising of the antibody-antigen interaction can then be 

accomplished by several methods including immunoperoxidase staining, in which the antibody 

is conjugated to a peroxidase enzyme, catalysing a colour-producing reaction or through 

immunofluorescent staining, in which the antibody is associated with a light emitting 

fluorophore, such as fluorescein, rhodamine or Texas Red. 
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1.34 Avidin-Biotin Complex Method  

The novel invention of a new immunohistochemical method was described in 1981 with the 

generation of the Avidin-Biotin Complex (ABC) method (Hsu et al. 1981). The principle of this 

ABC method is based on the strong affinity of avidin, a large glycoprotein, for the low 

molecular weight vitamin biotin. Avidin contains 4 binding sites for biotin, while the biotin 

molecule is easily conjugated to antibodies and enzymes. There are three layers to the 

technique, with the first step the incubation of the tissue section with unlabelled primary 

antibody, followed by addition of a biotinylated secondary antibody which binds to this primary 

antibody. The final step in the process involves the introduction of an avidin-biotin-peroxidase 

complex. Binding of this complex to the biotin associated with the secondary antibody results 

in a high staining intensity, with a substrate such as diaminobenzidine (DAB) used to produce 

the colourmetric end product (Figure 1.27). The ABC method is an excellent technique for the 

identification of specific antigens in tissue sections. 

 

Figure 1.27 Avidin-Biotin Complex Method  
Illustration of the ABC staining method, in which the secondary antibody, which is conjugated 

to biotin, acts as a link between tissue-bound primary antibodies and an avidin-biotin-

peroxidase complex (Meiring et al. 2011).   
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1.35 Tissue Microarrays  

The tissue microarray (TMA) is a recent innovation in the field of pathology. These microarrays 

are composed of several small representative tissue samples from hundreds of different cases 

assembled on a single histologic slide, allowing high throughput analysis of multiple specimens 

at the same time. The technique was first described by Battifora in 1986, who created a method 

of embedding 100 or more different tissue samples in a normal-sized paraffin block called a 

multitumour tissue block (MTTB). He utilised a “sausage block” method in which 1mm thick 

‘rods’ of different tissues were wrapped in a sheet of small intestine before embedding in a 

paraffin block and cutting sections for examination (Battifora 1986). The array format was then 

conceived by Wan and colleagues in 1987 (Wan et al. 1987). Currently employed tissue 

microarrays are paraffin blocks created utilising cylindrical tissue cores extracted from different 

paraffin donor blocks and re-embedded into a single recipient (microarray) block at specific 

array coordinates (Figure 1.28). Through the development of this technique, we now have the 

ability to analyse up to 1000 or more tissue samples from a single paraffin block. This 

pioneering process permits simultaneous analysis of molecular targets at DNA, mRNA and 

protein levels under identical, standardised conditions on a single glass slide (Jawhar 2009). 

Other advantages of tissue microarrays include amplification of a scarce resource, reduced 

assay volume, decreased time and cost and preservation of original tissue blocks. This practical 

tool can be utilised in various streams of biomedical research and is imperative for the 

identification of new diagnostic and prognostic markers and targets in human cancers. 

Figure 1.28 Creation of a Tissue Microarray (Schneider 2004). 
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1.36 Hypothesis and Aims of this Study  

Human papillomaviruses are found in 99.7% of all cervical cancers, with HPV-16 alone 

responsible for approximately 50% of cases. Late gene expression of HPV-16 is found only in 

terminally differentiated epithelial cells and is completely absent in cervical cancer containing 

HPV-16. As the products of these late genes L1 and L2 are highly immunogenic, it has been 

suggested that suppression of these products may prevent detection of the virus by the immune 

system, leading to persistence of infection. Therefore, if expression of these proteins in the 

lower layers of the cervical epithelium could be induced, it may lead to clearance of the virus. 

The focus of this study is on the regulation of the HPV-16 L1 late gene and the identification 

of small molecule drugs which may up-regulate its expression. Furthermore, there is also 

interest in the immune response to HPV infection, in particular the role of iNKT cells. iNKT 

cells are proven potent activators of the immune system and have a predominantly protective 

function. However CD1d, which is utilised to present lipid antigen to iNKTs, is down-regulated 

in HPV-infected cells and may represent a mechanism to evade protective immunological 

surveillance by iNKT cells. As there is currently no available method to detect iNKT cells in 

tissue sections, both presence and function of iNKT cells in cervical epithelium is currently 

unknown. The goal of this research is to establish a novel method for iNKT cell detection in 

tissue, which would prove an invaluable tool for future research into this unique cell population.
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Overarching Aim  

To examine the regulation HPV-16 gene expression, with principal importance placed on late 

gene expression and small molecule drugs capable of modulating late gene expression. 

Additionally, it is proposed to generate an innovative protocol for the detection of iNKT cells 

in human tissue, with this method subsequently used to enumerate iNKT cells in HPV-infected 

cervical cancer samples.  

 

Individual Aims  

 Culture 2 stable reporter cell lines, pBELCAT67 and pBELMCAT31, in which the L1 

gene has been replaced by the easily measurable CAT reporter gene. Both cell lines 

have previously been shown to express detectable levels of CAT, with inactivation of 

splicing silencers enhancing CAT expression in pBELM.  

 Identify the effects of selected small molecule drugs on late gene expression and their 

potential to treat persistent HPV infection. 

 Examine the expression of any putative small molecule drug targets that arise from the 

molecular analysis. 

 Create a cell block utilising a pure population of iNKT cells for use as a positive control 

in iNKT identification methods. 

 Examine the viability of various antibodies as a specific technique for the detection of 

these iNKT cells. 

 Optimise this antibody detection method and investigate iNKT cell presence in human 

cervical tissue. 
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2. Chapter 2 - Materials and Methods  

2.1 Investigation of Late Gene Regulation  

2.1.1 Culture of Stable Cell Lines  

Stably transfected HeLa cells lines, pBELCAT67 and pBELMCAT31, were previously created 

by Beatrice Orrù in Dublin Institute of Technology utilising the pBELCAT and pBELMCAT 

reporter plasmids (Figure 2.1). Transfection was carried out by employing GeneJuice® 

Transfection reagent according to the protocol of the manufacturer (Novagen) and the CAT 

ELISA assay was utilised to confirm successful transfection and detectable levels of CAT 

expression (Orrù 2012). In this study, the pBELCAT67 and pBELMCAT31 stably transfected 

cell lines were cultured in RPMI-1640 complete cell culture medium containing 2mmol/l L-

glutamine (Lonza), 10% foetal bovine calf serum (Sigma), and 40 U penicillin/streptomycin 

(Sigma) in 75cm2 flasks at 37°C in 5% CO2 until fully confluent, before being trypsinised with 

2% trypsin diluted in 0.02% EDTA (Sigma) (appendix) for 10 minutes at 37°C.  

 

 

 

 

  

     

Figure 2.1 Structure of the pBELCAT and pBELMCAT Reporter Plasmids (Orrù et al. 

2012). 
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2.1.2 Treatment of Cell Lines with Small Molecules Drugs  

pBELCAT67 and pBELMCAT31 cells were plated at a density of 2x105 cells per individual 

well in 6 well plates containing 2mls of RPMI-1640 complete cell culture medium. Following 

incubation for 24 hours at 37°C  in 5% CO2, the medium was replaced with 2mls of fresh 

complete cell culture medium together with varying concentrations of selected small molecule 

drugs; TPA (phorbol 12-myristate 13-acetate, Sigma), valproic acid (Sigma), tannic acid 

(Sigma) and retinoic acid (Sigma) (Table 2.1). For treatment with drug combinations, a control 

of 0.5µl H2O was also included. The concentrations of TPA, valproic acid and tannic acid were 

selected based on previous research performed by Orrù on HPV-16 late gene expression, while 

the concentrations of retinoic acid were chosen as a result of previous work carried out 

employing retinoic acid for cell differentiation (Orrù 2012; Edwards & McBurney 1983).   

Cells were incubated in the presence of each drug for 24 hours at 37°C in 5% CO2, following 

which the effects on CAT expression were analysed by the CAT ELISA assay.  

Small Molecule Drug Concentrations Solubility 

TPA 0ng/ml, 400ng/ml, 800ng/ml DMSO 

Valproic Acid 0mM, 0.5mM, 100mM H2O 

Tannic Acid 0μM, 1μM, 10μM H2O 

Retinoic Acid 10-5M – 10-9M DMSO 

Table 2.1 Concentrations and Solubility of Small Molecule Drugs  

2.1.3 CAT ELISA Assay  

Cells were harvested 24 hours after incubation with the selected small molecule drugs and CAT 

levels were determined using a CAT ELISA assay kit (Roche). The CAT ELISA is based on 

the sandwich ELISA principle. The first step involved the lysis of the transfected cells using 

1ml of lysis buffer, after which the cell extract was centrifuged at max speed for 10 min at 4°C. 
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Following on from this, 200µls of the cell extract, which contains the CAT enzymes, were 

added to the wells of the microplate provided and incubated in the dark at 37°C in 5% CO2 for 

1 hour. These wells have been precoated with a polyclonal antibody to CAT (anti-CAT). All 

CAT present in the cell extracts consequently attaches to the anti-CAT antibody that is bound 

to the plate surface. The wells were then rinsed 5 times with a washing buffer, after which a 

digoxigenin-labeled antibody to CAT (anti-CAT-DIG) was added and incubated in the dark at 

37°C in 5% CO2 for 1 hour. This anti-CAT-DIG binds to any CAT enzyme present. Washing 

was repeated and an antibody to digoxigenin, which is conjugated to peroxidase (anti-DIG-

POD), was introduced. Incubation was performed as before followed by another washing step. 

Finally, the peroxidase substrate ABTS was added and incubated for 20 minutes at room 

temperature. The peroxidase enzyme catalyses the cleavage of the substrate, yielding a coloured 

reaction product. Absorbance was then measured at 405nm using a 96-well microplate ELISA 

reader (Labsystems Multiskan Plus), with readings obtained directly correlated to the level of 

CAT present in the cell extracts.   

2.1.4 Data Analysis and Statistics  

GraphPad Prism 6 was employed for the construction of line graphs, with CAT ELISA data 

represented as fold-change. GraphPad Prism 6 was also used to perform statistical analysis on 

the CAT ELISA results, with the significance of changes in CAT expression determined 

utilising an unpaired, 2 tailed t-test.  

2.2 Investigation of Retinoic Acid Receptors  

2.2.1 Tissue Microarray Analysis  

 Anti-retinoic acid receptor alpha (RARα) antibody (abcam) and anti-retinoic acid receptor beta 

(RARβ) antibody (abcam) were used to determine the expression of specific RARs in cervical 

tissue microarray (TMA) sections. These TMAs were previously created in Dublin Institute of 
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Technology by Ciaran Cunniffe. Each TMA contains 12 cases of cervical carcinoma, 12 cases 

of HSIL, 12 cases of LSIL and 4 cases of tissue showing no evidence of malignancy (NEM), 

giving a total of 40 cases per TMA. Each case was sampled in triplicate giving a total of 120 

cores per TMA (Cunniffe 2014). The TMA also contains liver and adipose cores for orientation 

purposes. Conditions for use of the RAR antibodies were first optimised followed by H&E and 

immunoperoxidase staining of the TMA sections.  

2.2.2 Creation of Cell Line Blocks  

Cell blocks were created utilising pBELMCAT31, pBELCAT67 (HPV+) and C33A (HPV-) 

cell lines for additional RAR analysis. Each cell line was cultured in RPMI-1640 complete cell 

culture medium in 75cm2 flasks at 37°C in 5% CO2 until fully confluent, before being 

trypsinised with 2% trypsin diluted in 0.02% EDTA for 10 minutes at 37°C. Cell blocks were 

then created as described in Section 2.4.1, with 3x106 cells utilised per block and sections were 

subsequently stained with H&E and anti-RAR antibodies. 

2.2.3 Haematoxylin and Eosin (H&E) Staining   

 Sections were cut at a thickness of 5µm using a standard histology microtome (Lecia) and 

placed on SuperFrostPlus glass slides (Thermo Fisher) before melting in the oven for 2 hours 

at 60°C. Dewaxing was then carried out in baths of xylene (2), absolute alcohol (2) and spirit 

(1) (appendix) for 5 minutes each before rinsing in distilled water. Sections were covered in 

Harris haematoxylin (VWR Chemicals) for 5 minutes before being placed under running water 

for 5 minutes to blue the nuclei. Differentiation was then performed using an acid-alcohol 

solution (appendix) for 2 seconds, following which the slides were immediately washed in 

water for 1 minute. Sections were then placed under a 1% eosin solution for 1 minute before 

being washed in water for 1 minute. On completion, the sections were dehydrated by placing 

in spirit for 30 seconds and baths of absolute alcohol (2) and xylene (2) for 5 minutes each. The 
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sections were then mounted with DPX and left to dry on a flat surface before examination under 

the light microscope (Olympus BX51).  

2.2.4 Avidin-Biotin Complex Immunoperoxidase Staining  

Sections were cut as before and melted in the oven for 2 hours at 60°C. Dewaxing was carried 

out in baths of xylene (2), absolute alcohol (2) and spirit (1) for 5 minutes each before rinsing 

in distilled water. Heat induced epitope retrieval (HIER) was then performed. For HIER, 

500mls of 10mmol/l citrate buffer (appendix) at pH6 was placed in a staining dish and moved 

to a water bath preheated to 90°C. Once the buffer reached this same temperature, dewaxed 

sections were immersed and incubated for 20 minutes. The staining dish was then removed to 

room temperature and slides were allowed to cool. The slides were rinsed in distilled water and 

tissue sections were surrounded with a hydrophobic barrier using a barrier pen. Blocking of 

endogenous peroxidases was carried out by treating sections with 3% hydrogen peroxide in 

methanol (appendix) for 5 minutes. Sections were then washed in phosphate buffered saline 

(PBS) (appendix) 3 times, before being treated with the Vectastain Elite ABC kit (Vector 

laboratories). Normal horse serum, diluted 1:200 in PBS, was firstly applied to the sections for 

15 minutes to block non-specific staining between the primary antibodies and the tissue. Slides 

were then drained and approximately 250µl of specific primary antibody was applied and 

incubated at room temperature for 1 hour. Following 3 washes with PBS, the biotinylated 

secondary antibody, which was diluted 1:100 in PBS, was applied for 15 minutes. Sections 

were rinsed 3 times in PBS prior to treatment with the ABC reagent (diluted 1:100 in PBS) for 

15 minutes and were again rinsed in PBS. Peroxidase labelling was visualised using 0.2% 2, 4-

diaminobenzidine (DAB) (Sigma) (appendix) diluted in PBS and 0.03% hydrogen peroxide 

(Sigma). Sections were lightly counterstained by application of Mayer’s haematoxylin 

(appendix) for 40 seconds and blued in distilled water before dehydration in spirit for 30 

seconds and baths of absolute alcohol (2) and xylene (2) for 5 minutes each. Finally, sections 
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were coverslipped in DPX and left to dry before examination under the light microscope 

(Olympus BX51).  

2.3 iNKT Cell Identification by Flow Cytometry  

2.3.1 Ex vivo Expansion of iNKT Cells  

iNKT cells were expanded ex vivo and kindly donated by the Institute of Molecular Medicine, 

Trinity College Dublin, St. James's Hospital, Dublin. Expansion of these cells was carried out 

as per O’Reilly et al. from peripheral blood mononuclear cells (PBMC), which were prepared 

from unselected buffy coat packs by density gradient centrifugation over Lymphoprep 

(Nycomed Pharma). iNKT cells were enriched from PBMC by magnetic bead separation using 

6B11 coated magnetic beads (Miltenyi Biotec) and purified by sorting of 

CD3+Vα24+Vβ11+ cells using a Cell Sorter (MoFlo™ XDP Cell Sorter-Beckman Coulter). The 

sorted iNKT cells were then expanded by culturing in iNKT cell medium (RPMI 1640 

containing 0.05mM L-glutamine, 10% HyClone foetal calf serum, 1% penicillin-streptomycin, 

1% fungizone 25mM HEPES, 50µM 2-mercaptoethanol, 1mM sodium pyruvate, 1% non-

essential amino acids mixture and 1% essential amino acids mixture; Gibco and Thermo-

Scientific) together with 1µg/ml of the stimulating agents phytohemaggluttinin-P (Sigma-

Aldrich) and 250U/ml IL-2 (R&D Systems) in the presence of an excess (2×105) of irradiated 

allogeneic PBMC prepared from two donors. After 24 hours and again after 48 hours, medium 

was replaced with fresh iNKT cell medium containing 250U/ml IL-2. Prior to experimental 

use, cells were expanded for a minimum of 3 weeks (O’Reilly et al. 2011).  
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2.3.2 Flow Cytometric Analysis of Expanded iNKT cells  

Flow cytometry was performed on 4 healthy PBMC samples and 1 sample of iNKT cells 

expanded from a healthy patient as previously described. Selection of iNKT cells was carried 

out via a fluorescein isothiocyanate (FITC) labelled 6B11 antibody (BD Pharmingen) teamed 

with a phycoerythrin (PE) labelled CD3 antibody (BD Pharmingen), a T cell marker (Table 

2.2). The cell samples were defrosted and resuspended in 10mls of cell culture medium before 

centrifugation at 836 x g for 8minutes to pellet cells and remove the dimethyl sulfoxide 

(DMSO) cryoprotectant. Cell pellets were then washed in 10mls of PBS and centrifugation was 

repeated. After discarding the supernatant, the PBMC cell pellets were resuspended in 2mls of 

cell culture medium and the iNKT cells in 5mls of cell culture medium due to their higher 

concentration. Cell counts were performed by creating a 1:20 dilution of the cell suspensions 

in Ethidium Bromide Acridine Orange (EBAO) solution and the volume required to obtain 

1x106 cells was determined. Cell suspensions were then placed in the incubator at 37°C in 5% 

CO2 for 2 hours before flow cytometry was carried out. The appropriate predetermined volume 

of cells required for each sample was placed in falcon tubes together with 2mls of PBA wash 

buffer (PBS containing 0.1% bovine serum albumin) (appendix) and vortexed before 

centrifugation at 604 x g for 7minutes. Supernatants were removed and the cell pellets were 

resuspended in 200µls of PBA per test performed i.e. PBMC sample 1 (200 µl x 4 tests), PBMC 

sample 2, 3, 4 and iNKT cell sample (200 µl x 1 test). A Fluorescence Minus One (FMO) 

control was also utilised to properly interpret the data obtained. The FMO control contains all 

the flurochromes in a panel, except for the one that is being measured. This allows 

acknowledgement of any spread of fluorochromes into the unlabelled channel and permits 

correct gating of the cells (Table 2.3). Cells and PBA were vortexed and 200µls of each 

suspension was added to 10µls of the antibody required as demonstrated in Table 2.3. Tubes 

were vortexed and incubated in the dark at 37°C in 5% CO2 for 15 minutes. 2mls of PBA was 
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then added to each tube and vortexed again, before centrifugation at 604 x g for 7 minutes. 

Supernatants were discarded and each pellet was resuspended in 400µls of PBA. Flow 

cytometry was then performed on the FACS Calibur flow cytometer (Becton Dickinson) as per 

analyser guidelines with data evaluated using the flow cytometry data analysis software 

FlowJo. 

Specifications FITC-6B11 Antibody PE-CD3 Antibody 

Host Mouse Mouse 

Isotype IgG1, kappa IgG1, kappa 

Reactivity Human Human 

Company BD Pharmingen BD Pharmingen 

Reported Applications Flow Cytometric Analysis Flow Cytometric Analysis 

 

Table 2.2 FITC-6B11 and PE-CD3 Antibody Specifications 

 

Tube Sample Sample Volume Antibody 
Antibody 

Volume 

1 PBMC 1 200 µl of 1x106 cells 
Unstained 

 
- 

2 PBMC 1 200 µl of 1x106 cells 
FITC- 6B11 

(FMO Control) 
10µl 

3 PBMC 1 200 µl of 1x106 cells 
PE-CD3 

(FMO Control) 
10µl 

4 PBMC 1 200 µl of 1x106 cells 
FITC-6B11/ 

PE-CD3 
10µl of each 

5 PBMC 2 200 µl of 1x106 cells 
FITC-6B11/ 

PE-CD3 
10µl of each 

6 PBMC 3 200 µl of 1x106 cells 
FITC-6B11/ 

PE-CD3 
10µl of each 

7 PBMC 4 200 µl of 1x106 cells 
FITC-6B11/ 

PE-CD3 
10µl of each 

8 iNKT Cells 200 µl of 1x106 cells 
FITC-6B11/ 

PE-CD3 
10µl of each 

 

Table 2.3 Cell Samples and Antibodies Required for Flow Cytometric Analysis 
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2.4 iNKT Cell Identification in Tissue  

The prospect of utilising 6B11 to detect iNKT cells in tissue sections was performed through 

the creation of iNKT cell blocks. However, Jurkat T cell blocks were first employed for use, 

allowing optimisation of the protocol before eventual examination of the precious iNKT cells. 

Additionally, frozen cell sections and cytospins were also produced. H&E staining and 

immunocytochemistry were then performed on all sections.  

 

2.4.1 Cell Block Creation  

i) Jurkat Cell Line  

Jurkat cells were grown in RPMI-1640 cell culture medium containing 2mmol/l L-glutamine 

(Lonza), 10% foetal calf serum (Sigma) and 40 U penicillin/streptomycin (Sigma) in 75cm2 

flasks at 37°C in 5% CO2. Once fully confluent these cells were utilised for the creation of the 

Jurkat cell block.  

ii) iNKT Cell Line  

The iNKT cells utilised for the creation of the iNKT cell block were kindly donated from 

Vincent O’Reilly in the Institute of Molecular Medicine, having been expanded ex vivo as 

described in section 2.3.1.  

iii) Cell Block Preparation  

The optimal concentration of cells required were first washed by resuspending in 5mls of PBS, 

followed by centrifugation at 353 x g for 7minutes (3x106 Jurkat cells and 15x106 iNKT cells 

gave an effective concentration of cells per block). The supernatant was then discarded and 

cells were fixed by resuspending in 5mls of formalin for 2hours. Following this, cells were 

pelleted by centrifugation at 836 x g for 10minutes and supernatant was removed. Cells were 

washed in 5mls of PBS and centrifuged again for 10minutes. To aid in the transfer of the cell 
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pellet to a 1.5ml Eppendorf tube, cells were resuspended in 1ml of PBS. Following the addition 

of the cell suspension to the Eppendorf tube, centrifugation was repeated at 425 x g for 

10minutes and the supernatant was discarded. The cell pellet was then resuspended in 1ml of 

2% liquid agar (UltraPure agarose from Invitrogen/ bacteriological agar from Lab M) at 65°C. 

Resuspension was rapidly performed as agarose may solidify in the pipette tip. The agar-cell 

pellet was allowed to solidify at 4°C for 1 hour. The agar cone was then carefully removed from 

the Eppendorf tube and divided laterally in half. The two agar pieces were placed in a Tissue-

Tek cassette together with a sponge and processed overnight in an automated tissue processor 

(Leica) under standard conditions for surgical biopsies. The agar pieces were then embedded in 

a paraffin wax block (Figure 2.2).    

 

 

Figure 2.2 Creation of an Agar Cell Block  
Images left to right show: 1) Cell pellet solidified in agar. 2) Agar cone divided laterally in half 

and placed in cassette for processing. 3) Agar cone processed into paraffin wax block (Adapted 

from Kerstens et al. 2000). 

 

 

 

 
2) 3) 1) 
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2.4.2 Frozen Cell Block Creation  

iNKT cells were resuspended at a concentration of 10x106 in Tissue-Tek O.C.T compound 

which provides a specimen matrix for cryostat sectioning. The suspension was then placed in a 

cryomould, frozen in liquid nitrogen to form a lozenge and allowed to solidify. This was then 

removed and mounted immediately onto a chuck before sections were cut on the cryostat and 

stained (Leica).  

 

2.4.3 Cytospin Preparation  

An iNKT cell suspension of approximately 0.2x106 cells/ml was first prepared in complete 

medium for cytospin creation. Slides were then labelled and mounted with a paper pad and 

plastic cuvette before being placed in a metal holder. 200µls of the cell suspension was then 

added into each cuvette and spun at 72 x g for 3 minutes in the specialised cytospin centrifuge 

(Shandon). The holder was then carefully removed from the centrifuge and the slide, together 

with the paper and cuvette, was extracted without disarranging. The cuvette and paper were 

then detached without damaging the fresh cytospin. The area around the cytocentrifuged cells 

was marked with a hydrophobic pen prior to fixation. Cells were fixed in precooled 1:1 acetone: 

methanol for 15minutes at -20°C before staining.   

 

2.4.4 Immunocytochemistry   

i) Avidin-Biotin Complex Immunoperoxidase Staining  

Cell block and frozen sections together with the cytospins were stained using the avidin-biotin 

complex immunoperoxidase method as previously described in section 2.2.4. Conditions were 

first optimised utilising an anti-CD45 antibody (Dako) prior to staining with the 6B11 antibody 

(eBioscience). Immunofluorescent staining was also performed on the cell block sections.        
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ii) Immunofluorescent Staining  

Sections were cut at a thickness of 5µm using a standard histology microtome (Lecia) and 

placed on SuperFrostPlus glass slides (Thermo Fisher) before melting in the oven for 2 hours 

at 60°C. Dewaxing was carried out in baths of xylene (2), absolute alcohol (2) and spirit (1) for 

5 minutes each before rinsing in distilled water. HIER was then performed using 500mls of 

10mmol/l citrate buffer at pH6, preheated to 90°C in a water bath. Dewaxed sections were 

immersed in the buffer and incubated for 20minutes before removal to room temperature. Slides 

were allowed to cool and were then rinsed in distilled water before tissue sections were 

surrounded with a hydrophobic barrier using a barrier pen. Blocking of endogenous peroxidases 

was carried out by treating sections with 3% hydrogen peroxide in methanol for 5 minutes. 

Sections were then washed in phosphate buffered saline (PBS) 3 times. Normal horse serum, 

diluted 1:200 in PBS, was firstly applied to the sections for 15 minutes. Slides were then drained 

and approximately 250µl of primary antibody was applied and incubated at room temperature 

for 1 hour. Following 3 washes with PBS, the biotinylated secondary antibody, which was 

diluted 1:100 in PBS, was applied for an additional 15 minutes. Sections were rinsed 3 times in 

PBS prior to treatment with fluorescein streptavidin (Vector) for 30 minutes. Slides were again 

rinsed and a specialised mounting medium was applied. For imaging utilising the fluorescent 

microscope, Vectashield mounting medium with 4’, 6-diamidino-2-phenylindole (DAPI) 

nuclear counterstain (Vector) was utilised, while for confocal microscopy, 

Vectashield mounting medium with propidium iodide (PI) nuclear counter stain (Vector) was 

applied. Fluorescent microscopy was performed on an Olympus BX51 microscope with a 

fluorescence illuminator, together with the X-Cite 120Q excitation light source. Confocal 

microscopy was carried out on a Zeiss LSM 510 confocal laser scanning microscope, which 

allows for precise regulation of wavelength and excitation intensity.  Confocal microscopy also 
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reduces or eliminates background information away from the focal plane, resulting in high 

quality image capture. 

 

2.4.5 Automated Staining for 6B11 Antibody   

Automated staining was completed in Our Lady's Children's Hospital, Crumlin, Dublin 12, 

Ireland and the Royal College of Surgeons in Ireland (RCSI), St Stephens Green, Dublin 2, 

Ireland. Automated staining was performed using the OptiView DAB IHC detection kit (Roche 

Ventana) on VENTANA automated slide stainers. Normal, healthy tonsillar, liver, gastric, 

breast, colon, skin and appendix tissue sections were analysed, all of which were obtained from 

the laboratory in which the staining was performed. Sections from the iNKT cell block created 

using the UltraPure agar were also stained as well as an additional iNKT cell block produced 

using bacteriological agar (Lab M). Pre-treatment was performed with cell conditioning 

solution (CC1, Ventana) while a 1:30 dilution of the 6B11 antibody was utilised. 
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3. Chapter 3 - Results: Investigation of Late Gene Regulation  

3.1 Treatment of Stable Cell Lines with Small Molecule Drugs  

Two stable cell lines, pBELCAT and pBELMCAT were previously created containing reporter 

plasmids based on the HPV-16 genome (Orrù 2012). In these plasmids, the L1 late gene is 

replaced with chloramphenicol acetyltransferase (CAT), a functional surrogate marker for late 

gene expression. Additionally, in pBELM, the splicing silencer elements adjacent to the 

SA5639 are mutated to reduce the silencing on this splice acceptor, therefore activating late 

gene expression (Zhao et al. 2004). Previous evaluation by Orrù et al. identifies that the 

pBELCAT and pBELMCAT reporters are functional and have considerable potential for use in 

future studies intended to examine L1 gene expression.  

As a result of this discovery, the initial aims of this investigation were as follows:   

 Utilise these stable cell lines, in particular pBELCAT67 and pBELMCAT31, for 

treatment with an array of small molecule drugs at varying concentrations. 

 Determine the potential of these drugs to modulate CAT expression and therefore late 

gene expression.  

 Identify specific drugs or drug combinations as candidates for the treatment of HPV 

infections.  

 Examine the expression of any putative small molecule drug targets that arise from the 

molecular analysis. 

To perform this analysis, the main objectives were therefore to:  

 Culture the chosen stable cell lines until appropriate confluency was achieved and plate 

into 6-well plates as explained in materials and methods.  

 Incubate these cells with pre-determined concentrations of the small molecule drugs. 
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 Analyse CAT expression levels using the CAT ELISA technique.  

 Investigate RAR presence in various grade cervical cancer lesions through TMA 

immunoperoxidase staining 

Multiple tests were performed on each drug investigated and all tests were carried out on a 

1:100 dilution of pBELMCAT31 cell extract due to exceedingly high levels of CAT initially 

obtained. Averages of the absorbance readings were calculated, with data represented as fold 

change in all graphs created.  Results shown are indicative of the 1:100 pBELMCAT31 

dilutions. The significance of changes in CAT expression was determined utilising an unpaired, 

2 tailed t-test with a p value <0.05 deemed significant, while ‘n’ numbers are indicative of the 

number of tests performed per experiment. 

 i) TPA 

TPA (phorbol 12-myristate 13-acetate) was selected for investigation due to previous studies 

demonstrating the ability of this small molecule drug to induce HPV-31 late gene expression 

(Meyers et al. 1992). From this, the pBELMCAT31 and pBELCAT67 cell lines were treated 

with TPA in order to investigate the drug’s potential to induce HPV-16 late gene expression. 

Following incubation of the cells in the presence of the selected drug concentrations, CAT 

presence was investigated utilising the CAT ELISA technique. On examination of Figure 3.1, 

a dose-dependent increase of CAT is observed, with a maximum 2.61 fold induction of CAT 

expression in the presence of 400ng/ml TPA and a maximum 3.78 fold induction of CAT 

expression with 800ng/ml TPA in the pBELMCAT31 cell line. Statistical significance was 

confirmed, with p values <0.05 obtained between 0ng/ml-400ng/ml and 0ng/ml- 800ng/ml. 

On inspection of the effects of TPA on the pBELCAT67 cell line, no change in CAT 

expression was observed, with only slight fluctuations in fold change noted (Figure 3.1). 
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A) B) 
 

 

 

Figure 3.1 Treatment of pBELMCAT31 and pBELCAT67 with TPA   

A) Induction of CAT in a dose-dependent manner by TPA in the pBELMCAT31 cell line is 

detected. B) No significant increase in CAT levels by TPA is observed in the pBELCAT67 cell 

line. n=4 with statistical significance confirmed when p <0.05. 

 

ii) Tannic Acid  

Investigation into the potential of tannic acid as an inducer of late gene expression was also 

performed on pBELMCAT31 and pBELCAT67 transfected cell lines. Previous studies have 

suggested that an increase in polypyrimidine tract binding protein levels may be required for 

the activation of HPV-16 late gene expression during the viral life cycle (Somberg et al. 2008). 

Furthermore, it has also been demonstrated that tannic acid increases the expression of PTB in 

a dose-dependent manner (Bian et al. 2009). Therefore, it was speculated that tannic acid may 

have the potential to directly induce late gene expression through the up-regulation of PTB. The 

effects of tannic acid on CAT regulation and consequently late gene expression in the 2 stable 

cell lines was determined in the same manner as TPA utilising the CAT ELISA technique. As 

can be observed in Figure 3.2, no significant increase in CAT expression was detected in either 

cell line, with fold change fluctuating only slightly.  
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Figure 3.2 Treatment of pBELMCAT31 and pBELCAT67 with TA    

No significant increase of CAT expression by TA is observed in the pBELMCAT31 cell line 

(A) or the pBELCAT67 cell line (B). n=3.  

 

iii) Valproic Acid 

Previous investigations have shown that VPA increases expression of ASF/SF2 (Harahap et al. 

2012), a protein proven to regulate splicing of HPV and induce CAT expression (Somberg & 

Schwartz 2010). From this, it was decided to perform an examination on the direct effect of 

VPA on CAT expression and therefore determine its possible impact on the induction of HPV 

late gene expression. The influence of VPA on CAT expression was again established utilising 

the CAT ELISA. Results obtained show that, on treatment of the pBELMCAT31 cell line with 

VPA, a low concentration of the drug minimally decreases CAT expression while a 

concentration of 100mM induces a drastically decline in CAT. These changes in CAT 

expression between both 0mM-100mM and 0.5mM-100mM were indicated as statistically 

significant. On treatment of pBELCAT67 with VPA, CAT expression is shown to remain 

constant (Figure 3.3).   
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Figure 3.3 Treatment of pBELMCAT31 and pBELCAT67 with VPA  

A) A significant decrease in CAT expression is observed in pBELMCAT31 on treatment with 

VPA, particularly with 100mM of the drug. B) No variation in CAT expression is observed in 

pBELCAT67 with VPA treatment. n=3 with statistical significance confirmed when p <0.05. 

 

 iv) TPA, Tannic Acid and Valproic Acid Combined  

The results acquired from the treatment of both the pBELMCAT31 and pBELCAT67 cell lines 

with TPA, TA and VPA individually, indicate that TPA is the only potential inducer of late 

gene expression. As an additional means of analysis, treatment of both cell lines with a 

combination of all 3 drugs was completed, speculating that using multiple substances 

simultaneously may have a greater cumulative effect on cellular factors linked to splicing and 

therefore significantly increase CAT expression levels. The concentrations selected for use 

were 800ng/ml TPA, 10µM TA and 0.5mM VPA, with these concentrations believed to be most 

likely to induce any significant impact on late gene expression based on previous results (Orrù 

2012). Treatment of the pBELMCAT31 cell line showed a 1.5-2.3 fold induction of CAT 

expression with all drug combinations, excluding the TA&VPA combination (Figure 3.4). 

Results reasoned to be statistically significant are also indicated in Figure 3.4, with significance 

A) B) 
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shown only on the increase of CAT expression between H20 and the TPA/TA/VPA combination 

(i.e. the addition of TPA) and on the decrease of CAT expression between TPA/VPA and 

TA/VPA (i.e. the absence of TPA). Furthermore, no noteworthy effect on CAT expression is 

observed on treatment of the pBELCAT67 cell line with any of the drug combinations tested 

(Figure 3.4).  
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Figure 3.4 Treatment of pBELMCAT31 and pBELCAT67 with Drug Combinations 

A) An increase in CAT expression is observed in pBELMCAT31 in the presence of TPA, 

with a decrease shown only in the absence of TPA. B) No significant variation in CAT 

expression is noted in pBELCAT67. n=3 with statistical significance confirmed when p 

<0.05. 

A) 

B) 
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v) Retinoic Acid  

The possibility of retinoic acid acting as an inducer of late gene expression was also selected 

for investigation. Previous work has determined that hnRNP A2/B1 expression level is down-

regulated by RA (Liang et al. 2011) with knockdown of  hnRNP A2/B1 proven to induce HPV-

16 late gene expression (Li, Johansson, et al. 2013). Therefore, we proposed that RA may have 

substantial potential to induce late gene expression through inhibition of hnRNP A2/B1 and 

thus be proposed as an innovative treatment option for HPV infection. RA was investigated at 

a range of 10-5 M-10-9 M, concentrations selected based on previous work which indicates RA 

as an inducer of teratocarcinoma cell differentiation (Edwards & McBurney 1983). Repeat 

analysis of TPA in the role of a control was also performed, as TPA has previously been 

determined to successfully induce CAT expression on the pBELMCAT31 cell line. As can be 

observed in Figure 3.5, CAT expression in pBELMCAT31 is induced significantly with lower 

concentrations of RA. A maximum fold induction of 7.9 is seen on treatment with  

10-7 M of RA, with the increase in CAT expression between 0M-10-9 M and 0M-10-7 M deemed 

statistically significant.  However, a decrease in CAT expression is shown at a concentration of 

10-6 M.  One possible suggestion for this decrease may be linked to the volume of DMSO 

utilised in the creation of this drug concentration, a solvent which may be toxic to cells in high 

amounts. CAT levels increase again with 10-5 M of the drug, with this fluctuation also 

determined as statistically significant. On treatment of the pBELCAT67 cell line, CAT 

expression levels were unaffected, with fold change remaining constant (Figure 3.5). 
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Figure 3.5 Treatment of pBELMCAT31 and pBELCAT67 with RA  

A) A significant increase in CAT expression is observed with lower concentrations of RA in 

pBELMCAT31 with a decrease in CAT shown with higher RA concentrations. B) No variation 

in CAT expression is observed in pBELCAT67. n=2 with statistical significance confirmed 

when p <0.05. 

 

 

 

 

 

 

 

 

 

 

A) B) 
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3.2 Investigation of Retinoic Acid Receptor Expression in Cervical Tissue 

3.2.1 Tissue Microarray Staining   

i) Antibody Optimisation  

Following the discovery that retinoic acid has definite potential to induce HPV-16 late gene 

expression on the pBELMCAT31 cell line, it was decided to perform further investigation on 

the drugs mechanism of action. Retinoic acid exerts its biological effects by binding to specific 

nuclear retinoid receptors. These receptors are members of the steroid hormone gene 

superfamily and are ligand-activated transcription-modulating proteins (Xu et al. 1999). The 

nuclear retinoid receptors are divided into retinoic acid receptors (RARs) and retinoid X 

receptors (RxRs), both of which are further subdivided into α, β, and γ subtypes (Chambon 

1996). Retinoic acid receptors (RARs) function as heterodimers with retinoid X receptors 

(RXRs) to regulate cell growth and survival (Altucci et al. 2007).  In response to retinoid 

binding, RAR/RXR heterodimers undergo significant conformational changes and coordinate 

the transcription of specific gene networks (Bastien & Rochette-Egly 2004).  Generally 

speaking, three of the retinoid receptors (RARα, RXRα and RXRβ) have ubiquitous expression 

patterns, with the remaining three (RARβ, RARγ and RXRγ) showing complex, tissue-specific 

expression (Dollé 2009). Interestingly, altered expression of these nuclear retinoid receptors 

has the potential to cause carcinogenesis (de Thé 1996; Xu et al. 1999). Regarding the cervix, 

both ectocervical and endocervical epithelia have been reported to express RARs (Darwiche et 

al. 1994) with altered expression of RARs, specifically loss of RAR-β expression, previously 

demonstrated in cervical cancer cell lines (Geisen et al. 1997; Bartsch et al. 1992). Geisen et al 

demonstrated that in normal cervical cells, basal RARβ mRNA levels are high and can be 

induced further by RA treatment while conversely, in the cervical carcinoma cells, the basal 

RARβ mRNA levels are low and only slightly inducible by RA, if at all. The RA-dependent 

increase of RARβ mRNA levels was also shown to be mediated by RARα.  Furthermore, an 
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additional study has shown that expression of all three RARs is found in normal cervical 

epithelium, while their levels decrease in premalignant lesions, including CIN1, CIN2, and 

CIN3 (Xu et al. 1999). Due to the fact that nuclear retinoid receptors are the ultimate mediators 

of retinoic acid activity, we decided to further identify the presence of selected retinoic acid 

receptors in cervical tissue and their possible significance to the induction of HPV late gene 

expression. Utilising anti-RARα and anti-RARβ antibodies, alterations in receptor presence 

across normal cervical tissue, LSIL, HSIL and SCC was determined using previously created 

cervical TMAs. TMA staining was performed following antibody optimisation, which was 

carried out on a variety of tissue sections including bladder, gallbladder, breast and cervix to 

identify a suitable positive control. Anti-RARα and anti-RARβ antibodies were investigated at 

a range of 1:25-1:100 while negative controls were obtained using PBS in place of the primary 

antibody. Antigen retrieval was achieved through heat-induced epitope retrieval utilising a 

10mmol/l citrate buffer at pH6. Optimised antibody conditions are shown in Table 3.1   

 

Optimised 

Antibody 
Dilution 

Optimised 

Retrieval Method 

Optimised Positive 

Control 

RARα 1:25 
Citrate Buffer- 

90°C Water Bath 
Bladder 

RARβ 1:50 
Citrate Buffer- 

90°C Water Bath 
Bladder 

 

Table 3.1 Conditions for Optimisation of Anti-RARα and Anti-RARβ Antibodies 
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Positive and negative bladder tissue sections are displayed in Figure 3.6. The bladder sections 

clearly indicate staining of the epithelium with both RARα and RARβ antibodies expressed. 

There is no staining of the stromal cells observed on treatment with anti-RARα while anti-

RARβ displays strong stromal expression. Additionally, weak or absent expression of both 

receptors is noted in the basal layers of the epithelium. A negative control is also displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Bladder Control Tissue Staining with Anti-RAR Antibodies  
A) Bladder tissue stained with a 1:25 dilution of anti-RARα antibody. B) Bladder tissue stained 

with a 1:50 dilution anti-RARβ antibody. C) Negative control bladder tissue. 
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ii) Cervical TMA Analysis  

Employing these optimised conditions for RARα and RARβ investigation, immunoperoxidase 

staining was performed on the TMA block. Analysis of the TMA sections provides a complete, 

standardised, time-efficient mechanism for the investigation of these retinoic acid receptors 

across various grade cervical cancer lesions. The TMA utilised contains 12 cases of cervical 

carcinoma, 12 cases of HSIL, 12 cases of LSIL and 4 cases of tissue showing no evidence of 

malignancy (NEM), resulting in 40 cases per TMA. Each case was sampled in triplicate, 

therefore giving a total of 120 cores per TMA. Staining was performed as previously described, 

using a 1:25 dilution of anti-RARα antibody and a 1:50 dilution anti-RARβ antibody with 

antigen retrieval performed through HIER. TMA sections were then carefully analysed under 

the light microscope. Figure 3.7 displays low power magnification of the different grade 

cervical tissue sections stained with H&E, anti-RARα antibody and anti-RARβ antibody for a 

broad comparison of receptor expression. Higher power magnification of anti-RARα and anti-

RARβ staining is demonstrated in Figure 3.8.  Images shown are representative of the staining 

obtained across all TMA cores (n=120) with a consistent pattern in each specific grade of 

cervical lesion identified throughout. Staining observed indicates the following:  

•  Normal Cervical Tissue: RARα and RARβ are both expressed in the upper layers of 

the epithelium in tissue showing no evidence of malignancy. RARα appears to be 

weakly expressed while RARβ displays strong expression. No positive staining is 

observed in the basal layer with either the anti-RARα or the anti-RARβ antibody. 

• LSIL: There is complete absence of RARα and RARβ expression in the epithelium of 

LSIL sections. Strong stromal expression of RARβ is however observed, with distinctly 

negative epithelium.  



 

108 
 

• HSIL: Staining with both anti-RARα and anti-RARβ is again completely absent in the 

epithelial layers of HSIL. Stromal expression of RARβ is observed with staining in the 

lesion edge artefactual.   

• SCC: Complete absence of RARα and RARβ expression is again noted, with neoplastic 

cells predominantly negative.  
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Figure 3.7 Tissue Microarray Staining with RAR Antibodies  

H&E staining together with RARα and RARβ expression as detected by immunoperoxidase 

staining in tissue showing no evidence of malignancy (NEM), low-grade squamous 

intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL) and 

squamous cell carcinoma (SCC). A 1:25 dilution of RARα and a 1:50 dilution of RARβ were 

utilised. 
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Figure 3.8 Tissue Microarray Staining with RAR Antibodies: High Power Images   

RARα and RARβ expression as detected by immunoperoxidase staining in tissue showing no 

evidence of malignancy (NEM), low-grade squamous intraepithelial lesions (LSIL), high-grade 

squamous intraepithelial lesions (HSIL) and squamous cell carcinoma (SCC). A 1:25 dilution 

of RARα and a 1:50 dilution of RARβ were utilised. 
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A)

) 

B) 

 

On examination of the TMA sections, it was observed that individual intraepithelial 

mononuclear cells appear positive with anti-RARβ in cervical tissue sections as shown in Figure 

3.9. This may be of interest for future examination of immune cell presence and also have 

potential to act as an internal positive control when staining with the anti-RARβ antibody. 

Furthermore, adipose tissue also appeared positive on staining with both the anti-RARα and 

anti-RARβ antibodies (Figure 3.10). This incidental finding could be of importance for further 

research and have a possible use in the investigation and identification of adipose tissue.  

 

         

Figure 3.9 Intraepithelial Immune Cell Staining with RARβ Antibody  
A) CIN1 tissue section stained with a 1:50 dilution of RARβ antibody.  

B) Cervical tumour section stained with a 1:50 dilution of RARβ antibody.  

Black arrows indicate the presence of mononuclear cells with magnification shown at 400X. 
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A) B) 

          

Figure 3.10 Adipose Tissue Staining with RAR Antibodies  
A) Adipose Tissue stained with a 1:25 dilution of RARα antibody.  

B) Adipose tissue stained with a 1:50 dilution of RARβ antibody. Magnifications shown are at 

200X. 

 

3.2.2 Cell Block Staining 

For additional analysis of retinoic acid receptor presence, cell blocks were created using 

pBELMCAT31 and pBELCAT67 cells, the HPV-16 reporter cell lines previously utilised in 

our molecular investigations. Furthermore, an additional cell block was formed using the C33A 

cell line, a cervical cancer cell line that does not contain any HPV material. Sections from all 

three blocks were cut and stained using anti-RARα and anti-RARβ antibodies as previously 

described. Conditions were replicated with a 1:25 dilution of anti-RARα and a 1:50 dilution of 

anti-RARβ utilised. As displayed in Figure 3.11, both the pBELMCAT31 and pBELCAT67 

cell lines display positive staining with both the RARα and RARβ antibodies. As before, RARα 

staining is weak while RARβ appears to be highly expressed. No positive staining was observed 

with RARα in the C33A cell line, however RARβ was again strongly expressed. These results 

indicate that cells of cervical cancer lineage express RARβ with expression of RARα shown in 

HPV-infected cell lines only. 
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Figure 3.11 Cell Block Staining with RAR Antibodies  

RARα and RARβ expression as detected by immunoperoxidase staining in pBELMCAT31, 

pBELCAT67 and C33A cell block sections.  
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4. Chapter 4 - Results: Identification of iNKT Cells  

iNKT cells are a relatively recently defined lymphocyte population and play a pivotal role in 

the immune response despite their small numbers in the body. iNKT cells are proven potent 

activators of the immune system, forming a bridge between the innate and adaptive immune 

systems and acting primarily in a protective manner. They are also found to be copious 

producers of cytokines, a function which defines the nature and quality of the antigen-specific 

T cell response that ensues (Terabe & Berzofsky 2008). iNKT cells require CD1d for their 

activity; an MHC-like glycoprotein utilised to present glycolipid and lipid molecules to the 

iNKT cells. However, studies have shown down-regulation of CD1d in HPV-infected cells, a 

mechanism which may provide a means to evade the protective immunological surveillance by 

iNKT cells (Miura et al. 2010). Investigation into the consequence of this CD1d down-

regulation on the iNKT cell population is restricted as there is currently no available method to 

detect iNKT cells in tissue sections.   

Therefore, the primary aims of the immunological research were to: 

 Identify a pioneering protocol for the detection of iNKT cells in human tissue.  

 Utilise this method to subsequently enumerate iNKT cells in HPV-infected cervical 

cancer samples.  

To perform this research, the principal objectives were to: 

 Validate the efficacy of the 6B11 antibody for iNKT cell identification through flow 

cytometry.  

 Create a cell block containing a pure population of iNKT cells for use as a positive 

control.  

 Optimise the 6B11 antibody for iNKT cell identification in both iNKT cell blocks and 

paraffin wax-embedded cervical tissue samples. 
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4.1 Flow Cytometry   

iNKT cells were previously expanded ex vivo as per O’Reilly et al and kindly donated for our 

use. To investigate the effectiveness of the 6B11 antibody in identifying Vα24-Jα18 TCR 

expressing iNKT cells, flow cytometry was performed. The technique was carried out on 4 

healthy PBMC samples together with the expanded population of iNKT cells, utilising a FITC 

labelled 6B11 antibody in conjunction with a PE labelled CD3 antibody. This process allowed 

for the calculation of the percentage iNKT cells per total lymphocyte population and per 

expanded iNKT cell population. Furthermore it capably confirmed the working potential of the 

6B11 antibody. Successful analysis was accomplished, with the number of iNKTs per 

population PBMCs calculated at a range of 0.81%-2.43% while the purity of the expanded 

iNKT’s was 92.7% (Figure 4.1).   

 

Figure 4.1 Flow Cytometric Analysis of iNKT Cells  
A) PBMC Sample: % iNKTs (CD3+6B11+) of total lymphocyte population is 0.81%.  

B) iNKT Cell Sample: % iNKTs (CD3+6B11+) of total lymphocyte population is 92.7%. 

 

 

A 



 

116 
 

B) 

4.2 Immunohistochemical Analysis of Cell Block Sections  

Following confirmation by flow cytometry that the 6B11 antibody is an appropriate method of 

identifying iNKT cells in suspension, it was decided to investigate the prospect of utilising this 

antibody to detect iNKT cells in human tissue. In order to explore its working potential in tissue 

sections, a cell block composed of a pure population of iNKT cells was created to be used in 

the capacity of a positive control. Prior to the use of the precious iNKT cells, Jurkat cells derived 

from a T lymphocyte cell line were first cultured and utilised to create an agar cell block. This 

Jurkat cell block proved an invaluable tool for the optimisation of both effective cell block 

creation and successful staining of these unique cell block sections. Analysis of the iNKT cell 

block sections was consequently performed.  

 

                                          

Figure 4.2 iNKT Cell Block Creation  
A) Agar iNKT cell pellets after overnight processing prior to embedding in paraffin wax block.               

B)  Completed iNKT cell block ready for sectioning. 
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4.2.1 Optimisation of Cell Block Staining  

From this Jurkat cell block, sections were first cut and stained using the H&E protocol to 

determine cell presence (Figure 4.3). Once an adequate cell concentration for further analysis 

was confirmed, it was decided to evaluate the suitability of these sections for immunostaining. 

Optimised conditions were first established through immunoperoxidase staining of intestinal 

tissue and Jurkat sections using a CD45 common leucocyte antibody, prior to the eventual use 

of the precious 6B11 antibody. Antigen retrieval was carried out through HIER using 10mmol/l 

citrate buffer at pH6 while a 1:100 dilution of anti-CD45 primary antibody was deemed 

sufficient for effective staining. Positive staining of leucocytes was observed in various areas 

of the intestinal tissue sections using the light microscope (Figure 4.4), allowing these 

established staining conditions to be replicated on the Jurkat cell block sections. Staining of the 

Jurkat cells proved successful with clear membranous staining of the cells displayed in Figure 

4.5.  

 

 

 

 

 

 

 

 

 

Figure 4.3 H&E Staining of Jurkat Cell Block Sections  

Staining of Jurkat cells with haematoxylin and eosin.  
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Figure 4.4 Immunoperoxidase Staining of Intestinal Tissue with Anti-CD45  

A) Intestinal tissue stained with a 1:100 dilution of the anti-CD45 antibody.  

B) Intestinal tissue negative control.  

 

 

           

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Immunoperoxidase Staining of Jurkat Cell Block Sections with Anti-CD45  

A) Jurkat cell block section stained with a 1:100 dilution of anti-CD45 antibody.  

B) Jurkat cell block section negative control.  
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In addition to the immunoperoxidase staining, immunofluorescent staining was also performed 

on the Jurkat cell block sections to obtain enhanced results, with fluorescein streptavidin the 

fluorescent conjugate of choice and DAPI nuclear counterstain employed for examination under 

the fluorescent microscope (Figure 4.6). Staining again proved a success, with clear 

membranous staining of the jurkat cells observed and high quality fluorescent images obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Immunofluorescent Staining of Jurkat Cell Block Sections with Anti-CD45 

Jurkat cell block sections stained with a 1:100 dilution of anti-CD45 antibody teamed with 

fluorescein streptavidin and DAPI nuclear counter stain. Magnification is at 400X on the 

fluorescent microscope.    
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4.2.2 iNKT Cell Staining with Anti-CD45 Antibody   

As a result of the efficacious examination performed on the Jurkat cell block sections, iNKT 

cells could then be considered for investigation. The iNKT cell block was produced using an 

identical protocol to that followed for the Jurkat cells, although a higher concentration of  

15x106 iNKT cells was required to provide an effective concentration for analysis. Initial 

determination of cell presence was performed as before using the H&E technique (Figure 4.7).     

 

 

 

 

 

 

 

 

 

 

Figure 4.7 H&E Staining of iNKT Cell Block Sections   

Staining of iNKT cell block sections with haematoxylin and eosin. 

 

Once a sufficient cell concentration was identified, immunofluorescent examination of the 

iNKT cells was carried out. It was decided to proceed with immunofluorescent staining only as 

it provided a far higher quality result compared to immunoperoxidase analysis. A 1:100 dilution 

of the anti-CD45 antibody was first utilised to determine iNKT cell antigenicity and suitability 

for future staining with 6B11. For fluorescent microscopy, fluorescein streptavidin was again 

used with DAPI counterstain as before.  Additionally, confocal microscopy was also selected 

for use in order to obtain greater quality images with increased detail at a higher resolution. For 

confocal imaging, PI was employed as the counterstain of choice. The investigation proved 
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successful, with clear membranous staining of the iNKT cells observed utilising the anti-CD45 

antibody (Figure 4.8), while the images obtained using the confocal microscope displayed more 

distinct results with reduced background interference (Figure 4.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Immunofluorescent Staining of iNKT Cells with Anti-CD45:   

Fluorescent Microscopy   

Staining of iNKT cell block sections with a 1:100 dilution of anti-CD45 antibody teamed with 

fluorescein streptavidin and DAPI nuclear counter stain. Magnification is 400X on the 

fluorescent microscope.   
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Figure 4.9 Immunofluorescent Staining of iNKT Cells with Anti-CD45:   

Confocal Microscopy  

Staining of iNKT cell block sections with a 1:100 dilution of anti-CD45 antibody teamed with 

fluorescein streptavidin and PI nuclear counter stain. Magnification is 400X on the confocal 

microscope.   

 

4.2.3 iNKT Cell Staining with 6B11 Antibody 

Following the successful staining of the iNKT cell block sections with anti-CD45 antibody, the 

staining potential of 6B11 was finally investigated. Immunofluorescent staining was performed 

as previously described, with HIER carried out using citrate buffer at pH6 and a 1:100 dilution 

of 6B11 initially assessed together with fluorescein streptavidin as a fluorescent conjugate. PI 
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was the nuclear counterstain of choice and images were obtained using the confocal 

microscope. However, as displayed in Figure 4.10, no positive staining was observed. Although 

the staining with PI indicates the nucleus and therefore cell presence, no fluorescence is seen 

with the 6B11 antibody.   

 

Figure 4.10 Immunofluorescent Staining of iNKT Cells with 6B11 Antibody 
Staining of iNKT cell block sections with a 1:100 dilution of the 6B11 antibody teamed with 

fluorescein streptavidin and PI nuclear counter stain. Magnification is 400X on the confocal 

microscope.   

 

Following on from this disappointing result, it was decided to explore additional avenues for 

the investigation of 6B11. Frozen sections and cytospins were produced and the possibility of 

automated staining as a standardised method of optimising 6B11 staining in tissue sections was 

also reviewed.  
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4.3 iNKT Cell Frozen Section Analysis  

Frozen iNKT cell sections were created as an alternative means of investigating the staining 

potential of the 6B11 antibody. The frozen cell block was created as described in materials and 

methods by resuspending iNKT cells in O.C.T compound before freezing in liquid nitrogen and 

cutting sections immediately on the cryostat. As per analysis of the paraffin embedded iNKT 

cell block, a H&E stain was first performed to identify cell presence, followed by 

immunostaining. A 1:100 dilution of anti-CD45 antibody was employed for immunperoxidase 

staining with strong positive staining observed, thus clarifying the cells were intact and viable 

for analysis (Figure 4.11 A). This was followed by immunoperoxidase staining using a 1:30 

dilution of 6B11, a lower concentration to that previously employed to increase the likelihood 

of achieving a positive result. However, as shown in Figure 4.11 B, no distinct staining of the 

iNKT cells was detected.  

 

                                                                                                                                                                 

 

 

 

 

 

 

 

 

Figure 4.11 iNKT Cell Frozen Sections  

A) iNKT cell frozen sections stained with a 1:100 dilution of CD45. B) iNKT cell frozen 

sections stained with a 1:30 dilution of 6B11.   
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4.4 iNKT Cell Cytospin Analysis  

In order to fully explore the staining potential of the 6B11 antibody, iNKT cytospins were also 

generated. A cytospin is a unique cytology method that is specifically designed to concentrate 

a single layer of cells onto a clearly defined area of a glass slide. Once these cytospins were 

created using the specialised cytospin centrifuge, it allowed for further analysis of the iNKT 

cells through immunocytochemistry. The cytospins also provided a technique for 6B11 

antibody investigation without any possible disruption to iNKT cells by processing. Following 

H&E staining to confirm cell presence, preliminary immunoperoxidase staining of the 

cytospins was performed utilising a 1:100 dilution of the anti-CD45 antibody to clarify cell 

antigenicity. This was followed by immunoperoxidase staining using a 1:30 dilution of 6B11, 

with images captured on the light microscope. A strong positive result in the presence of anti-

CD45 was obtained but with no significant staining on treatment with 6B11 (Figure 4.12). 

 

                

 

 

 

 

 

 

 

Figure 4.12 iNKT Cell Cytospins  

A) iNKT cytospin stained with 1:100 dilution of CD45. B) iNKT cytospin stained with 1:30 

dilution of 6B11.  
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4.5 Automated Analysis of 6B11  

Automated staining was selected for use to fully elucidate the potential of 6B11 for iNKT 

identification in tissue sections. By employing automated staining, a standardised protocol was 

utilised, therefore any discrepancies developed through manual staining could be eliminated. 

An array of tissue sections were investigated including tonsil, liver, gastric, breast, colon, skin 

and appendix, all of which was performed on VENTANA automated slide stainers. In addition 

to the iNKT cell blocks created using UltraPure agar, a second iNKT cell block was generated 

utilising bacteriological agar. This was carried out to investigate any possible advantage of 

bacteriological agar, as it had been suggested that the UltraPure agar sections may be too 

hydrophobic for efficient binding of reagents. Sections from each block were stained on the 

automated stainer, therefore allowing the proficiency of both agars to be identified. Pre-

treatment was performed on all sections using the Ventana cell conditioning solution CC1. This 

solution is capable of disrupting the covalent bonds formed by formalin in tissue, consequently 

allowing renaturation of protein molecules and increasing antibody accessibility. Pre-treatment 

also increases antibody binding significantly and improves signal to noise ratios. 

Immunoperoxidase staining was carried out using a 1:30 dilution of the 6B11 antibody on all 

sections and results were analysed on the light microscope. Disappointingly, no positive 

staining was observed in liver sections, despite the population of iNKT cells being most 

abundant in this tissue type (data not shown). Positive staining was however identified on 

specific cells in tonsillar and gastric tissue as demonstrated in Figure 4.13. This distinct staining 

of individual cells corresponds with the low population of iNKT cells found in the human body.  

Although no staining was observed on iNKT cells sections from either agar block (Figure 4.14), 

the positive result in the tonsillar and gastric tissue may be a significant breakthrough for the 

identification of iNKT cells in human tissue and indicates substantial potential for future 

investigation. 
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Figure 4.13 Automated Staining of Human Tissue Sections using 6B11 Antibody 

A) Tonsillar tissue stained with a 1:30 dilution 6B11 antibody. B) Gastric tissue stained with a 

1:30 dilution of the 6B11 antibody.  
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Figure 4.14 Automated Staining of iNKT Cells Sections  

iNKT cells in UltraPure agar stained with a 1:30 dilution of the 6B11 antibody.  
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5. Chapter 5 - Discussion  

Human papillomaviruses (HPVs) are ubiquitous, sexually transmitted viruses. HPV is the most 

common sexually transmitted infection in women (Aral et al. 2006) with more than 70% of the 

female population infected by this virus in their lifetime (Syrjänen et al. 1990). Although the 

majority of infections  are usually transient and asymptomatic, resolving spontaneously without 

causing disease, untreated persistent infection may lead to precancerous lesions, potentially 

progressing to cervical cancer (Juckett et al. 2010). Cervical cancer is the second most prevalent 

cancer in women worldwide, with HPV infection found in 99.7% of all cases and the most 

common high-risk type HPV-16 present in approximately 50% (Walboomers et al. 1999; Bosch 

et al. 2008). Consequently, it has been determined that persistent infection with high-risk HPV 

is a necessary prerequisite for the development of cervical cancer and its immediate precursor 

lesion CIN3 (Saslow et al. 2012).  Despite the high incidence of HPV infection and its 

associated malignant diseases, there is no effective antiviral agent available for therapy at 

present. Current treatment for high grade CIN is limited to cryotherapy, laser treatment and 

most commonly surgical excision. Loop electrosurgical excision procedure (LEEP), also 

referred to as large loop excision of the transformation zone (LLETZ) is a procedure 

accomplished using a high-frequency alternating current (radiofrequency) and thin wire loop 

electrodes (Apgar et al. 1992). This technique has many advantages including low cost, high 

success rate and ease of use. It can also be performed using only local anaesthetic, producing 

quality specimens for cytologic evaluation and carrying a low risk of affecting childbearing 

ability (Mayeaux & Harper 1993). In addition to LEEP, prophylactic HPV vaccines (Gardasil 

and Cervarix) have been shown to be effective in the prevention against HPV infection, 

however they lack any therapeutic efficacy against pre-existing HPV infection or pre-malignant 

lesions (Harper 2009). Therefore, the detection of additional therapeutic agents against HPV 

infection and preventative methods to eradicate HPV-related malignancies without surgical 
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manipulation would be a ground-breaking discovery. Investigation into the regulation of HPV 

gene expression and the role of specific cellular proteins in the HPV life-cycle may assist in 

this development.   

Human papillomaviruses infect epithelial cells and depend on epithelial differentiation for 

completion of their life cycle (Doorbar 2005). Although the early HPV genes are expressed 

throughout the cervical epithelium, production of the L1 and L2 late genes is restricted to 

terminally differentiated keratinocytes, in the upper layers of the epithelium (zur Hausen 1996). 

As the L1 and L2 structural proteins are highly immunogenic and can induce an immune 

response, it has been suggested that suppression of these proteins in the lower layers of the 

epithelium allows the virus to escape the host’s immune surveillance, resulting in persistence 

of infection (Scheurer et al. 2005). Subsequently, it is speculated that activation of L1 and L2 

late gene expression in the persistently infected cells would expose the HPV-infected cells for 

recognition by the host’s immune system.  

One aim of our study was to elucidate the mechanism of HPV-16 gene regulation, with our 

main objective to investigate an array of small molecule drugs and their capabilities of 

modulating HPV-16 late gene expression. This was performed by treating two stable cell lines 

with the small molecule drugs in question. The cell lines utilised were previously created for 

HPV late gene research utilising 2 reporter plasmids pBEL and pBELM, separately introduced 

into HeLa cells. Similar to the HPV-16 genome during an infection, pBEL transfected into 

proliferating cells expresses high levels of the early genes whereas expression of late genes is 

undetectable. In pBELM, the splicing silencer elements adjacent to the splice site SA5639 have 

been mutated to reduce the silencing on this splice acceptor therefore activating late gene 

expression (Zhao et al. 2004).  In order to detect the HPV-16 L1 gene, the plasmids pBEL and 

pBELM were modified by replacing the L1 late gene with the easily detectable reporter gene 

chloramphenicol acetyltransferase (CAT) (Orrù 2012). Evaluation of CAT expression levels in 
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both the pBELCAT and pBELMCAT stable cell lines confirmed that pBELCAT, as expected, 

produced very little CAT whereas pBELMCAT (in which the mutation that reduces the 

negative regulation on the splice site present in the late region is introduced), efficiently 

produced CAT (Orrù 2012). This result established pBELCAT and pBELMCAT derived stable 

cell lines as functional tools for L1 late gene investigation. Employing the pBELMCAT31 cell 

line and the pBELCAT67 cell line, which produce considerably high and low levels of CAT 

respectively, analysis of selected small molecule drugs was undertaken in our investigation. 

Small molecules have the ability to associate with, or bind to, a protein utilising specific 

mechanisms and may also modulate the protein’s function through activation or inactivation. 

These small molecule drugs are most commonly synthesised using chemical reactions. They 

are well-characterised and can be easily purified and analysed with routine laboratory tests. The 

discovery that all-trans retinoic acid is an effective inducer for attaining complete remission in 

patients with acute promyelocytic leukaemia established the concept of utilising small molecule 

drugs in cancer therapy (Huang et al. 1988). Several small molecules are now widely recognised 

as drugs for the treatment of a variety of cancer types (Collins & Workman 2006). Studies are 

also ongoing towards the identification of small molecule drugs that specifically target and 

inhibit vital HPV protein functions and viral-host protein interactions (D’Abramo & 

Archambault 2011). The development of a novel antiviral agent for the treatment of HPV 

infection would be a remarkable discovery. For this reason, it was of interest to us to investigate 

an array of small molecules that have previously been determined to interfere with cellular 

proteins involved in the regulation of HPV-16 late gene expression.  

The first molecule employed for investigation was TPA. TPA has been proven to activate 

protein kinase C (Blumberg 1988), with studies showing that activators of protein kinase C, 

including TPA, have the ability to induce HPV-31b late gene expression (Hummel et al. 1995; 

Meyers et al. 1992). Therefore we wished to determine TPA’s potential to induce HPV-16 late 
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gene expression. Utilising the CAT ELISA assay, the influence of TPA on CAT concentration, 

and in turn L1 late gene expression was determined. Although no significant effect on CAT 

expression was detected in the pBELCAT67 cell line, a dose-dependent increase in CAT was 

observed in pBELMCAT31 across multiple experiments. Our results demonstrate that a 

concentration of 800ng/ml of TPA has the potential to induce a maximum 3.78 fold induction 

of CAT expression on the pBELMCAT31 cell line, a discovery which was deemed statistically 

significant. This finding indicates that TPA has the ability to induce late gene expression, 

potentially through the activation of protein kinase C. Research has determined that PKC is 

predominantly expressed in squamous epithelia or epithelia from which squamous cell 

carcinomas arise, with particular isoforms playing a crucial role in the signalling of cell 

differentiation (Kashiwagi et al. 2002; Dlugosz & Yuspa 1993). Although the mechanism of 

action by which PKC could up-regulate the HPV promotor is not clearly defined, it is suggested 

that PKC may directly phosphorylate and activate specific transcription factors involved in the 

regulation of the HPV late promotor (Tommasino 2011). Based on the clear increase in L1 

expression illustrated in our results, TPA can be most definitely deemed a potential candidate 

as a novel drug for treatment of HPV infection. However, the physiological relevance of the 

dose administered is a factor which must be considered. Previous phase I clinical trials have 

been undertaken on patients with relapsed or refractory malignancies. The starting dose utilised 

in these studies was 0.063 mg/m2, with 0.125 mg/m2 established as the maximal dose of TPA 

tolerated (Schaar et al. 2006). Further investigations have also been performed in which 

0.063 mg/m2 TPA was again administered, with the amount of TPA-like activity in blood 

ranging from 0.31-5.3 ng/ml immediately after the infusion and from undetectable to 3.6 ng/ml 

2 hours later (Strair et al. 2002). It has also been determined that the extent of the adverse effects 

associated with TPA correlates with the dose received, with effects observed much milder in 

conjunction with lower levels of the drug (Han et al. 1998). Although these investigations 
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confirm the feasibility of TPA administration to humans, the concentrations utilised are far 

lower than that in our study. Therefore additional research is required into the in vivo effects of 

TPA and the most tolerable therapeutic dose.   

The increase of CAT expression in pBELMCAT31 on treatment with TPA reflects results from 

previous investigations carried out by Orrù et al. However, these earlier findings also 

demonstrated an increase of CAT expression in pBELCAT67.  Although the base levels of CAT 

expression in pBELCAT67 were shown to be notably low, induction on treatment with various 

small molecules drugs including TPA, TA and VPA was proven (Orrù 2012). Therefore, the 

absence of late gene induction in pBELCAT67 on treatment with TPA and indeed all drugs 

tested in our investigation indicates a potential problem with this cell line. As its behaviour did 

not coincide with previous analysis, additional examination of this cell line should be performed 

before further use. RT-PCR may be used to determine that the integrated pBELCAT plasmids 

are producing the expected early and late mRNAs, thus confirming the integrity of this stable 

reporter cell line. 

Tannic acid has previously been attributed with the ability to increase the expression of 

polypyrimidine tract-binding protein in a dose-dependent manner (Bian et al. 2009), a protein 

which is linked to the activation of HPV-16 late gene expression during the viral life cycle 

(Somberg et al. 2008). Therefore, we wished to investigate the direct effect of TA on HPV-16 

late gene expression. However, our results showed no remarkable influence on CAT expression 

in either pBELMCAT31 or pBELCAT67 on treatment with TA. Fold change remained 

relatively constant with no significant fluctuations observed. Contrary to previous results 

obtained by Orrù et al, our findings suggest no potential for the use of tannic acid as an inducer 

of late gene expression.   

The effect of valproic acid on late gene expression was also investigated. Research has shown 

that VPA increases expression of ASF/SF2 (Harahap et al. 2012), a protein proven to regulate 



 

134 
 

splicing of HPV and induce CAT expression (Somberg & Schwartz 2010). We therefore 

speculated that through treatment of the stable cell lines we could replicate this influence of 

VPA on ASF/SF2 and consequently upregulate HPV-16 late gene expression. On treatment of 

the pBELMCAT31 cell line with 0.5mM VPA, no significant change in CAT expression was 

observed, while a high concentration of 100mM caused a substantial decrease in CAT 

expression. Meanwhile, there was no important influence noted on treatment of the 

pBELCAT67 cell line. Similarly to TA, we can conclude that our results show no potential for 

VPA as a novel inducer of HPV late gene expression.  

To investigate the possible synergistic effects of combinations of TPA, TA and VPA on late 

gene expression, the pBELMCAT31 and pBELCAT67 cell lines were treated with a 

combination of the three drugs at previously defined optimal concentrations. As before, no 

noteworthy induction of CAT expression was observed on the pBELCAT67 cell line. However, 

the effects detected on pBELMCAT31 treatment reinforce our earlier analysis. The results 

obtained indicate an increase in CAT expression with combinations in which TPA was present 

and a decrease in CAT expression in its absence. This implies that TPA alone is the only 

molecule in this combination capable of significant CAT induction on the pBELMCAT31 cell 

line and consequently the only evidential inducer of late gene expression. Future investigations 

should therefore focus predominantly on the role of TPA as a potential treatment for persistent 

HPV infection.  

We also explored the impact of retinoic acid on late gene expression. RA was selected for 

investigation as it is known to down-regulate the expression of hnRNP A2/B1 (Liang et al. 

2011). hnRNP A2/B1 is an RNA binding protein up-regulated in many tumour cell lines. 

Studies have also demonstrated that knock-down of hnRNP A2/B1 induces HPV-16 late gene 

expression, while overexpression of the protein further suppressed HPV-16 late gene 

expression (Li, Johansson, et al. 2013). We therefore questioned whether treatment of the stable 
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cells lines with RA would induce HPV-16 late gene expression, potentially through the down-

regulation of hnRNP A2/B1. The concentrations of retinoic acid selected for investigation were 

previously utilised in studies to induce the differentiation of teratocarcinoma cells in culture 

(Edwards & McBurney 1983). Results obtained in our investigation proved highly significant, 

with a remarkable increase in CAT expression observed on treatment of the pBELMCAT31 

cell line with lower concentrations of RA. A dose-dependent increase in CAT expression was 

observed with concentrations of 10-9 M-10-7 M RA, with a 6.4 and 7.9 fold induction of CAT 

expression detected on treatment with 10-7 M of the drug in 2 individual experiments. In the 

presence of the 10-6 M and to a lesser extent 10-5 M RA, a decrease in CAT expression was 

noted. However, this may be linked to the volume of DMSO utilised in the creation of these 

drug aliquots. DMSO has the potential to be toxic to cells when utilised in excessive volumes, 

therefore the increased levels present with the higher concentrations of the drug may have 

contributed to the abundant decline in CAT. For future analysis, the viability of the cells 

following incubation with high volumes of DMSO should be determined prior to performance 

of the CAT ELISA.  As before, treatment of pBELCAT67 with RA had no impact on CAT 

expression. However, due to the significant increase of CAT expression with pBELCAT31, it 

can be concluded that retinoic acid has the potential to act as a novel drug in the up-regulation 

of late gene expression and consequently has promise as a treatment for persistent HPV 

infection. This may be as a result of retinoic acid down-regulating hnRNP A2/B1 expression. 

The hnRNP A2/B1 protein is widely recognised as a splicing factor that binds to splicing 

silencers and inhibits splicing to both 5′- and 3′- splice sites (Bilodeau et al. 2001; Hutchison et 

al. 2002). Specific research indicates that hnRNP A2/B1 has an inhibitory effect on the HPV-

16 late 5′-splice SD3632. The late 5′-splice site SD3632 is employed exclusively for production 

of spliced L1 mRNAs, however it is negatively regulated by two AUAGUA motifs located 

immediately upstream of SD3632. As these sites interact specifically with hnRNP A2/B1, 
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knock-down of this protein has been proven to induce HPV-16 late gene expression (Li, 

Johansson, et al. 2013). The negative influence of hnRNP A2/B1 is further exposed by its high 

expression in cervical cancer cell. Therefore, it can most definitely be suggested that retinoic 

acid has a future for the induction of late gene expression through the possible down-modulation 

of hnRNP A2/B1.   

Clinical trials previously carried out to investigate the potential of all-trans retinoic acid as a 

differentiation therapy for acute promyelocytic leukaemia (APL) utilised 45 mg/m2 per day for 

90 days, with results confirming that this concentration of RA has the ability to induce remission 

in this most severe form of leukaemia (Castaigne et al. 1990). Additional studies administered 

oral all-trans RA at a dose of 60-80 mg per day to patients with APL, with a higher dosage 

(100-120 mg/d) given to certain patients who relapsed. All patients who received RA as a single 

agent responded to the drug, with only some mild side effects observed. These side effects were 

usually alleviated following treatment and after the dose of RA was reduced (Chen et al. 1991). 

Therefore, although the concentrations utilised in our study were less than this, the lowest 

therapeutic dose of RA would be recommended for in vivo administration in order to avoid any 

adverse events.   

Retinoic acid exerts its biological effects by binding to specific nuclear retinoid receptors. For 

this reason, we decided to investigate receptor presence in various grade cervical lesions. 

Previous investigations carried out on retinoic acid receptor presence in cervical epithelium 

discovered a loss of RAR-β expression in cervical cancer cell lines.  Basal cell RARβ mRNA 

levels were shown to be high in normal cervical cells and further induced on addition of retinoic 

acid, while basal RARβ mRNA levels were revealed to be low in the cervical carcinoma cells, 

and were either not induced or only slightly induced by treatment with retinoic acid (Geisen et 

al. 1997). The results obtained by Geisen et al. indicated that the abnormal down-regulation 

of RARβ gene expression may be an essential step in the multifactorial process of cervical 
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carcinogenesis (Geisen et al. 1997).  Additionally, Geisen et al. also publicised that the ligand-

dependent activation of RARβ gene transcription is specifically triggered by RARα. 

Interestingly, it was also noted that the unusually low RARβ gene expression in tumour cells 

did not apply to RARα, with RARα levels similar to those of normal cells (Geisen et al. 1997). 

Utilising anti-RARα and anti-RARβ antibodies, our aim was to identify the alterations in 

receptor presence in various grade cervical tissue. TMA slides containing cores from tissue 

showing no evidence of malignancy, low grade squamous intraepithelial lesions, high grade 

squamous intraepithelial lesions and squamous cell carcinoma were analysed for receptor 

presence. Results obtained showed that RARα and RARβ are both expressed in the upper layers 

of the epithelium in normal cervical tissue. While RARα appeared to be weakly expressed, 

strong staining in the presence of anti-RARβ was displayed. Interestingly, no positive staining 

was observed in the basal layer with either the anti-RARα or the anti-RARβ antibody. In the 

LSIL, HSIL and SCC sections, a distinct absence of RARα and RARβ expression was observed 

in the epithelium, with strong stromal expression of RARβ displayed in LSIL and HSIL. This 

loss of RARβ expression in precancerous and cancerous lesions was somewhat expected, as 

previous studies have also identified a similar pattern of expression in cervical cancer cell lines. 

However, in contrast to the findings by Geisen et al, in which RARα presence in cervical cancer 

cells were comparable to those in normal cells, our results display a complete loss of RARα in 

the epithelial layers of cervical lesions. Further studies have however elucidated that RARs are 

expressed in normal cervical epithelia but that their expression is reduced in cervical lesions, 

including CIN1, CIN2 and CIN3 ,with loss of RARα in 55.8% and RARβ in 64.7% of cases 

(Xu et al. 1999).  

 On analysis of the various cores present in our TMA sections, we determined an almost 

uniform loss of expression of both receptors across the various grade lesions. This distinction 

in expression levels between normal and infected epithelium may indicate a role for retinoic 
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acid receptors as biomarkers in clinical cervical cancer chemoprevention trials. The influence 

of RAR expression levels on the induction of HPV late gene expression by retinoic acid is an 

area which requires additional examination.   

The loss of RARα and RARβ expression in the epithelium of cervical cancer lesions may 

possibly correlate with HPV L1 capsid protein suppression. Previous research has demonstrated 

a decrease in L1 presence across cervical cancer lesions, with one study identifying that the L1 

was positive in 63.6 % of low-grade CINs and 9.1 % of high-grade CINs with no expression 

observed in cervical SCC (Izadi-Mood et al. 2014). Furthermore, studies have shown that 

failure to detect L1 in cervical tissue correlates with progression of the lesion, as results indicate 

reduced expression of L1 capsid proteins in HPV positive HSIL with no significant reduction 

of L1 expression in HPV positive LSIL (Balan et al. 2009). Immunocytochemical detection of 

the HPV L1 capsid protein therefore has prognostic value for cervical lesions. From our 

findings, the clear loss of RARα and RARβ expression in cervical neoplastic tissue may also 

have potential to be utilised in a similar capacity. 

The presence of RARα and RARβ on individual cells from cervical cancer lineage was 

investigated through cell block staining. pBELMCAT31 and pBELCAT67 HPV-infected cell 

lines showed positive staining with both the RARα and RARβ antibodies while C33A, a 

cervical carcinoma cell line which does not contain any HPV copies, showed staining with 

RARβ only. This is an interesting observation considering expression of both receptors was 

previously shown to be lost in both premalignant and malignant lesions. The significance of 

this finding also calls for further exploration. Furthermore, on inspection of the TMA sections, 

it was also observed that individual intraepithelial mononuclear cells stained positive with anti-

RARβ in cervical tissue sections. This incidental finding has potential to act as an internal 

positive control when staining sections with the anti-RARβ antibody. Additionally, adipose 

tissue also appeared positive on staining with both the anti-RARα and anti-RARβ antibodies. 
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This again may be of use in a control capacity with both RAR antibodies prospects for future 

investigation and identification of adipose tissue.   

A further aim of our study was to investigate the immune response to HPV infection, with 

particular emphasis on the role of iNKT cells. iNKT cells are a subset of T lymphocytes which 

are characterised by expression of a TCR comprised of Vα24-Jα18 paired with Vβ11. iNKT 

cells recognise glycolipid and lipid antigens presented by CD1d, a non-classical MHC class I-

like molecule, with ligation of the iNKT cell TCR leading to rapid and copious secretion of Th1 

and Th2 cytokines (Bendelac et al. 2007). iNKT cells play a central role in regulating immune 

responses and are recognised to form an important link between the innate and adaptive immune 

systems. Though the iNKT cell population ranges only between 0.01%–1% of all CD3+ 

lymphocytes in humans, their activity is imperative in many disease settings including 

infectious disease, allergy, autoimmunity and tumour surveillance (Juno et al. 2012). Providing 

an interesting link between the molecular investigation and iNKT cell analysis is the proven 

effects of retinoic acid on NKT cell activity. Research shows that RA can differentially regulate 

the secretion of numerous effector cytokines by NKT cells in hepatitis  (Lee et al. 2012) and 

also down-modulate IFN-γ expression by activated NKT cells (Chang & Hou 2015). 

Furthermore, retinoic acid has been previously identified with the ability to promote the 

proliferation and activation of NKT cells indirectly in vitro by increasing CD1d expression on 

antigen presenting cells (Chen & Ross 2015). This study by Chen & Ross speculates that the 

level of CD1d on antigen presenting cells may influences their capacity for antigen presentation, 

consequently affecting the efficacy of NKT cells. Although the role of iNKT cells in HPV-

infected lesions has yet to be uncovered, studies have revealed that expression of CD1d is 

significantly suppressed in HPV-infected tissue (Miura et al. 2010). This reduced expression of 

CD1d indicates a vital strategy of immune evasion developed by HPV to elude the protective 

functions of iNKT cells in the early stages of infection. The decrease in CD1d levels would 
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inevitably impact upon the population of iNKT cells in HPV-infected cervical tissue. However, 

since there is currently no available method for the detection of iNKT cells in human tissue 

sections; their number in cervical tissue is unknown. Our objective therefore was to create a 

novel protocol for the detection of iNKT cells in human tissue, with this method ultimately 

employed to enumerate iNKT cells in HPV-infected cervical cancer samples. Should a method 

of identification in tissue be determined, it would have a significant impact on future iNKT cell 

research. The antibody selected for iNKT cell identification was 6B11, a novel monoclonal 

antibody generated for the precise detection of human iNKT cells. 6B11 is specific for the 

invariant CDR3 loop of the human Vα24Jα18 TCR α chain and has the capacity to be used 

unaccompanied to recognise all T cells expressing this α chain as well as in combination with 

anti-Vα24, anti-Vβ11 or anti-CD3 for highly specific and sensitive iNKT cell detection 

(Montoya et al. 2007). As this antibody is used exclusively for iNKT cell characterisation via 

flow cytometry, its efficacy was first confirmed through this method. Successful analysis of 4 

PBMC samples as well as an expanded population of iNKT cells was achieved, with the 

percentage of iNKTs per population PBMC’s calculated at 0.81%- 2.43% and the percentage 

per population of expanded iNKT’s calculated at 92.7%, corresponding with previous findings. 

We therefore established the 6B11 antibody as a competent means of specific iNKT cell 

analysis. Following on from this, our focus was on the exploitation of this 6B11 antibody for 

use in tissue section staining. Prior to immediate investigation in human tissue sections, we 

decided to first create our own cell block. This block contained a pure population of iNKT cells 

and was an innovative tool for the optimisation of immunohistochemistry. The protocol utilised 

called for fixation of cells in formalin and suspension in agar before wax embedding. However, 

as the gold standard for immunohistochemistry is the use of paraffin-embedded tissue sections, 

we were aware that staining conditions may not be identically replicated. Optimisation was first 

performed by creating a Jurkat T cell block and staining with anti-CD45 antibody, a common 
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leucocyte marker, limiting the use of the more precious iNKT cells and 6B11 antibody until an 

optimised protocol was achieved. Images obtained showed a high standard of both 

immunoperoxidase and immunofluorescent staining, with clear membranous staining of the 

Jurkat cells observed. iNKT cell blocks were consequently created and immunofluorescent 

staining was again successfully completed utilising the CD45 antibody. Images were captured 

on both the fluorescent and confocal microscope with distinct, high quality staining detected. 

The effective creation of the cell blocks and subsequent successful staining was a noteworthy 

achievement. Due to the low distribution of iNKT cells in the body and the resultant difficulty 

of locating a positive control for their depiction in human tissue, the iNKT cell blocks 

undoubtedly have potential for use in future investigation.   

Following on from this, we attempted to stain the iNKT cell block sections with the 6B11 

antibody. As this antibody is used exclusively for flow cytometry, it was understood that 

optimisation for use in immunohistochemistry was an ambitious task. For the first attempt the 

immunofluorescent technique as again employed, as results previously obtained with anti-

CD45 proved very successful and returned higher quality images than those achieved with 

immunoperoxidase staining. A 1:100 dilution of 6B11 was initially employed for iNKT cell 

staining of the agar cell block sections, however on examination under the confocal microscope 

no positive result was detected. At this point, additional means of investigation were then 

analysed, including frozen cell block sections and iNKT cell cytospins. Our hypothesis was that 

both of these methods would eliminate any possible interference to iNKT antigenicity which 

may have been caused to the cell block sections by the processing procedure. The identification 

of cells in both the frozen sections and the cytospins was first confirmed by anti-CD45 staining. 

The 6B11 antibody was then investigated, using a 1:30 dilution to increase the possibility of 

detecting cell presence. However, no positive results were returned.   

By implementing examination on the wax-embedded agar iNKT cell block sections, the frozen 
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iNKT cell sections and the iNKT cytospins, we were confident in the fact that a thorough 

assessment had been performed and that all immediate avenues had been exhausted. The use of 

automated staining was then suggested for use. Automated staining provides a standardised 

technique and ensures that any discrepancies developed through manual staining are eliminated. 

Furthermore, it also employs more powerful reagents for antigen retrieval, which are proven to 

significantly increase antibody binding. To provide for a widespread assessment, tonsil, liver, 

gastric, breast, colon, skin and appendix tissue sections were investigated for iNKT cell 

presence, again utilising a 1:30 dilution of 6B11. Positive results were obtained using the 

automated protocol. Distinct cells with lymphocytic morphology were identified in tonsillar 

and gastric tissue by the immunoperoxidase technique, with high-intensity staining clearly 

observed on the images obtained. Interestingly, no positive cells were detected in liver sections, 

a surprising result due to the fact that liver has previously been confirmed as the tissue with the 

highest concentration of iNKT cells in the human body (Kenna et al. 2003). For future analysis 

of iNKT cell distribution, more extensive exploration of the liver should be performed. iNKT 

cell block sections were also evaluated using the 6B11 antibody on the automated stainer. Two 

cell blocks were created, one utilising UltraPure agar as initially performed and one utilising 

bacteriological agar. It was suggested that the UltraPure agar sections may create a hydrophobic 

environment and prevent efficient binding of the staining reagents. However, no positive cells 

were detected on either cell block type with automated analysis using 6B11, indicating no 

specific advantage of the bacteriologic agar. Although the lack of positive staining on the iNKT 

cell block sections was a disappointing result, the discovery of the iNKT cells in the tonsillar 

and gastric tissue sections is of striking importance and indicates a considerable potential for 

the 6B11 antibody in the identification of iNKT cells in human tissue sections.   

As pBELMCAT31 has been successfully determined as a suitable stable cell line for assessing 

the effects of small molecule drugs on HPV late gene expression, future work may include the 
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use of small molecule drug libraries for a more extensive evaluation. A diverse selection of 

compound libraries containing a variety of drugs are available for purchase, providing a high 

throughput facility for the validation of new drug discoveries. This would be an interesting 

investigation and may lead to the detection of additional HPV late gene inducers. As previously 

discussed, further examination is required on the pBELCAT67 cell line to confirm its integrity 

before future analysis is carried out.   

With regards the potential of 6B11 as a novel means of identifying iNKT cells in human tissue, 

confirmation that the individual cells identified in the tonsillar and gastric tissue sections are 

indeed iNKT cells should be performed. This could be completed through the use of CD1d 

tetramers, which have been developed for the identification and enumeration of CD1d-restricted 

NKT cells by flow cytometry. Furthermore, if these tetramers showed a similar staining pattern 

to the 6B11 antibody, they too could be a prospect as an innovative iNKT cell identifier in 

human tissue sections. 
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Appendix 

Phosphate Buffered Saline (PBS)  

1 PBS tablet (Oxoid) for every 100ml distilled water and autoclave 

 

0.02% EDTA in PBS  

0.2g EDTA (BDH)  

Make up to 1 litre with PBS (appendix) in a volumetric flask 

 

Trypsin with EDTA  

10ml 2.5% Trypsin  

10ml 0.02% EDTA (appendix)  

Mix by inverting 

 

Cell Lysis Buffer/ Anti-CAT-DIG/ Anti-DIG-POD/ ABTS Peroxidase Substrate 

As per manufacturer’s instructions 

CAT ELISA assay kit (Roche). Catalogue Number: 11363727001  

 

Mayer’s Haematoxylin  

2g haematoxylin (Merck)  

100g aluminium sulphate (BDH)  

0.4g Sodium Iodate (EMD Chemicals)  

Make up to 2 litres with distilled water and leave overnight 

2g citric acid (BDH)  

Mix and Boil for 5 minutes 

Allow to Cool and filter before use 
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1% Eosin  

1g eosin powder (Merck) dissolved in 100ml water  

 

Spirit (96%)  

960ml absolute alcohol (Merck) made up to 1 litre with distilled water  

 

Alcohol (70%) 

700ml absolute ethanol (Merck) made up to 1 litre with distilled water 

 

Acid Alcohol Solution (1%)  

1ml Hydrochloric acid  

100ml 70% ethanol 

Mix well 

 

10mmol/l Citrate Buffer (pH6) 

2.94g tri-Sodium citrate (BDH)  

Add approximately 800ml distilled water  

Adjust to pH 6 using 2M NaOH  

Make solution up to 1 litre 

 

3% Hydrogen Peroxide in Methanol  

1ml 30% hydrogen peroxide (Sigma)  

9ml Methanol (Sigma) 
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0.02% 2, 4 diaminobenzidine (DAB) 

Add 16ml PBS into 100mg container of DAB (Sigma)  

Mix well and aliquot into desired quantity 

 

Normal Horse Serum/ Biotinylated Secondary Antibody/ ABC reagent 

As per manufacturer’s instructions  

Vectastain® Elite ABC kit (Vector laboratories). Catalogue Number: PK-6200  

 

PBA wash buffer  

PBS (appendix)  

0.1% BSA  

0.1% sodium azide (NaN3) 

 

2% Liquid Agar 

2g UltraPure Agar (Invitrogen) / Bacteriological Agar (Lab M)  

100ml dH2O 

Boil in microwave until dissolved  

Cool to 60˚C 
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