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Abstract

We consider a method of solving the Dirac scattering problem based
on an approach previously used by the authors to solve the Schrödinger
scattering problem to develop a conditional exact scattering solution
and an unconditional series solution. We transform the Dirac scattering
problem into a form that facilitates a solution based on the relativis-
tic Lippmann-Schwinger equation using the relativistic Green’s function
that is transcendental in terms of the scattered field. Using the Dirac
operator, this solution is transformed further to yield a modified rel-
ativistic Lippmann-Schwinger equation that is also transcendental in
terms of the scattered field. This modified solution facilitates a condi-
tion under which the solution for the scattered field is exact. Further,
by exploiting the simultaneity of the two solutions available, we show
that is possible to define an exact (non-conditional) series solution to
the problem.
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1 The Dirac Scattering Problem

Consider the Dirac equation for the relativistic four-component wave function
Ψ(r, t) (a function of the three-dimensional space vector r and time t), given
by [1]

Ĥ0Ψ(r, t) = i~
∂Ψ(r, t)

∂t
(1)

where, for rest mass m, velocity of light (in a perfect vacuum) c and Dirac
constant ~,

Ĥ0 :=
~c
i

(
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

)
+ βmc2

= cαp + βmc2 (2)

with conventional momentum and energy operators

p→ −i~∇, E → i~
∂

∂t
and α = (α1, α2, α3),

α1 =

(
0 σ1
σ1 0

)
, α2 =

(
0 σ2
σ2 0

)
, α3 =

(
0 σ3
σ3 0

)
,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
; β =

(
I2 0
0 −I2

)
,

I2 and 0 being 2× 2 dimensional identity and zero matrices, respectively. For
the stationary case, equation (1) becomes

Ĥ0ψ(r) = EI4ψ(r), (3)

where ψ(r) is a column vector with dimension 4 × 1 and I4 is a 4 × 4 di-
mensional identity matrix. The solution of the time dependent Dirac equation
- equation (1) - can then be taken to be of the form (for wave vector k and
vector dot product denoted by ·)

Ψ(r, t) =

(
χ
ϕ

)
ei(k·r−

E
~ t) = ψi(r)e−

i
~Et,

where χ and ϕ are ‘Spinors’ and ψi(r) is a solution of the stationary equation
(3), representing a ‘relativistic incident wavefield’. The solution to equation
(3) is then given by [2]

ψi(r) =

(
E +mc2

2E

)(
φs

c~σ·k
E+mc2

φs

)
eik·r (4)
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where

E2 = c2~2k2 +m2c4,

s = ±1

2
, φ 1

2
=

(
1
0

)
, φ− 1

2
=

(
0
1

)
.

This solution to equation (3) is called the RHS (Right Hand Side) solution
and is composed of a two-spinor column vector of dimension 4 × 1. One can,
however, also consider an equation of the form [3]

ψ(r)
(
Ĥ0 − EI4

)
= 0.

where ψ is a row vector with dimension 1× 4, and the operator Ĥ0 operates
to the left, the solution being the LHS (Left Hand Side) solution.

For a potential V (r), equation (3) takes form

Ĥψ(r) = Eψ(r) (5)

where

Ĥ = cαp + βmc2 + V (r) = Ĥ0 + V (r) (6)

and V (r) is 4 × 4 matrix. Thus, given equation (6), equation (5) can be
written in the following form

(Ĥ0 − EI4)ψ(r) = −V (r)ψ(r). (7)

The Dirac scattering problem can now be defined thus: Given V (r) solve for
ψ(r).

2 Green’s Function Solution

For the stationary Dirac equation - equation (3) - the corresponding Green’s
function is defined by

(Ĥ0 − EI4)G(r, r′;E) = −δ(r− r′)I4, (8)

Let g be the non-relativistic free-space Green’s function for the Helmholtz wave
operator given by

g(r|r′, k) =
eik|r−r

′|

4π | r− r′ |
, r|r′ ≡| r− r′ |



4 Jonathan Blackledge and Bazar Babajanov

The relativistic Green‘s function can then be constructed from g as given by
(and as shown in Appendix A)

G(r, r′;E) =
1

2mc2
(Ĥ0 + EI4)g(r|r′; k). (9)

This result then provides the fundamental solution to equation (7) in the form
of the relativistic Lippmann-Schwinger equations for the RHS and LHS solu-
tions which are given by [4]

ψ(r) = ψi(r) +

∫
G(r, r′;E)V (r′)ψ(r′)dr′ (10)

and

ψ(r) = ψi(r) +

∫
G(r, r′;E)V (r′)ψ(r′)dr′

respectively. Thus, If we write the wave function in terms of the sum of
relativistic incident and scattered wavefield, i.e.

ψ(r) = ψi(r) + ψs(r)

then from equation (10), we obtain the following solution

ψs(r) =

∫
G(r, r′;E)V (r′)ψi(r

′)dr′ +

∫
G(r, r′;E)V (r′)ψs(r

′)dr′. (11)

3 Dirac Operator based Transformation

Following the method considered in [5] for the non-relativistic case, from equa-
tion (11), it is clear that upon application of the Dirac operator Ĥ0 − EI4

(Ĥ0 − EI4)ψs(r) = −V (r)[ψi(r) + ψs(r)] (12)

which yields equation (7) given that

(Ĥ0 − EI4)ψi(r) = 0

and
ψ(r) = ψi(r) + ψs(r).

We now note that

(Ĥ0 − EI4)ψs(r) = Ĥ0

[
ψs(r) + E

∫
G0(r, r

′;E)ψs(r
′)dr′

]
(13)

where G0(r, r
′;E) is a solution to the equation

Ĥ0G0(r, r
′;E) = −δ(r− r′)I4
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and is defined as

G0(r, r
′;E) = Ĥ0

(
1

4π | r− r′ |

)
.

Thus, from equations (12) and (13) we have

Ĥ0

[
ψs(r) + E

∫
G0(r, r

′;E)ψs(r
′)dr′

]
= −V (r)[ψi(r) + ψs(r)]

the solution to this equation being given by

ψs(r) + E

∫
G0(r, r

′;E)ψs(r
′)dr′ =

∫
G0(r, r

′;E)V (r′)[ψi(r
′) + ψs(r

′)]dr′

(14)
Rearranging equation (14) we obtain

ψs(r) =

∫
G0(r, r

′;E)V (r′)ψi(r
′)dr′ +

∫
G0(r, r

′;E)[V (r′)− EI4]ψs(r
′)]dr′

(15)
Both equations (11) and (15) are transcendental with regard to the relativistic
scattered field ψs(r) and can be solved on an iterative basis, e.g. for equation
(15)

ψs(r) =

∫
G0(r, r

′;E)V (r′)ψi(r
′)dr′

+

∫∫
G0(r, r

′;E)[V (r′)− EI4]G0(r
′, r′′;E)V (r′′)ψi(r

′′)dr′′dr′ + ...

Such iterative solutions are conditional upon a convergence criteria. However,
through the transformation method discussed in this section, equation (15)
provides a conditional but exact scattering solution as shown in the following
section.

4 Condition for an Exact Scattering Solution

Both equations (11) and (15) are exact transformations of equation (7) into
integral equation form given that ψ(r) = ψi(r)+ψs(r) where ψi(r) is a solution
to the equation (10). Both equations are transcendental in ψs(r) and as such
do not possess an exact solution. However, unlike equation (11), equation (15)
provides us with a non-conventional condition under which its transcendental
characteristics are eliminated. Through inspection of equation (15), it is clear
that if

V (r)− EI4 = 0

then

ψs(r) =

∫
G0(r, r

′;E)V (r′)ψi(r
′)dr′ (16)
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which is an exact solution to the problem, the exact scattered field being given
by equation (16). The potential energy is taken to be a constant equal to the
energy of a relativistic particle which may be over a region of compact support,
i.e.r ∈ R3.

5 Simultaneity of Equations (11) and (15) and

a Non-conditional Series Solution

Equations (11) and (15) are simultaneous integral equations for ψs(r) as com-
pounded in the following theorem.

Theorem 5.1

The simultaneity of equations (11) and (15) is consistent with equation (7)
given that ψ(r) = ψi(r) + ψs(r) and

(Ĥ0 − EI4)ψi(r) = 0

Proof

Subtracting equation (15) from equation (11) is clear that

0 =

∫
G0(r, r

′;E)V (r′)ψi(r
′)dr′ +

∫
G0(r, r

′;E)[V (r′)− EI4]ψs(r
′)dr′

−
∫
G(r, r′;E)V (r′)ψi(r

′)dr′ −
∫
G(r, r′;E)V (r′)ψs(r

′)dr′,

so that after collecting terms, we can write

0 =

∫
G0(r, r

′;E)V (r′)ψ(r′)dr′ −
∫
EG0(r, r

′;E)ψs(r
′)dr′

−
∫
G(r, r′;E)V (r′)ψ(r′)dr′ = −

∫
G0(r, r

′;E)(Ĥ0 − EI4)ψs(r
′)dr′

−
∫
EG0(r, r

′;E)ψs(r
′)dr′ +

∫
G(r, r′;E)(Ĥ0 − EI4)ψs(r

′)dr

= −
∫
G0(r, r

′;E)Ĥ0ψs(r
′)dr′ +

∫
G(r, r′;E)(Ĥ0 − EI4)ψs(r

′)dr′,

Using the definition of Green’s function we can complete the proof by writing
the result in the following form:
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0 = −
∫
Ĥ0
−1
Ĥ0G0(r, r

′;E)Ĥ0ψs(r
′)dr′

+

∫
(Ĥ0 − EI4)−1(Ĥ0 − EI4)G(r, r′;E)(Ĥ0 − EI4)ψs(r

′)dr′

= Ĥ0

−1
∫
δ(r−r′)I4Ĥ0ψs(r

′)dr′−(Ĥ0−EI4)−1
∫
δ(r−r′)I4(Ĥ0−EI4)ψs(r

′)dr′

= Ĥ0

−1
Ĥ0ψs(r)− (Ĥ0 − EI4)−1(Ĥ0 − EI4)ψs(r) = 0.

Given that equations (11) and (15) are consistent with equation (7) we can
exploit their simultaneity do develop a series solution. This is achieved by
substituting equation (11) into the RHS of equation (15) and equation (15)
into the RHS of equation (11) and then repeating this process ad infinitum
as used for solving the non-relativistic scattering problem given in [5]. This
result extends the available solutions to the Dirac scattering problem for non-
spherically symmetric targets [6], for example, and yields a general approach
for developing solutions associated with electron scattering problems in solid
matter [6].

6 Conclusion

Theorem 6.1

Given that equation (11) is a solution to equation (7) without loss of generality,
equation (7) can be written in the form

Ĥ0

[
ψs(r) + E

∫
G0(r, r

′;E)ψs(r
′)dr′

]
= −V (r)[ψi(r) + ψs(r)]

without loss of generality.

Proof

From equation (11), we can write

ψs(r) =

∫
G(r, r′;E)V (r′)ψ(r′)dr′

where

ψs(r) = ψ(r)− ψi(r)
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Let Q(r, s;E) be an auxiliary matrices function such that∫
Q(r, s;E)ψs(s)ds =

∫
Q(r, s;E)

∫
G(s, r′;E)V (r′)ψ(r′)dr′ds

Taking the Dirac operator of this equation,

Ĥ0

[∫
Q(r, s;E)ψs(s)ds

]
= Ĥ0

[∫
Q(r, s;E)

∫
G(s, r′;E)V (r′)ψ(r′)dr′ds

]
=

∫
Ĥ0

[∫
Q(r, s;E)G(s, r′;E)ds

]
V (r′)ψ(r′)dr′ = −V (r)ψ(r) (17)

provided

Ĥ0

[∫
Q(r, s;E)G(s, r′;E)ds

]
= −δ(r′ − r)I4 (18)

Lemma 6.1

The solution to equation (18) is

Q(r, s;E) = δ(s− r)I4 + EG0(r, s;E) (19)

Proof

Substituting equation (19) into equation (18),

Ĥ0

{∫
[δ(s− r)I4 + EG0(r, s;E)]G(s, r′;E)ds

}
= Ĥ0

[∫
δ(s− r)G(s, r′;E)ds + E

∫
G0(r, s;E)G(s, r′;E)ds

]
= Ĥ0

(
G(r, r′;E) + E

∫
G0(r, s;E)G(s, r′;E)ds

)
= Ĥ0G(r, r′;E) + E

∫
Ĥ0G0(r, s;E)G(s, r′;E)ds

=
(
Ĥ0 − EI4

)
G(r, r′;E) + EG(r, r′;E)− EG(r, r′;E) = −δ(r− r′)I4.

Finally, given equations (19) and (17),

Ĥ0

[∫
Q(r, s;E)ψs(s)ds

]
= Ĥ0

{∫
[δ(s− r)I4 + EG0(r, s;E)]ψs(s)ds

}
= Ĥ0

[
ψs(r, E) + E

∫
G0(r, r

′;E)ψs(s)dr′
]

so that

Ĥ0

[
ψs(r, E) + E

∫
G0(r, r

′;E)ψs(s)dr′
]

= −V (r)ψ(r).
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7 Appendix A: Derivation of the Relativistic

Green’s Function

Let g be the non-relativistic free-space Green’s function (for the Helmholtz
wave operator) given by

g(r|r′, k) =
eik|r−r

′|

4π | r− r′ |
, r|r′ ≡| r− r′ | .

The relativistic Green‘s function can be constructed from this function to yield

G(r, r′;E) =
1

2mc2
(Ĥ0 + EI4)g(r|r′; k).

To derive this result we first consider the identity

(Ĥ0 − EI4)(Ĥ0 + EI4) = Ĥ2
0 − E2I4

= c2(αp)2 +mc3(αpβ + βαp) +m2c4β2 − E2I4.

We can now simplify this result on a term by term basis as follows:

(i) c2(αp)2 = c2p2 = c2(−i~∇)2 = −c2~2∇2

(ii) It is easy to verify that for any 4× 4 matrix

βM +Mβ = 2

(
m11 0

0 −m22

)
,

where

M =

(
m11 m12

m21 m22

)
mij being 2× 2 matrices. With M = αp it follows that

(αp)β + β(αp) = 0

(iii) β2 = I4.

Using identities (i)-(iii),

(Ĥ0 − EI4)(Ĥ0 + EI4) = −c2~2∇2I4 +
(
m2c4 − E2

)
I4 = −c2~2

(
∇2 + k2

)
I4

(A1)

where

k2 =
E2 −m2c4

c2~2
.
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and using the definition of the non-relativistic Green function

~2

2m

(
∇2 + k2

)
I4g(r|r′; k) = δ(r− r′)I4

Replacing the term ∇2 + k2 in this equation with the result given by equation
(A1) yields

1

2mc2

(
Ĥ0 − EI4

)(
Ĥ0 + EI4

)
g(r|r′; k) = −δ(r− r′)I4.

Comparing this result with the definition of the relativistic Green‘s function
G(r, r′;E) the result is obtained.
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