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Abstract: Word embeddings trained on natural corpora
(e.g., newspaper collections, Wikipedia or the Web) excel
in capturing thematic similarity (“topical relatedness”) on
word pairs such as ‘coffee’ and ‘cup’ or ’bus’ and ‘road’.
However, they are less successful on pairs showing tax-
onomic similarity, like ‘cup’ and ‘mug’ (near synonyms)
or ‘bus’ and ‘train’ (types of public transport). Moreover,
purely taxonomy-based embeddings (e.g. those trained
on a random-walk of WordNet’s structure) outperform
natural-corpus embeddings in taxonomic similarity but
underperform them in thematic similarity. Previous work
suggests that performance gains in both types of similarity
can be achieved by enriching natural-corpus embeddings
with taxonomic information from taxonomies like Word-
Net. This taxonomic enrichment can be done by combin-
ing natural-corpus embeddings with taxonomic embed-
dings (e.g. those trained on a random-walk of WordNet’s
structure). This paper conducts a deep analysis of this
assumption and shows that both the size of the natural
corpus and of the random-walk coverage of the WordNet
structure play a crucial role in the performance of com-
bined (enriched) vectors in both similarity tasks. Specifi-
cally, we show that embeddings trained on medium-sized
natural corpora benefit the most from taxonomic enrich-
ment whilst embeddings trained on large natural corpora
only benefit from this enrichment when evaluated on taxo-
nomic similarity tasks. The implication of this is that care
has to be taken in controlling the size of the natural cor-
pus and the size of the random-walk used to train vectors.
In addition, we find that, whilst the WordNet structure is
finite and it is possible to fully traverse it in a single pass,
the repetition of well-connected WordNet concepts in ex-
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tended random-walks effectively reinforces taxonomic re-
lations in the learned embeddings.

Keywords: word embeddings, taxonomic embeddings,
WordNet, semantic similarity, taxonomic enrichment,
retrofitting

1 Introduction
Word embeddings are vectors that capture the distribu-
tional semantic information of words in the corpora on
which they are trained [1, 2]. They have been shown to per-
formwell on thematic similarity¹ benchmarks [3], but have
been less successful in stricter taxonomic and synonymic
benchmarks [4, 5]. In response, there have been recent ef-
forts to incorporate explicit taxonomic information from
lexical taxonomies, such asWordNet [6], into word embed-
dings [7, 8]. This process usually involves modifying pre-
trained word embeddings according to constraints placed
by the structure of the lexical taxonomy in question. For
example, retrofitting [7] introduces an objective function
that reduces the distance between vectors that represent
words contained in the same WordNet synset.

In addition, there have also been separate efforts to
build vectors that directly encode semantic information
from lexical taxonomies without referring to textual data.
For example, sparse (non-distributional) linguistic vectors
[9] have been derived from various knowledge sources
(FrameNet,WordNet, etc.) Each dimension in these sparse
linguistic vectors represent whether a word belongs to
a particular synset, holds a particular taxonomic rela-
tion, and so on. Other efforts, by contrast, have sought
to construct true distributional embeddings on lexical tax-
onomies by traversing them in a random-walk fashion
[10]. These random-walk taxonomic embeddings outper-
form natural-corpus embeddings on strict taxonomic simi-
larity benchmarks, suchasSimLex-999 [4], a gold standard

1 Often called semantic or topical “relatedness” in the literature. See
Section 3.
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focusing on taxonomic/synonymic (rather than thematic)
similarity.

It has been proposed that natural-corpus embeddings
be combined with taxonomic embeddings as a taxonomic
enrichment method [11]. Given that both embedding types
can use the same learning algorithm, such as Skip-Gram
or CBOW [10], this combination seems to be compatible
and natural. In this paper, we study two specific vector
combination methods: concatenation and fine-tuning.
Concatenation consists of simply concatenating the d-
dimensional random-walk taxonomic vector for eachword
with the d-dimensional natural-corpus vector for that
same word into a single vector of dimensionality 2d (see
Section 5.1). Meanwhile, fine-tuning consists in further
training natural-corpus embeddings on a pseudo-corpus
generated by a random-walk of a taxonomy, essentially
injecting taxonomic information in the existing natural-
corpus embeddings (see Section 5.2).

In spite of the fact that taxonomic and natural-corpus
embeddings can use the same training algorithm, it is im-
portant to note that the contexts for target words in both
embedding types are categorically different: contexts in
natural text are made of naturally co-ocurring words. In
contrast, contexts in WordNet random-walks are words
that are taxonomically related to the target word (e.g. its
hypernym, hyponym, co-hyponym, etc.) We discuss this
distinction in more depth in Section 3, but essentially, the
kind of contextual information that each set of vectors
carry is complementary to each other. As a result, we in-
vestigate this complementarity as a means of taxonomic
enrichment, comparing it against the original taxonomic
enrichment method: retrofitting [7].

The main research question we pose relates to find-
ing the optimal amount of taxonomic and natural-corpus
training data needed to obtain performance gains in the-
matic and synonymic benchmarks. It is well-known that
word embeddings in general perform better when large
amounts of training data are available to them. However,
while it is possible to train on increasingly larger amounts
of natural-text data (e.g. by crawling theWeb), taxonomies
are finite. Nevertheless, it is possible to produce very ex-
tensive random-walks across the taxonomy network, thus
producing larger amounts of (potentially repetitive) train-
ing data. In this paper we conduct experiments combin-
ing natural-corpus and taxonomic vectors trained on data
of different sizes. For natural-corpus embeddings, we sim-
ply use Wikipedia text samples of different sizes. For the
taxonomic embeddings, we generate training data of dif-
ferent sizes by conducting random-walks over WordNet
of varying durations. We observe that whilst performance
on thematic and synonymic benchmarks improves as the

training data size increases on both natural-corpus and
random-walk embeddings, the latter achieve higher per-
formance in the synonymic benchmark with relatively
smaller training data sizes. We also confirm previous stud-
ies finding that the performance of concatenated natural-
corpus and random-walk embeddings can be superior to
their individual performance (when not combined) in the-
matic benchmarks [11]. Crucially however,wefind that this
result only holds on embeddings trained onmedium-sized
natural corpora. An implicit assumption has been that vec-
tor combinationwill always increase performance, i.e. that
thehigher performing embedding in a concatenation is the
floor upon which vector combination will always improve.
Wedemonstrate that this is not always the case; and, based
on this finding, give recommendations regarding dataset
scenarios when a vector combination is likely to be benefi-
cial, and when it is not.

Lastly, we conduct an analysis of the training data gen-
erated by WordNet random-walk. We find that although
there is a fair amount of repeated sentences in the larger
generated training sets, this repetition does not negatively
impact performance; and, in fact, it may reinforce the tax-
onomic relationships of the concepts learned.

An attractive property of taxonomic random-walk
training, is that it can be easily conducted through un-
modified, off-the-shelfword embedding trainingprograms
(e.g. word2vec). This can be achieved by first generating a
pseudo-corpus by crawling theWordNet structure and out-
putting the lexical items in the nodes visited, and then by
running theword embedding training program on the gen-
erated pseudo-corpus. Given that good performance can
be achieved with relatively small random-walk pseudo-
corpora, orders of magnitude smaller than the size of a
natural corpus required for comparable performance, the
computational requirements of this method are signifi-
cantly low.

Our code and generated datasets are beingmade avail-
able online.²

2 Related work
Previous work focusing on encoding information from
knowledge resources through embeddings can be cat-
egorised into three broad families: (1) knowledge-
resource encoding methods that directly learn knowl-

2 https://github.com/GreenParachute/wordnet-randomwalk-
python
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edge resources, (2) semantic specialisation techniques
that modify pre-trained vectors in such way so that their
cosine similarity ends up measuring a specific semantic
relation, and (3) taxonomic enrichment approaches that
seek to augment the similarity of words in pre-trained cor-
pora, based on their taxonomic relationship as expressed
by a knowledge resource (this is in addition to the thematic
relations already learned through their original corpus
training).

Examples of knowledge-resource encoding meth-
ods include non-distributional sparse word vectors from
lexical resources [9], Poincaré embeddings that represent
the structure of theWordNet taxonomy inhyperbolic space
[12], and embeddings that encode all semantic relation-
ships expressed in a biomedical ontology within a sin-
gle vector space [13]. Meanwhile, Agirre et al. [14] follow
a stochastic approach based on Personalised Page Rank:
they compute the probability of reaching a synset from a
target word, following a random-walk on a given Word-
Net relation. Goikoetxea et al. [10] built upon this work,
but instead of computing random-walk probabilities, they
usedanoff-the-shelf implementationof theword2vec Skip-
Gram algorithm to train embeddings directly on a random
walk of the WordNet taxonomy.

By contrast, examples of the semantic specialisation
approach are PARAGRAM [15], counter-fitting [16], Hyper-
vec [17], Attract-Repel [18] and theworkofNguyenet al. [19]
on synonyms and antonyms. By applying different modifi-
cations on the objective function, the aim of these works
is to convert the cosine similarity function into a function
that measures the specific type of semantic relation learnt,
while weighting down the thematic relationship originally
learnt during pre-training on a text corpus. More recently,
Vulić et al. [20] and Ponti et al. [21] introduced global spe-
cialisation models where vectors for words that are miss-
ing in the knowledge resource are also updated.

An example of taxonomic enrichment is retrofitting
pre-trained natural-corpus embeddings by reducing the
distance between words that are directly linked in knowl-
edge sources like WordNet [7], MeSH [22] and ConceptNet
[23]. In addition, the embeddings produced by the random-
walk method introduced by Goikoetxea et al. [10] can be
readily combined with natural-corpus embeddings in or-
der to enrich them [11].

The quality of vectors produced by knowledge-
resource encoding, semantic specialisation and taxo-
nomic enrichment have been evaluated through diverse
semantic similarity benchmarks. These benchmarks in-
clude WordSim-353 [24], which conflates taxonomic sim-
ilarity with thematic similarity, SimLex-999 [4] which fo-
cuses on taxonomic similarity and SemEval-17 [25], which

Table 1: Spearman scores of a selection of methods on three bench-
marks: WordSim-353 (WS), SimLex-999 (SL) and SemEval-2017 (SE).
Highest value in each benchmark column is state of the art for that
benchmark. Abbreviated methods are:
SG: text embeddings trained via Skip-Gram.
PPR/WN: Personalised Page-Rank over WordNet.
RW/WN: Random-Walk over WordNet.
RW+SG: RW/WN vectors concatenated to SG vectors.
* Evaluated in our experimental reproduction.
** Evaluated by [8] in their experimental reproduction.

Method Type Method Ref. WS SL SE
Text SG [10] .69 .44 .57*

Encoding PPR/WN [14] .72 -- --
Encoding RW/WN [10] .70* .52 .50*
Enrichment RW+SG [10] .80 .55 .72*
Enrichment Retrofitting [7] .70 .44* .80**

Specialisation Attract-Repel [18] -- .71 --

considers thematic and taxonomic similarity as two points
on a scale of degrees of similarity. See Section 6 for more
details on these benchmarks.

Table 1 shows Spearman correlation scores on
WordSim-353, SimLex-999 and SemEval-17 of some state-
of-the-art and recent systems that implement the three
approach families mentioned earlier. In general, perfor-
mance tends to be worse on SimLex-999 than on SemEval-
17 and WordSim-353. However, notice that Attract-Repel
[18] has recently obtained scores as high as 0.71 on SimLex-
999. Attract-Repel specialises in learning (and distinguish-
ing from) synonymic and antonymic relations and incor-
porates information from rich knowledge sources.

Of special note from these results is that Goikoetxea
et al. [11] found that simple vector concatenation (RW+SG
in Table 1) perform better than retrofitting (and other more
complex methods of vector combination) in WordSim-353
and SimLex-999. The original retrofitting method [7],
exploited the Paraphrase Database [26], WordNet and
FrameNet [27] ontologies. They achieve a Spearman score
of 0.70 on the WordSim-353 dataset. However, their work
is focused only on using synonyms derived from synsets,
and they do not make use of other types of relations found
in knowledge bases, such as hypernymy and hyponymy.

The state of the art in SemEval-17 is held by the origi-
nalwinners in this competition,who employed retrofitting
in their system [8]. They performwhat they call “expanded
retrofitting”, which means that they use a union of the vo-
cabularies from the corpus embeddings and semantic net-
work, as opposed to regular retrofitting where the vocab-
ularies are intersected. In addition, they use ConceptNet
[23] instead of WordNet, and employ heuristics to handle
out-of-vocabulary words, such as averaging the vectors of
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the neighbours of a given out-of-vocabulary word in the
semantic network. With this system, they achieve a Spear-
man score of 0.80 (Table 1).

Despite the appealing simplicity and strong perfor-
mance of the embeddings resulting from the concate-
nation of random-walk and natural corpus embeddings
(RW+SG in Table 1), they have received little attention
in the literature. One exception is our own work in Klu-
bička et al. [28] where we found that word distributions
in random-walk corpora are similar to natural corpora
in terms of Zipf’s and Heap’s law. We also analysed the
role of rare words in the performance of the embeddings.
However, as that work explores only random-walk pseudo-
corpora, the effects of the size of the training data used
during training on the random-walk corpus were not ex-
plored in depth; only relatively small pseudo-corpus sizes
were considered, and no attention is given to natural cor-
pora at all. This is important given that the quality of vec-
tors increases in proportion to the training data size. Also,
as mentioned in the introduction, given that the WordNet
structure is finite, it remains a question of whether doing
very extensive randomwalks, potentially revisiting the full
structure more than once, is beneficial at all. We address
these lines of inquiry in this work.

3 Thematic and Taxonomic
Contexts

Although semantic relatedness is often treated as a single
concept in the literature on lexical semantics, there are at
least two different aspects of semantic relatedness: taxo-
nomic and non-taxonomic (e.g. contextual, thematic) re-
lations. This distinction has been described and explored
in-depth by Kacmajor and Kelleher [5]. According to their
work, Taxonomic relatedness is relatedness defined as
belonging to the same taxonomic category, which involves
having common features and functions.On theother hand,
thematic relatedness is relatedness existing by virtue
of co-occurrence of concepts in any sort of context, and
specifically of events or scenarios, which involves perform-
ing complementary roles.

This raises the question of what kind of similarity is
being modelled, represented and ultimately evaluated in
the literature, and whether the correct datasets are used
for these tasks. Kacmajor and Kelleher state that related
workon semantic relatedness and similarity oftendoesnot
specify what kind of similarity is being modelled or evalu-
ated, but find thatwhen ‘similarity’ is used in the literature
it most often refers to taxonomic similarity. Yet this distinc-

tion is really important to keep inmind, as the ability to dif-
ferentiate between taxonomic and thematic relations can
lead to enhanced statistical language models. They claim
that both types of relations are important, but in a differ-
ent way: thematic relations express high-probability co-
occurrences and thus help to predict the next word, while
taxonomic relations indicate which words can be replaced
by other words.³ In addition, Kacmajor and Kelleher find
that different benchmark evaluation datasets are actually
better suited to evaluate one kind of relatedness over the
other. They perform experiments to build models that are
best at each of the two dimensions of semantic relatedness
and those that achieve a good balance between the two.

This distinction between taxonomic and thematic re-
latedness is an important consideration for us as well, as
the aim of this work is to combine the two different axes of
semantic relations into one embedding representation.

4 Training Data Generation by
WordNet random-walk

In this work we learn taxonomic embeddings over Word-
Net via random-walk. More specifically, we conduct a
random-walk of the WordNet hierarchical structure and
produce a pseudo-corpus by emmitting the lexical items of
the visited synsets.We then train embeddings using a stan-
dard implementation of the Skip-Gramalgorithm. This sec-
tion describes the process to generate the random-walk
pseudo-corpus used for training these taxonomic embed-
dings.

Our pseudo-corpus generation process is inspired by
the work of Goikoetxea et al. [10], who performed random
walks overWordNet graphs to create synthetic contexts on
which word embeddings are trained, thus creating word
representations. In this work, the authors treat the Word-
Net knowledge base as an undirected graph of interlinked
synsets and construct an inverse dictionary that maps the
synsets to the words (lemmas) that are linked to it. Their
method first chooses a synset at random from the set of all
synsets, and then performs a randomwalk starting from it.
They use a predefined dampening parameter (α) to deter-
minewhen to stop thewalk. In otherwords, at each synset,
the random walk might move on to a neighbouring synset
with probability α, or might terminate with the probability

3 In the linguistics literature, the concepts of taxonomic and thematic
relatedness are also referred to as paradigmatic and syntagmatic rela-
tions, respectively.
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1 − α. This dampening factor is usually set to 0.85. Each
time the random walk reaches a synset, a lemma belong-
ing to the synset is emitted at random using the probabil-
ities in the inverse dictionary. When the random walk ter-
minates, the sequence of emitted words forms a pseudo-
sentence of the pseudo-corpus upon which the word em-
beddings will be trained, and the process repeats until a
predetermined number of sentences or tokens have been
generated. The authors do not explicitly state which kinds
of semantic relations they traverse during their random
walk.

Our re-implementation is largely the same, except that
we only traverse hypernymic and hyponymic relationships
and ignore other relationship types such as meronym and
antonym relations. These are two examples typical of the
pseudo-sentences produced by our system:

1. acoustic gramophone Victrola gramophone phono-
graph machine ATM

2. shatterproof glass glass natural glass

As can be seen, both sentences contain words that
hold taxonomic (i.e. hypernymic, hyponymic and co-
hyponymic relations) relations among them.

Just as Goikoetxea et al., we treat WordNet’s taxo-
nomic relations as an undirected network, and start our
walk at a random synset in the taxonomy. Before moving
on to the next synset, we choose a lemma corresponding
to that synset. Lemmas are chosen based on their probabil-
ities provided byWordNet. The probabilities in the inverse
dictionary (themapping from synsets to lemmas) are avail-
able fromWordNet itself, but are expressed as frequencies
rather than probabilities. We choose one at random based
on the probability distribution derived from the frequency
counts.

Once the lemma has been emitted, we check if the
synset has any hypernymand/or hyponym connections as-
signed to it. If it does, we choose one at randomwith equal
probability and continue the walk towards it, choosing a
new lemma from the new synset. We stop the walk either
if (a) there are no more connections to take, or (b) the pro-
cess is terminated according to the dampening factor α.We
then restart the process and create a newpseudo-sentence,
until we have generated the required number of sentences.

One important thing to note is that we allow our algo-
rithm to go back to a node that has already been visited,
but we do not allow it to choose a lemma that has al-
ready appeared in the sentence we are generating at that
time. In addition, as opposed to Goikoetxea et al. who
produce multiword terms like Victrola_gramophone,
shatterproof_glass, natural_glass essentially treat-
ing them as words with spaces, we divide them up

into their individual constituent words (e.g. Victrola
gramophone, shatterproof glass, natural glass).
This is why there are repeated words in the example sen-
tences (1 and 2).

5 Methods for Combining
Natural-Corpus and Taxonomic
Embeddings

In this workwe study two natural ways of incorporating in-
formation from lexical taxonomies into natural-text word
embeddings: 1) concatenation of the natural-text vectors
with vectors independently trained on pseudo-corpus gen-
erated through random-walk over WordNet, and 2) fine-
tuning the natural-text vectors by continuing their train-
ing on the random-walk pseudo-corpus. These methods
are explained in the following two subsections.

All word embeddings are trained on a corpus (natural
or generated by random walk) using a slightly modified
version of Pytorch SGNS, a publicly available implemen-
tation⁴ of the Skip-Gram with Negative Sampling (SGNS)
algorithm, introduced by Mikolov et al. [1, 2]. Our mod-
ifications mostly concern adding new vectors for words
encountered during the fine-tuning step that did not oc-
cur in the original natural corpus, as well as other mi-
nor data-handling optimisations. The objective function
is not modified in any way. Training is conducted for a
pre-determined number of epochs. All settings and hyper-
parameters are described in Section 7.1.

5.1 Concatenation

Concatenation requires word vectors that have been
trained on a sufficiently large corpus using a suitable word
embedding software package. Separately, it also requires
word vectors that have been trained on a pseudo-corpus
generated by a randomwalk of WordNet (or other suitable
taxonomy), using the same word embedding software.

The two sets of word vectors are concatenated to form
a single set ofword vectors. The concatenationprocess pro-
ceeds as follows. A union of the vocabularies from the two
sets of word vectors is conducted. If ri is a word vector rep-
resenting word wi trained on the natural corpus and if pi
is a word vector also representing wi but trained on the

4 https://github.com/theeluwin/pytorch-sgns
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Table 2: Similarity scale used by human annotators in the SemEval-17 Task 2 challenge. Adapted from [25].

Score Interpretation Description Kind of
similarity

4 Very Similar Synonymous pair (e.g. midday-noon) Taxonomic
3 Similar Words in pair sharemany aspects ofmeaningwith slight differences. They refer to similar

but not identical concepts. (e.g. lion-zebra, firefighter-policeman)
Taxonomic

2 Slightly Similar Words in pair are not very similar but share a topic, domain or function (e.g. house-
window, aeroplane-pilot)

Thematic

1 Dissimilar Words in pair are clearly dissimilar but may share some small details, a far relationship
or a domain in common and could be found together in a document on the same topic
(software-keyboard, driver-suspension)

Thematic

0 Totally
Dissimilar and
Unrelated

Words are unrelated and do not share the same topic Dissimilar

random-walk pseudo-corpus, then the concatenated vec-
tor ci = [ri;pi] is constructed. If wi does not exist in the
vocabulary of one of the sets of word vectors, then the cen-
troid of all words for that set is used in its place. For ex-
ample, r = 1

n
∑︀n

j=1 rj if there is no representation for wi
in the natural corpus word vector set and p = 1

m
∑︀m

j=1 pj
if the pseudo-corpus does not have a representation for wi.
We interpret this centroid to give a representative flavour of
the corpus missing the word (i.e. a fall-back mechanism).
An alternative using a vector of zeroes to represent a miss-
ing word, performed slightly worse than this centroid in
our preliminary experimentation. If ri and pi are of dimen-
sionality d, the concatenated vectors’ dimensionality will
be 2d.

5.2 Fine-tuning

In the fine-tuning workflow, the word vectors trained on
the natural corpus are used, but they continue to be
trained (fine-tuned) on the random-walk pseudo-corpus.
Concretely, the word vectors trained on the natural cor-
pus are loaded as pre-initialised vectors. New, randomly-
initialised word vectors are created for any words present
in the vocabulary of the random-walk pseudo-corpus but
not in the natural-corpus vocabulary. Then, SGNS training
is continued on the pseudo-corpus for a pre-determined
number of epochs. If the dimensionality of the natural cor-
pus vectors is d, then the dimensionality of the fine-tuned
vectors will also be d.

6 Corpora and lexical similarity
datasets

In our experiments we train our natural-corpus vectors
sentences sampled randomly from the Wikipedia corpus
from the Polyglot project⁵ [29]. We produce different sets
of vectors from samples of the 1, 5, 10, 15 and 20% of sen-
tences from this Wikipedia corpus. The first five rows in
Table 3 show the sizes, in terms of sentences, tokens and
types, of these Wikipedia samples.

We also generated pseudo-corpora using theWordNet
random walk method described in Section 4. The sizes of
these pseudo-corpora are presented in the remaining rows
of Table 3. As will be discussed in Section 7.1, good perfor-
mance starts to be observed from around 100k sentences
onwards. So these pseudo-corpora need not be massive.

We test ourmodels on three lexical similarity datasets:

– SemEval-17 [25] consists of a set of 500 pairs of
words, multiword expressions (MWEs) and entities
in English⁶ from awide range of domains. These 500
pairs are uniformly distributed across a scale of five
degrees of similarity that range from total dissimi-
larity to complete synonymy, with thematic and tax-
onomic similarities falling at different points along
this scale. Importantly, thematic similarity is consid-
ered to be at a lower scale than taxonomic similarity.
Table 2 summarises the scale used in this challenge.
We added the last column to explicitly distinguish
the type of similarity indicated at each point in the
scale.

5 https://sites.google.com/site/rmyeid/projects/polyglot
6 We concentrate on the monolingual similarity task in English only.
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Table 3: Corpus sizes in number of sentences, tokens and types

Corpus Type Sentences Tokens Types
Wiki (1%) 667,575 16,534,730 467,005
Wiki (5%) 3,333,131 82,650,326 1,281,645
Wiki (10%) 6,672,248 165,363,197 1,951,871
Wiki (15%) 10,000,201 247,928,306 2,490,973
Wiki (20%) 13,335,936 330,692,221 2,945,898
WN/RW 1,000 3,541 2,595
WN/RW 1,000 3,591 2,675
WN/RW 10,000 34,691 16,711
WN/RW 30,000 104,736 34,823
WN/RW 50,000 176,020 46,478
WN/RW 70,000 245,730 54,135
WN/RW 100,000 350,435 62,950
WN/RW 150,000 525,174 71,736
WN/RW 200,000 703,827 77,470
WN/RW 300,000 1,052,906 83,516
WN/RW 500,000 1,756,304 88,735
WN/RW 750,000 2,633,072 91,028
WN/RW 1,000,000 3,517,592 92,070
WN/RW 1,500,000 5,274,584 92,826
WN/RW 2,000,000 7,032,270 93,111
WN/RW 2,500,000 8,791,403 93,252
WN/RW 3,000,000 10,546,605 93,327
WN/RW 3,500,000 12,301,532 93,395
WN/RW 4,000,000 14,067,967 93,426
WN/RW 4,500,000 15,824,999 93,446
WN/RW 5,000,000 17,588,303 93,461
WN/RW 658,024,622 83,000,000 93,530
WN/RW 1,308,182,495 165,000,000 93,538
WN/RW 1,966,276,579 248,000,002 93,539
WN/RW 2,624,244,171 331,000,020 93,539

– WordSim-353⁷ benchmark [24] is an older andmore
established semantic similarity dataset that con-
flates thematic and taxonomic similarities. It con-
sists of 353 word pairs.

– SimLex-999 [4] consists of 999 word pairs whose
similarity judgements emphasise taxonomic and
synonymic similarity over all other semantic rela-
tions, which receive very low similarity scores. Se-
mantic similarity systems tend to perform much
worse on SimLex-999 than on mixed thematic-
taxonomic benchmarks such as SemEval-17 and
WordSim-353 [4].

7 Experiments

7.1 Setup

Word vectors were trained and combined following the
methods described in Section 5. The vectors were com-
puted by the SGNS system using a word window of five
words to the left and five words to the right of a sliding fo-
cus word, without crossing sentence boundaries. Twenty
words were randomly selected from the vocabulary based
on their frequency as part of the negative sampling step
of the training. The frequencies in this weighting were
smoothedby raising them to thepower of 34 beforedividing
by the total. All vectors produced by the SGNS system had
300 dimensions. Vectors were trained for 30 epochs. The
dampening α parameter for all generated random-walk
pseudo-corpora was set to 0.85.

The concatenated vectors were constructed from the
vectors trainedon the real corpus at the 30th epochand the
set of vectors trained on a WordNet random-walk pseudo-
corpus also at the 30th epoch. The fine-tuned vectors are
computed by taking the base corpus vectors at the 30th
epoch and further training them on one of the random-
walk pseudo-corpora for 30 additional epochs. Word vec-
tors are constructed for all types in each random-walk cor-
pora. For the Wikipedia samples, word vectors are com-
puted only for the 100,000 most frequent word types.

The constructed vectors from all models are evalu-
ated by computing cosine scores on the vectors represent-
ing each word in every pair from SemEval-17, WordSim-
353 and SimLex-999 and computing Spearman’s rank cor-
relation coefficient (henceforth Spearman score) between
these cosine scores and the gold standard similarity scores
from each benchmark. All models train vectors for uni-
grams only, so if a benchmark word pair contains a MWE,
a pseudo-vector for that MWE is constructed by summing
the word vectors of its individual words. If a model does
not have a vector representation for a word from a word
pair, the system does not output a score for that pair, im-
pacting negatively the model’s performance.

7.2 Results and discussion

During our preliminary experimentation with the random-
walk embeddings, we observed more dramatic jumps in
performance at the smaller training size ranges (0-18M
tokens) than at the larger side of the scale (18-331M to-

7 http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
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kens). Conversely, we only started noticing significant per-
formance improvements on the natural corpora once we
started hitting the half-million tokens mark (approx. 1%
of Wikipedia). Because of this, we present our results us-
ing two different kinds of plots. One kind focuses on the
smaller random-walk training range (0-18 million words),
whereas the other kind gives a full picture covering the full
size range (0-331 million tokens) for both embedding sets.
We describe these two kinds of plots as we present the re-
sults.

Figure 1 presents plots of the first kind, concentrat-
ing on the smaller random-walk range (0-18 million to-
kens) but covering almost the full Wikipedia sample range
(0-248 million tokens corresponding to 1, 5, 10 and 15%
of Wikipedia). Each row of graphs shows the results for
a different sample of Wikipedia. The y axis in the fig-
ure’s plots shows Spearman scores on all models against
each of the three semantic similarity benchmarks stud-
ied: WordSim-353, SimLex-999 and SemEval-17. The x axis
in these plots represents the size of the generated Word-
Net randomwalk pseudo-corpus inmillions of tokens. The
Spearman score plotted represents the best score (from all
training epochs) achieved for a model at that particular
WN/RW corpus size. Themodels (lines in plots) being eval-
uated are: (1) vectors trained on the natural corpus only
(Wiki) drawn as thick black lines, (2) vectors trained so-
ley on the WN/RW pseudo-corpora only (thick grey lines),
(3) the originalWordNetRetrofittingmethodbyFaruqui
et al. [7]⁸ (dotted thin magenta line), (4) our Fine-tuning
combination method (solid thin magenta line) and (5)
ourConcatenation combinationmethod (dashed thinma-
genta line).

Notice that for vectorswhichdonot dependon the size
of the WN/RW pseudo-corpus (Wiki and Retrofitting) a
constant horizontal line is drawn. Notice as well that pure
WN/RW results (thick grey line) do not depend onWikipedia
sample size, so the WN/RW plots on the top row are identical
to their corresponding plots on the subsequent rows.

Figure 1 shows that, in comparison to all othermodels,
WN/RW (thick grey line) presents a very strong performance
on the three benchmarks. As the random-walk pseudo-
corpus size becomes larger, the model becomes stronger.

On the WordSim-353 dataset, Retrofitting beats
pure WN/RW. However, both combination methods
(Fine-tuning and Concatenation) slightly outperforms
Retrofitting at the larger samples of Wikipedia. This
trend is mainly driven by the performance of pure Wiki

8 Using Faruqui et al.’s own implementation: https://github.com/
mfaruqui/retrofitting

embeddings. At Wikipedia 15%, however, we start seeing
that the performance of vector combinations (especially
Fine-tuning), start taking over the pure Wiki model.
There is not much difference in performance between
Retrofitting and our vector combination methods on
this dataset.

On the SimLex-999 dataset, the trend is reversed, in
the sense that it is the pure WN/RW models driving the
performance while Wiki stays well behind, even as the
Wikipedia sample grows from the top plot to the bottom
plot. Notice though that in this dataset the Retrofitting
model tends to fall somewhere in between the pure WN/RW
models and the pure Wiki model. WN/RW and our combi-
nation methods (Concatenation and Fine-tuning) are
almost indistinguishable from each other on this dataset,
but clearly beat Retrofitting, especially at the smaller
sizes of Wikipedia. Notice as well that this occurs at a
relatively small size of the WN/RW corpus (less than 5 mil-
lion tokens), suggesting that the amount of training data
needed to obtain relatively good taxonomic information
through random-walk embeddings is relatively small. No-
tice that as the Wikipedia corpus grows larger, our combi-
nation methods modestly outperform pure WN/RW vectors,
suggesting that the extra information provided by a large
natural corpus can complement purely taxonomic infor-
mation.

On the SemEval-17 dataset, the Concatenation vec-
tors outperform all others in all Wikipedia sizes (espe-
cially on the smaller Wikipedia sample of 1%), with
Retrofitting following closely behind. This is not sur-
prising: given that taxonomic and thematic similarities are
part of the same similarity scale in the SemEval-17 dataset,
a mixture of the two types of information will translate in
good results.

The performance of all models is lower on SimLex-
999 in comparison to WordSim-353 and SemEval-17. How-
ever, the scores achieved by the WN/RW model are rela-
tively high for this dataset and it beats all models tested
by [4] against this benchmark. The current state of the
art score on SimLex-999 is 0.71, achieved by Attract-Repel
[18], a system that specialises in learning (and distinguish-
ing from) synonymic and antonymic relations and incorpo-
rates information fromknowledge sources as diverse asBa-
belNet, Wikipedia, WordNet, etc. Attract-Repel’s authors
do not evaluate their system on thematic similarity bench-
marks. It is not their focus to do so as they seek to spe-
cialise their vectors in synonymic similarity. By contrast,
we seek to enrich corpus-based vectors with taxonomic in-
formationwithout affecting their ability to performwell on
thematic similarity. We believe the experiments presented
here demonstrate that this is feasible. Also, our combina-
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Figure 1: Evaluation results for different training sizes of the Wikipedia (Wiki) and WordNet-via-Random-Walk (WN/RW) corpora, by them-
selves (solid lines) and in combination via Retrofitting, Concatenation and Fine-tuning. Evaluated using Spearman correlation scores ρ
against three manually-annotated datasets: WordSim-353, SimLex-999 and SemEval-17.
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Table 4: Vector Type Recommendations based on corpus training
sizes for thematic and taxonomic similarity tasks. Random-walk
pseudocorpus sizes vary across columns while Natural corpus
sizes range across rows. Rough size ranges in tokens: Small: 0-
18m, Medium 18-80m, Large: 80m+. We use a star rating system
for the top performing vector type, where NR (zero stars) is Not
Recommended and should be avoided, * indicates medium perfor-
mance, ** indicates adequate performance and * * * indicates good
performance.

Thematic Similarity

Small Medium Large

Small
NR Combination

★

Combination
★

Medium
Natural
★

Combination
★★

Combination
★★

Large
Natural
★★★

Natural
★★★

Natural
★★★

Taxonomic Similarity

Small Medium Large

Small
NR RW

★★

RW
★★

Medium
Natural
★

RW
★★

Combination
★★

Large
Natural
★

Combination
★★

Combination
★★

RW corpus size

Natural corpus size

RW corpus size

Natural corpus size

tion methods can easily be scaled to cover additional lin-
guistic resources in general language, in specialised do-
mains and potentially in several languages.

The system that won the official SemEval-17 competi-
tion obtained a Spearman score of 0.80 [8, 25]. This sys-
tem was also a retrofitting system based on the model by
[7]. However, instead of WordNet, they employed Concept-
Net⁹ [23], an ontology containing more complex relation-
ships than WordNet. They also employed some sophisti-
cated heuristics to handle out-of-vocabulary words.

The second kind of plots that we provide are Figure 2
for WordSim-353, Figure 3 for SimLex-999 and Figure 4
for SemEval-17. Each figure contains two plots depicting
Spearman scores of our concatenation method: (a) a con-
tour plot of the Spearman scores over the full range of the
WordNet RW sizes (x axis) and of the Wikipedia sample
sizes (y axis), and (b) a heatmap detailing the numerical
Spearman scores over the same range of corpus sizes. Both
plots depict the same information. For the contour plots,
two zoom-ins are provided: one for low values of WordNet

9 http://conceptnet.io

RW sizes (left-hand side), and another for low values of
Wikipedia sample sizes (bottom part). This second kind of
plots focuses on the concatenationmethod given that fine-
tuning tends to perform similarly as training corpora sizes
increase.

For WordSim-353, Figure 2a shows that the best per-
formance is achieved with the largest value of Wikipedia
samples and relatively small WN/RW sizes (upper-left cor-
ner in the main plot). Figure 2b shows this in more detail:
on the top row (331mWikipedia), it can be seen that when
WN/RW reaches 18 million words, the scores start declining.
However, notice that on the rows from 11 million through
17 million, as we move to the left (i.e. as the WN/RW cor-
pus increases), the scores significantly improve. This re-
sult suggests that combining vectors trained on modestly-
sizednatural corporawith taxonomic vectors canyieldper-
formance increases on thematic similarity. However, vec-
tors trained on large natural corpora do not benefit from
this combination with taxonomic vectors. In fact, it could
lead to drops in thematic similarity performance.

For SimLex-999, Figure 3b shows that the highest per-
formance is achieved with a WN/RW model trained on a
random-walk of 83 million words and combined with rel-
atively large amounts of a natural corpus (≥17m). Vector
combination can give modest improvements over a pure
medium-sized (approx. 80m) WN/RW model if the natural
corpus is very large.

For SemEval-17, Figure 3a shows that good perfor-
mance can be achieved with both a large natural-corpus
and a large random-walk corpus. However, performance
starts decreasing towards the very large random-walk em-
beddings (≥248m). It is not surprising that large amounts
of both types of information yield good performance given
that the SemEval-17 evaluation scale mixes both types of
similarity (Table 2).

We can summarise the above results into the following
two points:

– Thematic similarity is driven mostly by natural-
corpus embeddings and not so much by taxonomic
embeddings. Enrichment through vector combina-
tion, however, can help when natural-corpus vec-
tors are trained on small-to-medium sized corpora.
If they are trained on very large corpora, taxonomic
enrichment offers no benefit and could actually hin-
der performance.

– Taxonomic similarity, by contrast, is driven mostly
by random-walk vectors. Only medium sizes of
random-walk data are needed: there is little benefit
to training vectors on very large random walks. Vec-
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(a) Contour plot of Spearman scores with a zoom-in of lower corpus sizes
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(b) Heatmap with details of same Spearman scores

Figure 2: Spearman scores for the WordSim-353 dataset depicted as a contour plot (2a) and a heatmap (2b)
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(a) Contour plot of Spearman scores with a zoom-in of lower corpus sizes
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(b) Heatmap with details of same Spearman scores

Figure 3: Spearman scores for the SimLex-999 dataset depicted as a contour plot (3a) and a heatmap (3b)
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Figure 4: Spearman scores for the SemEval-17 dataset depicted as a contour plot (4a) and a heatmap (4b)
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Table 5: Unique and repeated sentences for each size (in thousands of sentences) of pseudo-corpus

Size k Unique Repeated % Rep. Size k Unique Repeated % Rep.
1 1000 0 0.00 150 123598 26402 17.60
10 9791 209 2.09 200 158449 41551 20.78
30 28411 1589 5.30 300 221948 78052 26.02
50 46041 3959 7.92 500 335629 164371 32.87
70 62857 7143 10.20 750 461685 288315 38.44
100 86609 13391 13.39 1000 576893 423107 42.31

tor combination is useful when the natural corpus is
large.

Table 4 presents a summary of the type of vector
we recommend (pure natural-corpus embeddings, pure
random-walk embeddings or a combination of the two)
depending on the training data size used for each vector
type and the type of similarity to be optimised: thematic
similarity (top sub-table) or taxonomic similarity (bottom
sub-table). The table uses a star rating system to grade a
size combination as having either low (no stars), medium
(*), adequate (**) or good (* * *) performance. Notice that
whilst this star grading is based on the vectors’ perfor-
mance on the similarity tasks described here, the assess-
ment of performance is really application-dependent. Yet,
it provides a quick and easy-to-read guide to the properties
of vector combinations. Notice also that for taxonomic sim-
ilaritywe consider the best performing vectors as adequate
(**). This is due to the fact that newer state-of-the-art vec-
tors tuned on the SimLex-999 dataset obtain much better
Spearman scores than those achived by vector concatena-
tion (see Section 2).

7.3 Random-Walk Pseudo-Corpus Analysis

The random-walk pseudo-corpora employed here are rel-
atively modestly-sized and yet are capable of achieving
very competitive results. This makes this method compu-
tationally affordable. We argue that the strength of the
random-walk pseudo-corpora stems from the repetition of
words belonging to well connected synsets. There are two
ways that a word can be chosen to form part of a pseudo-
sentence: 1) by the random synset selection at the start of
a pseudo-sentence and 2) by walking from a synset that
has a direct (hypernymic or hyponymic) link to the synset
containing the word in question. The probability of a word
to be selected by (1) is at most 1 over the number of Word-
Net synsets (i.e. 1/117,659), a considerably rare event. So,
the majority of repeated selections of a single word must
be done through a walk-in from an adjacent node. If well-

connected synsets are being selected repeatedly (mostly
through walk-ins), then a significant number of pseudo-
sentences will contain more or less the same words. In
fact, Table 5 shows the proportion of sentences that con-
tain exactly the same set of words in each of the random-
walk pseudo-corpora used in our experiments. Observe
that, as expected, as the corpus size increases, the propor-
tion of repeated sentences also increases. Each repetition
of a pseudo-sentence effectively reinforces the learning of
the taxonomic relations of the words it contains. In other
words, because each sentence is generated by a single ran-
dom walk, and each walk traverses the taxonomy, the set
of words that occur within a sentence is dependent on the
local topology (connectedness) of the regionwithin the tax-
onomy the walk traversed. Hence each repeated sentence
reinforces the topological relationships within the taxon-
omy.

8 Conclusion and future work
We analysed two simple methods of vector combination
that enrich pre-trained word embeddings with taxonomic
information by training on a pseudo-corpus generated by
a random walk of the WordNet taxonomy. Vectors trained
on random-walk pseudo-corpora are able to encode taxo-
nomic information as demonstrated by their good perfor-
mance on a synonymic similarity task.

We have demonstrated that taxonomic enrichment of
natural-corpus embeddings through vector combination
does not always increase the performance of the result-
ing word embeddings. So care must be taken on how and
when this combination should be performed. Table 4 sum-
marises our recommendations on vector combination.

We found that the strength of taxonomic vectors via
WordNet random walk comes from the repetition of well-
connected WordNet concepts in the generated pseudo-
corpora, which effectively reinforces the topological rela-
tionships within the taxonomy.
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Lastly, relatively good performance can be achieved
with modestly-sized random-walk pseudo-corpora, mak-
ing the usage of our methods computationally affordable.

In this workwe focused on one particular type of word
embedding model: Skip-Gram. In future work we plan to
experiment with other models such as continuous bag-of-
words, Glove and more traditional vector-space models of
lexical semantics [30]. We also intend to experiment with
taxonomies of both general and specialised domains, as
well as ontologies that encode other types of semantic re-
lationships.

All the evaluations presented here were intrinsic. We
plan to experiment with extrinsic, end-to-end systems of
various kinds to evaluate the practical usefulness of en-
riched vectors in diverse applications.

Wewouldalso like to expandour study to several other
languages. Finally, we plan to analysemore deeply the sta-
tistical and structural properties of the generated random-
walk pseudo-corpora from WordNet and make compar-
isons with random-walk pseudo-corpora from other tax-
onomies and ontologies.
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