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Abstract. In this paper, we propose a new method of upper bounds for the number of integer polynomials of the fourth
degree with a given discriminant. By direct calculation similar results were established by H. Davenport and D. Kaliada
for polynomials of second and third degrees.
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1 Introduction

Denote by Pn the class of integer polynomials P of degree n. In what follows, we use the Vinogradov symbols
� (and�) where a � b means that there exists a constant C such that a � Cb. If a � b � a, then we write
a � b. We denote the cardinality of a set B by #B. Positive constants that depend only on n will be denoted
by c(n); where necessary, these constants will be numbered cj(n), j = 1, 2, . . . .

The discriminant of a polynomial P (x) = anx
n + an−1x

n−1 + · · · + a1x+ a0 ∈ Pn is defined by

D(P ) = a2n−2
n

∏

1�i<j�n

(αi − αj)
2,

where α1, α2, . . . , αn ∈ C are the roots of P . Let H(P ) = max0�j�n |aj | denote the standard (naive) height
of P =

∑n
i=0 aix

i. Given a parameter Q ∈ N>1, let

Pn(Q) =
{
P (x) ∈ Pn: H(P ) � Q

}

denote the set of integer polynomials P of degree n and height H(P ) � Q. If P has no repeated roots, then
D(P ) �= 0. It is well known [16] thatD(P ) can be represented as a determinant of order 2n−1, which consists
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2 N. Budarina, V. Bernik, and H. O’Donnell

of the coefficients of P . Hence, wheneverD(P ) �= 0, we have that |D(P )| � 1 and |D(P )| is bounded from
above in terms of the height and degree of the polynomial P . We easily verify that for every n � 2, there exists
a constant c1 > 0 that depends on n only such that for any P ∈ Pn(Q), we have that

1 �
∣∣D(P )

∣∣ < c1Q
2n−2. (1.1)

The properties and estimates for D(P ) imply the estimates for |x− α1|, where x ∈ R, and α1 is the root of P
closest to x (see [9, 10, 15]). These estimates were crucial to prove Mahler’s conjecture in the case n = 2, 3.
In a more systematic way, the relation between |x − α1| and D(P ) was investigated by Sprindzuk [15] and
others [2,3,4,5,6,11,12,13,14]. In recent years, the problem of counting polynomials with a small discriminant
D(P ) has become a new branch of the theory of Diophantine approximations.

Given v ∈ R�0, define the subset of Pn(Q) as follows:

Pn(Q, v) =
{
P (x) ∈ Pn(Q): 1 �

∣∣D(P )
∣∣ < Q2n−2−2v

}
.

Establishing the correct lower and upper bounds for #Pn(Q, v) is the goal of this branch of Diophantine
approximations. We now briefly recall the results obtained to date. In the case of quadratic polynomials, it was
shown in [13] that

#P2(Q, v) � Q3−2v, 0 < v <
3

4
.

In the case of cubic polynomials, it was established in [14] that

#P3(Q, v) � Q4−5v/3, 0 � v <
3

5
.

Establishing the correct lower bounds for arbitrary n has been the subject of numerous papers including [2, 3,
6, 13, 14]. The most general and best estimate was found in [3], where it was shown that

#Pn(Q, v) > c2Q
n+1−(n+2)v/n, 0 � v � n− 1. (1.2)

The lower bound (1.2) for the full range of v, 0 � v � n − 1, was obtained for the polynomials that have all
α2, . . . , αn roots close to α1 and x. The method for constructing a large number of polynomials P ∈ Pn(Q, v)
is based on the results from [1]. Moreover, the following two propositions are key elements of the method for
obtaining the lower bound (1.2).

Proposition 1. (See [3].) Let n � 2, and let v0, v1, . . . , vn be a collection of real numbers such that

v0 + v1 + · · ·+ vn = 0 and v0 � v1 � · · · � vn � −1.

Then there are positive constants c3 and c4 depending on n only with the following property. For any interval
J ⊂ [1/2, 1/2], there is a sufficiently large Q0 such that for all Q > Q0, there is a measurable set GJ ⊂ J
satisfying |GJ | � |J |/2 such that for every x ∈ GJ , there are n+1 linearly independent primitive irreducible
polynomials P ∈ Z[x] of degree exactly n such that

c3Q
−v0 �

∣∣P (x)
∣∣ � c4Q

−v0 , c3Q
−vj �

∣∣P (j)(x)
∣∣ � c4Q

−vj , 1 � j � n. (1.3)
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Proposition 2. (See [3].) Let n and vj be as in Proposition 1. Let

dj = vj−1 − vj, 1 � j � n.

Suppose that d1 � d2 � · · · � dn � 0 and that for some x ∈ C and Q > 1, inequalities (1.3) are satisfied by
some polynomial P over C of degree degP = n. Then there are roots α1, . . . , αn ∈ C of P such that

|x− αj| � c5,jQ
−dj , 1 � j � n,

where

c5,1 = nc4c
−1
3 ,

c5, j+1 = max

(
2c4n!

c3(j + 1)!(n − j − 1)!
,

2c5,jn!

j!(n − j!)

)
, 1 � j � n− 1.

It is much harder to get upper bounds for#Pn(Q, v) with arbitrary n. Note that the range of v depends on
the number of roots of the polynomial close to α1. For example, if only one root α2 is close to α1, then the
range for v is 0 � v � n/2.

For results in the p-adic case, see [7]. The upper and lower bounds for the number of polynomials having
small discriminants in terms of the Euclidean and p-adic metrics simultaneously are obtained in [5, 11].

Let α1, . . . , αn be the roots of the polynomial P ∈ Pn. An upper bound for the number of integer cubic
polynomials with a given discriminant is obtained in [4], where it is established that

#P ′
3(Q, v) � Q4−5v/3+ε, 0 � v � 2, ∀ε > 0,

where P ′
3(Q, v) is a subclass of P3(Q, v) with a special distribution of roots. The first step of the proof is the

ordering the roots α1, α2, α3 with respect to one of them αj , which will denote by α1, in such way that

|α1 − α2| � |α1 − α3|, |α1 − α3| � |α2 − α3|. (1.4)

In the case of the polynomials of fourth degree, we will have another principal case for the ordering of the
roots:

|α1 − α2| � |α1 − α3| � |α1 − α4|,
|α1 − α2| � |α3 − α4| � |α2 − α3| � |α1 − α3|.

(1.5)

Other cases are similar to (1.4).
Let α1j , . . . , αnj be the roots of the polynomial Pj ∈ Pn ordered according to (1.4) or (1.5) depending on

the degree of Pj . For n = 3, the polynomials Pj are expanded into Taylor series in a neighbourhood of α1j ,
and the absolute values of Pj are estimated from above. Then we form the new polynomialsRj+1 = Pj+1−Pj

of degree degRj+1 < n from the polynomials Pj with the same oldest coefficients.
For the polynomials of fourth degree, in case (1.4), from the estimates |Pj | in a neighbourhood of α1j we

cannot get strong estimates for |Pj | in a neighbourhood of α3j . Therefore the expansion into Taylor series
must be carried out in a neighbourhood of α1j and in a neighbourhood of α3j .

The partition of the roots αj into the clusters is possible for n = 5, 6, but for the arbitrary n, we did not
find a convenient method to classify the roots. Therefore, from now on, n = 4 and the roots αj satisfy (1.5).
Let P ′

4(Q, v) denote the set of polynomials P ∈ P4(Q, v) with distinct roots satisfying (1.5). In this paper, we
obtain an upper bound for the number of polynomials P ∈ P ′

4(Q, v).

Theorem 1. For any ε > 0 and any sufficiently largeQ, we have the estimate

#P ′
4

(
Q, v

)
< Q5−3v/2+ε, 0 � v � 1. (1.6)

Lith. Math. J., 60(1):1–8, 2020.
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2 Auxiliary statements

Let P ∈ P ′
4(Q, v) have complex distinct roots α1, α2, α3, α4. Let

|α1 − αi| = Q−ρi , 2 � i � 4, ρ2 � ρ3 � ρ4, (2.1)

and
|α3 − α4| = Q−ρ5 . (2.2)

Similar to other problems of the metric theory regarding polynomials, we assume that |a4(P )| � H(P ).
If the polynomial P does not satisfy the last condition, then the transformation S(x) = P (x + m) for some
0 � m � 4 can be performed followed by an inversion to obtain U(x) = x4S(1/x). Therefore this new
polynomial U(x) =

∑4
j=0 bjx

j satisfies |b4| � H(S) � H(P ). For more details, see [15]. If P satisfies
|a4(P )| � H(P ), then |αi| � c6, 1 � i � 4, and |αi − αj| � 2c6 for 1 � i < j � 4. Therefore ρi � ε1,
2 � i � 5, for any ε1 > 0 and any sufficiently large Q.

For a given number ε1 > 0, let T = [ε−1
1 ] + 1, where [a] is the integer part of a ∈ R. For a polynomial

P ∈ P4(Q, v), the real numbers ρi, i = 2, 3, 4, 5, were defined in (2.1). Also define the integers li by

li − 1

T
< ρi �

li
T
, i = 2, 3, 4, 5.

It is not difficult to show that the number of vectors l̄ = (l2, l3, l4, l5) is finite, depends only on ε1, and does
not depend on Q andH(P ).

In order for the polynomial P (x) to belong to the class P ′
4(Q, v), it is necessary and sufficient that the

inequality

ρ2 + 2ρ3 + 2ρ4 + ρ5 � v (2.3)

holds. Note that inequality (2.3) follows from (1.1), (1.5), (2.1), (2.2), and the triangle inequalities for the roots
of the polynomial P . For (2.3), the inequality

l2
T

+
2l3
T

+
2l4
T

+
l5
T

� v + 6ε1

is sufficient. By (1.1), (2.1), and (2.2) we have

ρ2 + 2ρ3 + 2ρ4 + ρ5 � 3. (2.4)

For the roots of P ∈ P4, we define the sets

S(αj) =
{
x ∈ R: |x− αj| = min

1�i�4
|x− αi|

}
, 1 � j � 4.

Lemma 1. Let α1 be a complex root of an integer polynomial P ∈ P4, and let x ∈ S(α1). Then

|x− α1| � min
2�j�4

(
24−j

∣∣P (x)
∣∣∣∣P ′(α1)

∣∣−1
j∏

k=2

|α1 − αk|
)1/j

for P ′(α1) �= 0.

Lemma 1 is proved in [10].
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Lemma 2. Fix δ > 0 and Q > Q0(δ). Suppose that the polynomials P (x), T (x) ∈ Pk(Q), k � 4, have the
same vector l̄ and have no common roots . Let I denote interval of length |I| = Q−γ with γ ∈ R+. If there
exists a real number τ > 0 such that for all x ∈ I ,

max
x∈I

(∣∣P (x)
∣∣,
∣∣T (x)

∣∣) < Q−τ ,

then

τ + 1 + 2

k∑

j=1

max(τ + 1− jγ, 0) < 2k + δ.

Lemma 2 can be proved similarly to Lemma 3 in [5]. In this case, we need to add the summands related to
the root α4.

To prove Theorem 1, we need to consider a generalization of Lemma 2 for the simultaneous approximations
of the polynomials on two intervals (see Lemma 3). We consider a new classification of the roots αi, 1 � i � 4,
of P ∈ P ′

4(Q) with respect to α1 (as before) and α3 simultaneously. We obtain

|α1 − α2| � |α1 − α3| � |α1 − α4|,
|α3 − α4| � |α3 − α2| � |α3 − α1|.

(2.5)

Let |α3 − α2| = Q−ρ6 and define the integer l6 by (l6 − 1)/T < ρ6 � l6/T . It is not difficult to see that
by (1.5)

ρ4 � ρ3 � ρ2, ρ3 � ρ6 � ρ5, (2.6)

where ρi, 2 � i � 5, are defined in (2.1)–(2.2). We also define the vector l̄′ = (l̄, l6). Define the class
P ′
4,l̄′

(Q, v) consisting of the polynomials P ∈ P ′
4(Q, v) corresponding to a vector l̄′.

Lemma 3. Fix δ > 0 and Q > Q0(δ). Suppose that the polynomials P (t), T (t) ∈ Pk(Q), k � 4, have the
same vector l̄′ and have no common roots in the rectangle I1 × I2, where |I1| = Q−γ1 and |I2| = Q−γ2 with
γj ∈ R+, j = 1, 2. Furthermore, let P (t) and T (t) satisfy the system of inequalities

max
x∈I1

(∣∣P (x)
∣∣,
∣∣T (x)

∣∣) < Q−τ1 , max
y∈I2

(∣∣P (y)
∣∣,
∣∣T (y)

∣∣) < Q−τ2 . (2.7)

Then for any δ > 0 and Q > Q0(δ), we have the inequality:

τ1 + τ2 + 2 + l2 + 2l3 + 3l4 + l5 < 2k + δ. (2.8)

The proof of Lemma 3 follows from the new classification (2.5) of the roots of polynomials, using inequal-
ities (2.6) and (2.7), and can be proved similarly to Lemma 2 in [8].

3 Proof of Theorem 1

Assume that estimate (1.6) does not hold, so that

#P ′
4(Q, v) � Q5−3v/2+ε. (3.1)

Consider two intervals I1, I2 ⊂ R with |I1| = Q−l2/T and |I2| = Q−l5/T . We will say that the polynomial P
belongs toM = I1× I2 if (α1, α3) ∈ M , where α1 and α3 are the roots of P in the ordering (1.5). From (3.1)
it follows that there exist rectangles I1 × I2 that contain at least

Δ = Q5−3v/2−l2/T−l5/T+ε

Lith. Math. J., 60(1):1–8, 2020.
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polynomials P ∈ P ′
4(Q, v) satisfying (2.7). Fix one of these rectangles, say M . Since #l̄′ � 1, there exists

a vector l̄′ satisfying (2.3) such that

#P ′
4,l̄′

(
Q, v,M

) � Q5−3v/2+ε−l2/T−l5/T+ε,

where P ′
4,l̄′

(Q, v,M) denotes the subset of P ′
4,l̄′

(Q, v) consisting of polynomials P belonging to M . Fix the
vector l̄′ and set

h = 5− 3v

2
− l2

T
− l5

T
+

ε

2
.

By (2.4) we have

l2
T

+
2l3
T

+
2l4
T

+
l5
T

� 3. (3.2)

From (3.2) we obtain that h > 0 for v � 4/3.
Expand the polynomial P ∈ P ′

4,l̄′
(Q, v,M) into its Taylor series in a neighbourhood of α1 to obtain

P (x) = P (α1) + P ′(α1)(x− α1)

+
1

2
P ′′(α1)(x− α1)

2 +
1

6
P ′′′(α1)(x− α1)

3 +
1

24
P (4)(α1)(x− α1)

4.

Estimating each term gives

∣∣P ′(α1)(x− α1)
∣∣ � |a4| · |α1 − α2| · |α1 − α3| · |α1 − α4| · |x− α1|
� Q1−ρ2−ρ3−ρ4−l2/T < Q1−2l2/T−l3/T−l4/T+3ε1 ,

∣∣P ′′(α1)(x− α1)
2
∣∣ � 6|a4|max

(|α1 − α2||α1 − α3|, |α1 − α2||α1 − α4|, |α1 − α3||α1 − α4|
)

× |x− α1|2
< 6Q1−2l2/T−l3/T−l4/T+2ε1 ,

∣∣P ′′′(α1)(x− α1)
3
∣∣ � 18|a4|max

(|α1 − α2|, |α1 − α3|, |α1 − α4|
) · |x− α1|3

< 18Q1−3l2/T−l4/T+ε1

∣∣P (4)(α1)(x− α1)
4
∣∣ � 24|a4||x− α1|4 � 24Q1−4l2/T

for x ∈ I1. Thus
∣∣P (x)

∣∣ � Q1−2l2/T−l3/T−l4/T+3ε1 , x ∈ I1.

Also develop the polynomial P as Taylor series on the interval I2 at the point α3 and obtain the upper bounds
for all terms in the series. Thus we obtain

∣∣P (y)
∣∣ � Q1−2l5/T−l3/T−l6/T+3ε1 , y ∈ I2.

Further, for Qh polynomials P , we use the Dirichlet box principle. We will assume that the fractional part
of h does not exceed ε1. If the last condition is not satisfied, then we rewrite h as h = [h] + {h}. As a result,
using the numberQ[h], we reduce the degree of polynomials, and using the numberQ{h}, we reduce the height
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of polynomialsRj+1(t) = Pj+1(t)−P1(t), j = 1, 2, . . . , as in [5]. Therefore the new polynomialsRj satisfy

∣∣Rj(x)
∣∣ � Q1−2l2/T−l3/T−l4/T+3ε1 , x ∈ I1,

∣∣Rj(y)
∣∣ � Q1−2l5/T−l3/T−l6/T+3ε1 , y ∈ I2,

(3.3)

H(Rj) � Q1−ε1 , degRj � 4−
(
5− 3v

2
− l2

T
− l5

T
+

ε

2
− ε1

)
. (3.4)

If there exist two polynomialsR1 and R2 with no common roots, then Lemma 3 can be applied. The values of
τ1 and τ2 are found from estimates (3.3) and (3.4). Thus

τ1 =
−1 + 2l2/T + l3/T + l4/T − 3ε1

1− ε1
and τ2 =

−1 + 2l5/T + l3/T + l6/T − 3ε1
1− ε1

.

The left-hand side of (2.8) is equal to

3l2/T + 4l3/T + 4l4/T + 3l5/T + l6/T − 6ε1
1− ε1

.

This leads to a contradiction in (2.8) for v � 1 and δ � ε− 2ε1.
If, among polynomials Rj(t), there exist no two polynomials without common roots, then the polynomials

Rj(t) are reducible. It is not difficult to see that degRj � 2 for v � 1. Thus the polynomials Rj(t) are
decomposed into the product of two linear polynomials. Again, as, for example, in [4], we will use Lemma 2
to get a contradiction.
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