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Abstract. Computational fluid dynamics (CFD) is routinely used for numerically predicting cardiovascular-system medical 

device fluid flows. Most CFD simulations ignore the suspended cellular phases of blood due to computational constraints, 

which negatively affects simulation accuracy. A graphics processing unit (GPU) lattice Boltzmann-immersed boundary 

(LB-IB) CFD software package capable of accurately modelling blood flow is in development by the authors, focusing on 

the behaviour of plasma and stomatocyte, discocyte and echinocyte red blood cells during flow. Optimised memory 

ordering and layout schemes yield significant efficiency improvements for LB GPU simulations. In this work, comparisons 

of row-major-ordered Structure of Arrays (SoA) and Collected Structure of Arrays (CSoA) memory layouts with a Morton-

ordered SoA memory layout for the LB plasma solver are presented, with speedups of up to 20% achieved against the base 

row-major-ordered SoA model. Further investigation is recommended on whether these efficiency increases remain for 

larger mesh densities in comparison to CSoA layouts, and hybrid Morton ordering schemes could alleviate any limitations 

with dimension sizing. The current optimisations are deemed useful for future blood simulation validation work involving 

cubic LB domains, such as optical tweezers tests and in-plane and out-of-plane shear flow. 

INTRODUCTION 

The characteristics of blood flow must be taken into account when designing medical devices for implantation in 

the cardiovascular system. Computational fluid dynamics (CFD) has matured to the point where it is now routinely 

used for numerically predicting cardiovascular-system fluid flows.1 Traditionally, blood has been treated as a 

continuum with the suspended cellular phases of blood wholly ignored. The omission of the cellular elements of blood 

in CFD analyses has been due to the lack of knowledge about the structure of these cells, the lack of a suitable fluid 

flow solver to handle a heterogeneous fluid, and the prohibitive computational resources required to predict the motion 

of a fluid containing an enormous number of suspended cells. Advancements in simulation accuracy are highly 

desirable to avoid issues with sub-optimal medical device design. Therefore, an efficient solver incorporating all 

aspects of blood flow - plasma and cellular phases - is required. The deformation and orientation of red blood cells 

(RBCs) is one of the primary cellular factors affecting blood viscosity at high shear rates or strains,2 and previous 

works have examined RBCs in flow in both 2D and 3D using CFD and developed RBC structural models.3,4 A 3D 

graphics processing unit (GPU) lattice Boltzmann-immersed boundary (LB-IB) CFD blood simulation software 

package is in development by the authors which incorporates an in-house state-of-the-art RBC spring particle 

structural model allowing for stomatocyte, discocyte and echinocyte RBCs.5 The LB method was chosen due to its 

amenity to parallelisation and its ability to simulate mesoscopic physics and multiphase flows in complex geometries.6 

The performance of the GPU LB component of the CFD package depends on memory access patterns, including 

memory ordering and memory layout. Comparisons of GPU data access optimisation techniques for the LB method 

have been previously completed with application to blood simulation in arterial geometries by Herschlag et al.,7 with 

lexicographic and two-grid memory ordering discussed and Structure of Arrays (SoA) and Collected Structure of 

Arrays (CSoA) memory layouts classified. The study focused on complex geometries where lattice nodes in a domain 

can be either fluid or solid. Semi-direct addressing (where there is a reduction in stored solid node information) with 



a CSoA layout and lexicographic ordering was deemed the most efficient setup. Two-grid ordering on GPUs (which 

involves Morton ordering where applicable8,9) was also examined, which has been shown to be effective.10 Morton 

order space filling curves have even been used for IB memory ordering.11 For the LB-IB solver in development by the 

authors, any solid nodes will be handled by the IB component. Therefore, this work aims to examine the optimisation 

techniques available for the LB-IB CFD blood simulation software package in development by first comparing the 

performance of SoA and CSoA memory layouts for row-major-ordered 3D LB simulations and then comparing the 

performance of row-major-ordered and Morton-ordered 3D LB simulations. 

METHODOLOGY 

The simulations involved laminar flow around a stationary sphere12 for a Reynolds number of 21.1 and utilised the 

Bhatnagar–Gross–Krook (BGK) D3Q19 LB model.6 The boundary conditions used at the back, bottom, front and top 

of the domain were virtual node periodic conditions. The boundary conditions used for the sphere surface were 

halfway bounce-back implementing no-slip velocity conditions. Zou-He boundary conditions were used to enforce 

the specified velocity in the x direction at all nodes at the inlet and were also used at the outlet to specify zero gradient 

pressure conditions.13 The row-major SoA implementation was first validated with final drag coefficient errors of 2%. 

For comparison between the row-major SoA, row-major CSoA and Morton SoA implementations, the three codes 

used were identical apart from using Eqs. (1) and (2) to generate the indexes in the row-major SoA and CSoA codes 

respectively7 and using bit interleaving of the 32-bit x, y and z integer coordinates to generate the indexes in the 

Morton code (with further details available in the Libmorton C++ library14): 

 

𝑓_𝑆𝑜𝐴(𝑙, 𝑞) = 𝑙 + 𝑞 × 𝑁                (1) 

 

𝑓_𝐶𝑆𝑜𝐴(𝑙, 𝑞) = (⌊
𝑙

𝑠
⌋ × 𝑄 + 𝑞) × 𝑠 + 𝑙 mod 𝑠              (2) 

 

where for 2D, 𝑙 = 𝑥 +  𝑦 × 𝑁𝑥, 𝑞 is the given distribution element or lattice vector, 𝑄 is the total number of lattice 

vectors per node, 𝑁 =  𝑁𝑥 × 𝑁𝑦 where 𝑁𝑥 and 𝑁𝑦 are the total number of nodes in x and y respectively, and 𝑠 is the 

stride length. Note that for 3D simulations, 𝑙 = 𝑥 +  𝑦 × 𝑁𝑥 + 𝑧 × 𝑁𝑥 × 𝑁𝑦 and 𝑁 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧, with 𝑧 

representing the additional dimension. Figure 1 shows sample SoA and CSoA Stride 2 layouts for three adjacent 2D 

D2Q9 nodes (with the stride length of two showcasing the shift to the next vector direction after two elements): 

 

 
 

FIGURE 1. Three adjacent 2D D2Q9 nodes with SoA and CSoA Stride 2 layouts respectively underneath 

 

For consistency, the codes were all compiled using the same compilation flags. Also, the results were only 

compared for the in-house solver without comparison to results from literature due to the general difficulty in 

establishing if other optimisations were present in different code implementations. Finally, the simulations were all 

stopped after 1000 iterations and executed in one session on one node on the Irish Centre for High-End Computing 

(ICHEC) supercomputer Kay with an NVIDIA Tesla V100 and CUDA 10.1.243. A sample 2D D2Q9 LB nodal layout6 

is shown in Fig. 2 and can be used to effectively explain the different memory orders implemented. 

 

 
 

FIGURE 2. Row-major (left) and Morton (right) memory ordering for a sample 8 x 8 node 2D D2Q9 LB simulation 



The node with green lattice vectors shown in Fig. 1 is representative of a single D2Q9 lattice node designated to 

have (𝑥,𝑦) position (1,1). Each node has nine (Q9) array elements associated with the relevant lattice vectors. Taking 

the LB streaming process as an example, lattice vectors from adjacent cells around node (1,1) are read and then written 

to the relevant array elements of node (1,1). For large mesh densities, the distance between the relevant elements in 

memory becomes large and there is a reduction in performance due to the increase in memory transactions. Memory 

access is coalesced when reads or writes can be combined into a single global memory transaction.15 For example, 

taking a larger 128 x 128 nodal grid and taking the same node (1,1), the lattice vector data to be copied from nodes 

above and below the node of interest involves threads reading from and writing to elements separated by at least the 

row width of 128. In comparison, the maximum distance for the Morton-ordered thread access in this case is nine 

elements, which is a considerable improvement and reduces the number of memory transactions required. 

 

RESULTS 

The results obtained show that the Morton-ordered SoA simulations yielded better performance in all comparisons. 

An example visualisation of the velocity magnitudes for the converged test case and a graphical comparison of the 

wall times is shown in Fig. 3. A point of interest is the choice of stride length for the CSoA layout. The row-major 

SoA outperformed the row-major CSoA layout for the first two simulations; this was due to the chosen stride length 

of 64 not being small enough to offset the increased CSoA index calculation overhead in the kernels, and in the case 

of the first simulation, equalling the row length which resulted in the same layout as the SoA. The CSoA layout 

performed better than the SoA layout for the last simulation with a larger mesh density as expected, but the wall times 

always remained larger than the wall times for the Morton-ordered SoA simulations. This would indicate that the 

CSoA stride length should be optimised for smaller mesh densities in particular. 
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FIGURE 3. (a) Example of final velocity magnitudes (m/s) for converged simulations and wall times after 1000 iterations for 

node sets (b) 64 x 64 x 64 (c) 128 x 128 x 128 and (d) 256 x 256 x 256 

Table 1 shows all wall times that were collected for all simulations. 

 
TABLE 1. Wall time comparison after 1000 iterations 

Nodes in x, y & z Row-Maj. SoA (s) Row-Maj. CSoA (s) Morton SoA (s) 

64  0.52 0.58 0.50 

128 3.51 3.84 3.33 

256 29.67 26.94 23.84 

 

Table 2 shows the percentage speedup of the Morton-ordered simulations, with the highlight being a speedup of 

nearly 20% over the original row-major-ordered SoA simulation for the final mesh density. 

 

 

 

 

 



TABLE 2. Wall time speedup for Morton-ordered SoA simulations 

Nodes in x, y & z Morton SoA vs. Row-Maj. SoA 

(% Speedup) 

Morton SoA vs. Row-Maj. CSoA 

(% Speedup) 

64  2.5  13.8 

128 5.2 13.4 

256 19.7 11.5 

 

There were some caveats. The Morton-ordered and comparison simulations required that each dimension node 

size be a power of two and that the node grid must be square in 2D or cubic in 3D. A hybrid Morton scheme would 

be a possible solution, where batches of nodes would be Morton ordered and the remaining nodes either row- or 

column-major ordered. Referring to column-major ordering, this could also be tested against Morton ordering as 

CUDA documentation mentions advantages in relation to memory coalescing over row-major ordering. Morton-

ordered CSoA memory layouts could also be implemented and compared with the current results. Finally, extensive 

profiling should be carried out using the NVIDIA Visual Profiler to better analyse performance and detect non-

coalesced global loads and stores.15 

CONCLUSIONS 

The main conclusion from this study was that 3D Morton-ordered LB simulations are efficient when used for cubic 

domains with significant relative decreases in wall time with increasing mesh density. Future work on whether the 

increase in efficiency remains for very large mesh densities is recommended, particularly in comparison to 

lexicographically-ordered simulations with CSoA layouts. Hybrid Morton ordering schemes could yield further 

performance increases and alleviate limitations. Also, CSoA memory layouts are efficient but depend on the choice 

of stride length, especially for smaller mesh densities. Future simulation validation test cases involving cubic LB 

domains can use the current optimisations, including RBC optical tweezers tests and in-plane (wheel configuration) 

and out-of-plane (tumbling, tank treading and swinging) shear flow. 
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