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Chapter 1

FINANCIAL FORECASTING USING THE

KOLMOGOROV-FELLER EQUATION

JONATHAN BLACKLEDGE

Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland, jonathan.blackledge@dit.ie

MARC LAMPHIERE

Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland, marclamphier@gmail.com

KIERAN MURPHY

TradersNow Limited, 15 Cabinteely Way, Cabinteely, Dublin 18, Ireland, kieran@tradersnow.com

SHAUN OVERTON

2665 Villa Creek Dr, Suite 125, Dalla, Texas 75234, USA, soverton@onestepremoved.com

Abstract An approach to analysing a financial time series using the Kolmogorov-
Feller Equation is considered, in particular, the Generalised Kolmogorov-
Feller Equation (GKFE), subject to variations in the Stochastic Volatil-
ity. Using the Mittag-Leffler memory function, we derive an expression
for the Impulse Response Function associated with a short time window
of data which is then used to derive an algorithm for computing a new
index using a standard moving window process. It is shown that appli-
cation of this index to financial time series, subject to a low volatility
condition, correlates with the start, direction and end of a trend depend-
ing on the sampling rate of the time series and the look-back window or
‘period’ that is used. An example of this is provided in the paper using
MetaTrader4.

Keywords: Generalised Kolmogorov-Feller Equation, Impulse Response Function,
MetaTrader4, Mittag-Leffler Memory Function, Time Series Analysis,
Trend Analysis, Stochastic Volatility.
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1. Introduction
This paper follows the work of Blackledge et al., 2012, extending the

material to include an implementation of the results using MetaTrader4.
Beta tested MetaTrader4 functions are provided for those readers inter-
ested in implementing the approach considered, analysing other financial
time series data and extending the algorithms further.

Price models involve the derivation and solution of a variety of stochas-
tic differential and partial differential equations. Conider the ‘standard
model’ for the price of a stock as a function of time s(t) given by (e.g.
Blackledge, 2010)

d

dt
s(t) = µs(t) + σs(t)u(t) (1.1)

where µ is the ‘Drift’, σ is the ‘Volatility’ and u(t) is a stochastic func-
tion. This model is based on the idea that prices appear to be the
previous price plus some random change and that these price changes
are independent, i.e. asset price changes appear to be random and inde-
pendent, prices being taken to follow some random walk-type behaviour.
This is the basis for including a stochastic function u(t). However the
size of price movements also depends on the size of the price itself. The
model is therefore revised to include this effect, the stochastic term u(t)
being replaced by u(t)s(t) where σ determines the degree of randomness
taken to influence a price change. In general, µ and σ vary with time,
and, in the context of equation (1.1), σ(t) is referred to as the ‘Stochas-
tic Volatility’, e.g. Lamoureux and Lastrapes, 1993, Wiggins, 1987 and
Melino and Turnbull, 1990. The drift function µ(t) tends to vary over
longer periods of time reflecting the long term trends associated with a
price index.

In principle, u(t) could be any stochastic function with statistical
behaviour conforming to a range of Probability Density Functions. A
conventional model is to assume that the log price changes are Gaussian
distributed so that u(t) is taken to be a zero-mean Gaussian distributed
function. If this function is taken to have a fixed standard deviation of
1, then the volatility becomes a measure of the standard deviation, at
least, for a (zero-mean) Gaussian model. The stock price model given
by equation (1) then provides a method for estimating the volatility σ
in terms of a lower bound as discussed in the following section.

In this paper, we consider a solution to the Generalised Kolomogorov-
Feller Equation to model the stochastic behaviour of a financial time
series. By defining an Impulse Response Function which is based on a
parameter associated with the Mittag-Leffler memory function used to
construct the KFE, we consider an algorithm for analysing the trends of
the time series.
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2. Evaluation of the Stochastic Volatility
Consider the rate equation

f(t) = µ+ σu(t)

where

f(t) =
1

s(t)

d

dt
s(t) =

d

dt
ln s(t)

and µ and σ are taken to be constant. We first obtain an estimate of
the Drift by noting that, if the mean of u(t) is approximately zero over
t ∈ [0, T ], then

T∫
0

f(t)dt =

T∫
0

µdt+ σ

T∫
0

u(t)dt ∼ µT

so that

µ ∼ 1

T

T∫
0

f(t)dt (1.2)

To obtain an estimate for the volatility, we now consider the case when
the stochastic function u(t) is a phase only function, i.e. given that

ũ(ω) =

∞∫
−∞

u(t) exp(−iωt)dt

where ω is the (angular) frequency, we consider

ũ(ω) = A exp[iθ(ω)] (1.3)

where the amplitude spectrum A is taken to be a constant for all values of
ω. We also consider u(t) to be a band-limited function ω ∈ [−Ω/2,Ω/2]
with bandwidth Ω and a function of compact support t ∈ [−T/2, T/2].
Using Minkowski’s identity for Euclidean norms,

‖f(t)‖2 ≤ ‖µ‖2 + ‖σu(t)‖2

where

‖x(t)‖2 :=

(∫
| x(t) |2 dx

) 1
2

so that we can write

σ‖u(t)‖2 ≥ ‖f(t)‖2 − µ
√
T
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where µ is given by equation (1.2). Using Parseval’s Theorem (Rayleigh’s
Energy Theorem), the condition expressed by equation (1.3) allows us
to write

T/2∫
−T/2

| u(t) |2 dt =
1

2π

Ω/2∫
−Ω/2

| ũ(ω) |2 dω =
ΩA2

2π

We can therefore consider the equation

σmin =
1

A

√
2π

Ω
(‖f(t)‖2 − µ

√
T ) (1.4)

which yields an expression for the lower bound of the volatility.

3. Numerical Computation of the Stochastic
Volatility

Consider a discrete signal denoted by the array fn, n = 1, 2, 3, ..., N
where a uniform sampling interval of ∆t is assumed. In this case, the
discrete version of equation (1.4) becomes

σmin =
1

A

√
2π

Ω
(
√

∆t‖fn‖2 − µ
√
T )

where we invoke the usual definition for a vector (Euclidean) norm, i.e.

‖fn‖2 :=

(
N∑
n=1

| fn |2
) 1

2

, µ =
∆t

T

N∑
n=1

fn

The sampling interval ∆t of fn is related to the sampling interval ∆ω of
the Discrete Fourier Transform of fn by the equation

∆t∆ω =
2π

N

and since the bandwidth of the discrete spectrum of fn is N∆ω is is
clear that ∆t = 2π/Ω. Thus, given that the support of the signal is
T = N∆t, we note that

T =
2πN

Ω

and therefore obtain

σmin =
2π

AΩ
(‖fn‖2 −

√
Nµ), µ =

1

N

N∑
n=1

fn



Financial Forecasting using the Kolmogorov-Feller Equation 5

The scaling constant 2π/(AΩ) can then be used to define a re-scaled
Stochastic Volatility given by

σ̂ := σmin
AΩ

2π

thereby yielding the expression

σ̂ = ‖fn‖2 −
√
Nµ

Writing this result explicitly in terms of the price value sn we obtain the
equation

σ̂ =

(
N−1∑
n=1

∣∣∣∣ln(sn+1

sn

)∣∣∣∣2
) 1

2

− 1√
N − 1

N−1∑
n=1

ln

(
sn+1

sn

)
(1.5)

To compute the ‘Stochastic Volatility’ σm, N is taken to determine the
size of the data sampling window or ‘look-back’ window which is moved
along the time series one element at a time so that we can write

σ̂m =

(
N−1∑
n=1

∣∣∣∣ln(sm+n+1

sm+n

)∣∣∣∣2
) 1

2

− 1√
N − 1

N−1∑
n=1

ln

(
sm+n+1

sm+n

)
(1.6)

Equation (1.5) may be compared with other estimates for the Stochastic
Volatility such as the Maximum Likelihood (ML) estimate given by,
Stein and Stein, 1991

σ̂2
ML =

1

N − 1

N−1∑
n=1

[
ln

(
sn+1

sn

)]2

− 1

(N − 1)2

[
ln

(
sN
s1

)]2

The phase only condition used to derive equations (1.5) and (1.6) is
equivalent to modelling the stochastic function u(t) in terms of a random
walk in the (complex) Fourier domain where the amplitude of each step
is the same.

4. Derivation of the Generalised
Kolmogorov-Feller Equation

For an arbitrary Characteristic Function P (k) with Probability Den-
sity Function (PDF) p(x), Einstein’s evolution equation is, Einstein,
1905

u(x, t+ τ) = u(x, t)⊗x p(x)
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where u(x, t) is a ‘density function’ representing the concentration of a
canonical ensemble of particles undergoing elastic collisions. Consider a
Taylor series for the function u(x, t+ τ), i.e.

u(x, t+ τ) = u(x, t) + τ
∂

∂t
u(x, t) +

τ2

2!

∂2

∂t2
u(x, t) + ...

For τ << 1

u(x, t+ τ) = u(x, t) + τ
∂

∂t
u(x, t)

and we obtain the ‘Classical KFE’ (Kolmogorov, 1931, Feller, 1957)

τ
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) (1.7)

Equation (1.7) is based on a critical assumption which is that the time
evolution of the field u(x, t) is influenced only by short term events and
that longer term (historical) events have no influence on the behaviour
of the field, i.e. the ‘system’ described by equation (1.7) has no ‘mem-
ory’. This statement is the physical basis upon which we introduce the
condition τ << 1 thereby allowing the Taylor series expansion of the
u(x, t + τ) to be made to first order. The question then arises as to
how longer term temporal influences can be modelled, other than by
taking an increasingly larger number of terms in the Taylor expansion
of u(x, t+ tau) which is not of practical analytical value. For arbitrary
values of τ ,

τ
∂

∂t
u(x, t) +

τ2

2!

∂2

∂t2
u(x, t) + ... = −u(x, t) + u(x, t)⊗x p(x)

We can model the effect on a solution for u(x, t) of the series on the
left hand side of this equation in terms of a ‘memory function’ m(t) and
write

τm(t)⊗t
∂

∂t
u(x, t) = −u(x, t) + u(x, t)⊗x p(x) (1.8)

where ⊗t is taken to denote the causal convolution integral over t. This
is the Generalised KFE (GKFE) which reduces to the Classical KFE
when

m(t) = δ(t)

Note that for any memory function for which there exists a function or
class of functions of the type n(t), say, such that

n(t)⊗t m(t) = δ(t)
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then we can write equation (1.8) in the form

τ
∂

∂t
u(x, t) = −n(t)⊗t u(x, t) + n(t)⊗t u(x, t)⊗x p(x) (1.9)

where the Classical KFE is recovered when n(t) = δ(t).
Any solution obtained to the GKFE will be dependent upon the choice

of memory function m(t) used. There are a number of choices that can
be considered, each or which is taken to be a ‘best characteristic’ of the
stochastic system in terms of the influence of its time history. However,
it may be expected that the time history of physically significant random
systems is relatively localised in time. This includes memory functions
such as the Mittag-Leffler function, Olver and Maximon, 2010

m(t) =
1

Γ(1− β)tβ
, 0 < β < 1

where

n(t) =
1

Γ(β − 1)t2−β

given that

∞∫
0

exp(−st)
Γ(β)t1−β

dt =
1

sβ
and

∞∫
0

δ(t) exp(−st)dt = 1

5. Solution to the GKFE using the Green’s
Function Method

Consider equation (1.9) which can be written in the form

τ
∂

∂t
u(x, t) + u(x, t) = u(x, t)− n(t)⊗t u(x, t)

+n(t)⊗t u(x, t)⊗x p(x)

so that the Green’s function solution is given by

u(x, t) = g(t)⊗t u(x, t)− g(t)⊗t n(t)⊗t u(x, t)

+g(t)⊗t n(t)⊗t u(x, t)⊗x p(x) (1.10)

where the Green’s function is given by

g(t) =
1

τ
exp(−t/τ), t > 0

which is the solution to

τ
∂

∂t
g(t− t0) + g(t− t0) = δ(t− t0)
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and we assume the initial conditions u(x, t = 0) = 0 and g(t = t0) = 0.
We can now analyse this solution in Fourier-Laplace space by taking
the Fourier transform and the Laplace transform of equation (1.10) and
using the convolution theorems for the Fourier and Laplace transform,
respectively, to obtain

¯̃u(k, s) = ḡ(s)¯̃u(k, s)− ḡ(s)n̄(s)¯̃u(k, s) + ḡ(s)n̄(s)¯̃u(k, s)p̃(k) (1.11)

where

¯̃u(k, s) =

∞∫
0

∞∫
−∞

u(x, t) exp(−ikx)dx exp(−st)dt

ḡ(s) =

∞∫
0

g(t) exp(−st)dt, n̄(s) =

∞∫
0

n(t) exp(−st)dt

and

p̃(k) =

∞∫
−∞

p(x) exp(−ikx)dx

From equation (1.11) it is clear that we can write

¯̃u(k, s) = − ḡ(s)

1− ḡ(s)
n̄(s)¯̃u(k, s) +

ḡ(s)

1− ḡ(s)
n̄(s)¯̃u(k, s)p̃(k)

= − n̄(s)

τs
¯̃u(x, t) +

n̄(s)

τs
¯̃u(k, s)p̃(k)

given that ḡ(s) = (1 + τs)−1 and thus we obtain the equation

¯̃u(k, s) = h̄(s)¯̃u(k, s)p̃(k) (1.12)

where

h̄(s) =
n̄(s)

τs+ n̄(s)

or, upon inverse transformations

u(x, t) = h(t)⊗t u(x, t)⊗x p(x) (1.13)

with

h(t)↔ n̄(s)

τs+ n̄(s)

where ↔ denotes the Laplce transformation, i.e. mutual transformation
from t-space to s-space.
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Consider the iteration of equation (1.13) defined by

un+1(x, t) = h(t)⊗t un(x, t)⊗x p(x) (1.14)

for an initial solution u0(x, t) where n = 1, 2, ..., N The equivalent iter-
ation in Fourier-Laplace space is, from equation (1.12)

¯̃un+1(k, s) = h̄(s)¯̃un(k, s)p̃(k) (1.15)

with initial solution ¯̃u0(k, s). From equation (15) it is clear that, after
N iterations, we can write

¯̃uN (k, s) = [h̄(s)]N [p̃(k)]N ¯̃u0(k, s)

so that upon inverse Fourier-Laplace transformation, equation (1.14)
becomes

uN (x, t) =

N∏
j=1

⊗ p(x)

N∏
k=1

⊗ h(t)⊗x ⊗tu0(x, t) (1.16)

where
N∏
j=1

⊗ f(t) ≡ f(t)⊗t f(t)⊗t f(t)⊗t ...

denoting the N th convolution of f(t). The convergence criterion required
for the iteration defined by equation (1.14) is given in the Appendix A.

6. Mittag-Leffler Impulse Response Function
Form equation (1.16), if the initial solution is an impulse (i.e. u0(x, t) =

δ(x)δ(t) then the Impulse Response Function (IRF), denoted by r(x, t),
is given by

r(x, t) =
N∏
j=1

⊗ p(x)
N∏
k=1

⊗ h(t)

with ‘transfer function’

¯̃r(k, s) = [h̄(s)p̃(k)]N

For a memory function m(t) modelled by the Mittag-Leffler function (for
0 < β < 1)

m(t)↔ 1

s1−β , h̄(s) =
1

1 + τsβ
∼ 1

τsβ

so that

h(t) ∼ 1

τΓ(β)t1−β
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Similarly, suppose we consider a Mittag-Leffler PDF of the form

p(x) =
1

Γ(1− γ) | x |γ
, 0 < γ < 1

so that the IRF becomes

r(x, t) ∼
N∏
j=1

⊗
1

Γ(1− γ) | x |γ
N∏
k=1

⊗
1

τΓ(β)t1−β

Note that, from Appendix A, if ‖h(t)‖ × ‖p(x)‖ << 1 then r(x, t) ∼
p(x)h(t), and, in the case of the Mittag-Leffler function used here, this
will occur when τ >> 1. Also, note that r(x, t) → 0 as γ → 1 and as
β → 0.

7. Trend Analysis using MetaTrader4
On the basis of the results discussed in the previous section, we con-

sider a short time series model given by (for an arbitrary PDF p)

û(t) ≡
∞∫
−∞

p(x)h(t)dx =
a

t1−β
, β > 0

where a is a scaling constant. This model represents the IRF associated
with a random scaling fractal signal u(t), Blackledge, 2010. For the
discrete case when ûn ≡ û(tn) (for n = 1, 2, ..., N) is taken to represent
a window of data taken from an input data steam,

ûn = atαn, tn > 0

where α = β − 1. Estimates of the parameters a and α are then chosen
to minimise the error function

e(a, α) = ‖ ln ûn − lnun‖22 ≡
N∑
n=1

(ln ûn − lnun)2

where un is data which is taken to be normalised, i.e. ‖un‖∞ = 1.
Differentiating with respect to A = ln a and α, it is trivial to show that

α =

N∑
n=1

lnun
N∑
n=1

ln tn −N
N∑
n=1

lnun ln tn(
N∑
n=1

ln tn

)2

−N
N∑
n=1

(ln tn)2

(1.17)
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and

a = exp


N∑
n=1

lnun − α
N∑
n=1

ln tn

N


given that

∂e

∂α
= 0 and

∂e

∂A
= 0

Note that in general, α = β − 1) may be greater than (for β > 1) or
less than (for 0 < β < 1) zero thereby providing a measure of any (long
term) ascending or descending trends in the data un, respectively. An
example of this characteristic, coupled with the corresponding Stochas-
tic Volatility of the same financial times series is given in Figure 1.1,
the version of Metatrader4 used for this application being available from
Alpari Limited, Alpari, 2012. This figure shows the results of comput-
ing the Stochastic Volatility using equation (1.6) and the α-index using
equation (1.17) for daily sampled ‘Gold Spot’ data (XAGUSD, Daily)
from 29 August to 20 September, 2012. This figure shows a window of
data over which there are both downward and upward trends of roughly
equal range and rate. Note that the Stochastic Volatility decays over the
latter upward trend when the XAUUSD, Daily increases from approxi-
mately 1573 (on 25 July, 2012) to 1772 (on 1 October, 2012) USD/oz.
This result is typical of observations indicating that an increase in the
value of the α-index coupled with a decrease in the volatility provides
an appropriate ‘investment signature’.

A further example is given in Figure 1.2 which shows the α-index, and,
as a comparator, the Lyapunov exponent λ computed via the equation

λ =
1

N

N∑
i=1

log

∣∣∣∣un+1

un

∣∣∣∣ (1.18)

for EUA (European Union Allowance) Carbon Dioxide Emissions using
hourly sampled data (EUA, H1) from 17 August to 5 October, 2012. It
is noted that the Lyaponuv exponent exhibits similar behaviour to the
α-index but that the latter index is smoother (for the same period used).

8. Conclusion
Compared to equations such as the Classical Diffusion and Fractional

Diffusion Equations, Gorenflo et al., 2000, the GKFE given by equation
(1.8) represents a more accurate model for a density function describing
random motion that conforms to Einstein’s evolution equation. We have



12

Figure 1.1. The Gold Spot Price (XAUUSD, Daily) from 27 January to 1 October,
2012 (top window), the Stochastic Volatility (centre window) computed using equa-
tion (1.6) for a period of 50 days and the α-index (lower window) computed using
equation (1.17) also for a period of 50 days.

Figure 1.2. European Union Allowance CO2 emissions (EUA, H1) from 17 August
to 5 October, 2012 (top window), the Lyapunov exponent (centre window) computed
using equation (1.18) for a period of 30 and the α-index (lower window) using equation
(1.17) also computed for a period of 30.

considered the Green’s function solution of the GKFE as a model for a
financial time series (or a derived index). The time dependence of this
solution depends upon the memory function used to model the higher
order terms in the Taylor series expansion of the evolution equation, and,
in this paper, we have used the Mittag-Leffler memory function. It has
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been shown that this choice provides a temporal solution that scales at
tα where α = β− 1, 0 < β < 1. For β > 0 the parameter α provides an
index that identifies the start, direction and end of a trend depending on
the position in time where the polarity of α changes from being positive
(indicating an upward trend) to negative (indicating a downward trend).
Coupled with knowledge of the Stochastic Volatility being relative low,
this index therefore provides a quantitative measure for implementing a
trading strategy that is predicating on forecasting the type and extent
of a trend. For readers interested in further evaluating this approach
to trend analysis, the MetaTrader4 .mq4 modules used to obtain the
results given in the previous section are available from MT4 Indicators
URL, 2012.

APPENDIX 1.A: Condition for Convergence of Equa-
tion (1.14)

Consider the error function εn(x, t) at any iteration n so that un(x, t) = u(x, t) +
εn(x, t) From equation (1.15) we can then write

¯̃εn+1(k, s) = h̄(s)p̃(k)¯̃εn(k, s)

so that
¯̃εn(k, s) = [h̄(s)p̃(k)]n¯̃ε0(k, s)

and it is clear that, since we require ¯̃εn → 0 and n→∞, [h̄(s)p̃(k)] < 1 ∀(k, s). The
condition for convergence therefore becomes

‖h̄(s)p̃(k)‖ ≤ ‖h̄(s)‖ × ‖p̃(k)‖ < 1

or, for Euclidian norms, and, using Rayleigh’s theorem,

‖h̄(s)‖2 × ‖p(x)‖2 <
1√
2π

In (k, t)-space

ε̃n(k, t) =

n∏
k=1

⊗ h(t)[p̃(k)]n ⊗t ε̃0(k, t)

so that, using Hölder’s inequaility

‖ε̃n(k, t)‖ ≤ ‖
n∏

k=1

⊗ h(t)[p̃(k)]n‖ × ‖ε̃0(k, t)‖

≤ ‖h(t)‖n × ‖p̃(k)‖n × ‖ε̃0(k, t)‖
and the condition for convergence becomes

‖h(t)‖2 × ‖p(x)‖2 <
1√
2π
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