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ABSTRACT: 
 
The current trend in semiconductor manufacturing is characterized by expanding product variety, 
decreasing lead times from order to delivery, exacting standards of quality, and competitive prices. 
One possible means of achieving this is in the form of increased flexibility. Providing flexibility is 
typically an expensive proposition so, industrial engineers aim to provide more economic approaches 
to enable flexible manufacturing cells and related equipment to operate appropriately in an efficient 
manner. It is essential to characterize these tools in detail before the production plans are finalized. 
Using state-of-the-art computer simulation, a generic model of photolithography tools has been 
developed. The model examines the impact of changing product volumes, buffer size, product 
sequence and product-mix on performance criteria, e.g. throughput time. The high investment cost of 
flexible manufacturing cells justifies the use of computer simulation support to maintain high system 
performance and reduce risk by predicting the system behavior under any feasible production 
schedule. Simulation results presented in a Taguchi experimental design framework offer a robust 
methodology to gain quick insights into the behavior of selected parameters within flexible 
manufacturing system environments. The developed model has been evaluated and found to be 
relatively more effective than simplified deterministic approaches when measured against actual 
production.   
 
KEY WORDS:    Flexible Manufacturing, Simulation, Photolithography, Semiconductor 
Manufacturing, Taguchi Experimental Design. 
 
 
1. INTRODUCTION  
 
Semiconductor manufacturing is one of the most complex manufacturing systems in terms of 
technology and procedure. Along with increasing market pressures, manufacturing systems face new 
challenges to survive and grow in the marketplace. In an attempt to cope with such multifaceted 
problems, new technologies advocate increased automation and flexibility. Flexible manufacturing 
systems (FMS) are the key to success coping with the market changes in an efficient and effective 
manner. It is worth mentioning that 90% (if not more) of semiconductor manufacturing plants are 
FMSs. The high risk in terms of lost/delayed production means that many scheduling problems remain 
unsolved in FMS. Therefore, one should consider the implications of optimizing the major production 
parameters within the domain of scheduling.  
The operating conditions within the semiconductor manufacturing environment are characterized by 
dynamic flow. Within such an environment, it is useful to ensure that the manufacturing system has an 
appropriate level of wafer starts, as well as product-mix, to develop an understanding of its impact on 
tools performance. Further, because system planners and controllers often are compelled to operate 
within stringent time constraints when reviewing alternate control or scheduling decisions, there is 
little justification, if any, for conducting and exhaustive simulative search when attempting to find 
optimal parameter combinations. Not only would this be computationally prohibitive, it also would be 
a very time-consuming exercise. There hence is a need for identifying a methodology that, with 
reasonable levels of confidence, could achieve the planning staff objectives and expectations.   
Photolithography is considered the constraint process within semiconductor manufacturing due to 
complex technology, critical dimensions, and re-entrant flow. During the photolithography process the 



circuit pattern is transferred from a mask onto photosensitive polymer so that replicates the pattern in 
the underlying layer. The object of this process is the accurate and precise definition of a three-
dimensional pattern on a semiconductor substrate. Although vast body of literature concerning 
semiconductor manufacturing (Uzsoy et al., 1994), there is still lack of solutions to optimize 
photolithography process (Arisha, 2003).     
The objectives of this research can be summarized as follows:  

1. To determine the significance of the impact of the production parameters on the performance 
of a photolithography tool.  

2. To find the relative impact of the parameters (in terms of their main factor effects) on the 
selected performance criteria.   

3. To optimize the performance of the photolithography tool by getting the appropriate 
combinations of parameters.  

4. To provide the production and control staff with a flexible methodology to evaluate the 
scheduling decisions before implementation.  

     
 
2. FLEXIBLE MANUFACTURING CELL SCHEDULING PROBLEM  
 
Flexible manufacturing systems (FMS) have been designed to serve complex industries by providing a 
mixture of high productivity and production flexibility. Flexible Manufacturing Cells (FMC) are the 
main elements in FMS and every FMC can be considered as an independent integrated system having 
its own automated workstations, material handling system, storage devices and capability for rapid 
reconfiguring to produce multiple products (Boer, 1994) and (Liu and MacCarthy, 1996).  
The challenge of flexible manufacturing scheduling in photolithography area is to select the 
appropriate level of each process control parameter in order to enhance the performance. The Flexible 
manufacturing cell used in photolithography process is shown in a schematic layout in Figure 1. The 
pattern of production in the cell is similar to a flow shop, where every product has to go through the 13 
operations for process completion. The cell can be adapted to produce up to 15 different products and 
about 13 different layers. Every product/layer has its own configuration (e.g. processing time, setup 
time). The buffer shown in the cell has a variable capacity. Scheduling the photolithography FMC is a 
challenging task due to many factors such as, many process parameters, complexity in production 
procedure, and complex production flow.  
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Figure 1. Schematic diagram of flexible manufacturing cell in photolithography  
 
    



This research studies the FMC in semiconductor manufacturing in two phases; building a time-time 
simulation model and then optimizing the process control parameters.  
 
 
3. MODEL PARAMETERS  
 
In order for a system to be evaluated, some form of measures must be agreed with the production 
personnel. The most critical planning parameters were:  

a) Wafer starts;  
b) Number of products on production (product-mix); 
c) Product sequence (dispatching rule); 
d) Local buffer size (stepper’s buffer).  

The performance measure of most interest is the total throughput time (TPT) and the goal of this work 
is to outline a methodology that helps planning and control engineers gain quick insights into the 
relative importance of the parameters with respect to this.  
 
 
4. SIMULATION MODEL  
 
The simulation model assumed that all the wafers are available at the start of the simulation run (i.e. 
wafers arriving at the cell are not stochastically generated). Operation times and product-mix were 
assumed to be pre-specified at the beginning of each experiment. Rework/scrap wafers were 
considered as a percentage of the overall production. Other assumptions were set concerning the 
maintenance scheduling and repair delays. The time-based simulation model was verified using three 
approaches; comparisons with actual production data, validated with existing models, and check the 
reasonableness of the output. 
Figure 2 shows the 
verification results. These 
show the effective 
performance of the 
simulation model to mimic 
the actual production cell. 
The model was then used to 
perform a series of 
experiments to optimize the 
performance of the system in 
response to several input 
parameters. The 
experimental design was 
based on Taguchi paradigm.    
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Figure 2. Comparison between simulation output, 
actual data, and deterministic models 

 
5. TAGUCHI EXPERIMENTAL DESIGN 
 
Taguchi experimental design is based on a matrix containing a set of experiments where the settings of 
the process parameters under study are determined. The experimental data generated is subsequently 
analyzed to determine the effects of various process parameters. The experimental matrices are special 
orthogonal arrays, which allow the simultaneous effect of several process parameters to be studied 
efficiently (Phadke, 1989). The real benefit in using matrix experiments is the economy they afford in 
terms of the number of experiments to be conducted. In the present study, because we need to 
experiment with four factors, each at five levels, a full factorial experiment would have required 54 = 
625 experiments. In contrast, it is found that Taguchi’s L25 orthogonal array is suitable for our 
purposes, and only 25 experiments need to be conducted. 
The purpose of conducting orthogonal experiments is twofold:  



1. To determine the factor combinations that will optimize a defined objective function (i.e., to 
determine the optimal level for each factor)  

2. To establish the relative significance of individual factors in terms of their effects on the 
objective function.  
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Factor (Parameter) Levels 

Wafers Start (WS) 750, 1500, 2250, 3750, 6000 
Product-mix (PM) 1, 3, 5, 10, 15 
Products Sequence (PS) 
(Dispatching Rule) 

FCFS, W-STPT, W-LTPT, 
W-FLN, and Random 

Stepper Buffer Size (BS) 2, 3, 5, 8, 13 

 

Table 1. Factors and Levels 

Simulation 
Process 

Methodology

Simulation Model 
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ANOM 

ANOVA 
6

6

Results 
Analysis

7

Sensitivity 
Analysis  

Optimization 
8

8

Experimentation 
Objectives 

Factor  Factor 
Level 

Factor-
level 

details 
1 750 
2 1500 
3 2250 
4 3750 

Wafers 
Start 
(WS) 

5 6000 
1 1 
2 3 
3 5 
4 10 

Product-
mix (PM) 

5 15 
1 FCFS 
2 W-STPT 
3 W-LTPT 
4 W-FLN 

Products 
Sequence 
(PS)  

5 Random 
1 2 
2 3 
3 5 
4 8 

Stepper 
Buffer 
Size 

5 13 

 

Table 2. Factor-level details

Standard L25(56) orthogonal array 
1 1 1 1 1 1 
1 2 2 2 2 2 
1 3 3 3 3 3 
1 4 4 4 4 4 
1 5 5 5 5 5 
2 1 2 3 4 5 
2 2 3 4 5 1 
2 3 4 5 1 2 
2 4 5 1 2 3 
2 5 1 2 3 4 
3 1 3 5 2 4 
3 2 4 1 3 5 
3 3 5 2 4 1 
3 4 1 3 5 2 
3 5 2 4 1 3 
4 1 4 2 5 3 
4 2 5 3 1 4 
4 3 1 4 2 5 
4 4 2 5 3 1 
4 5 3 1 4 2 
5 1 5 4 3 2 
5 2 1 5 4 3 
5 3 2 1 5 4 
5 4 3 2 1 5 
5 5 4 3 2 1 

 

Table 3. Taguchi’s standard form of L25

Exp WS PM PS BS 
1 750 1 FCFS 2 
2 750 3 W-STPT 3 
3 750 5 W-LTPT 5 
4 750 10 W-FLN 8 
5 750 15 Random 13 
6 1500 1 W-STPT 5 
7 1500 3 W-LTPT 8 
8 1500 5 W-FLN 13 
9 1500 10 Random 2 

10 1500 15 FCFS 3 
11 2250 1 W-LTPT 13 
12 2250 3 W-FLN 2 
13 2250 5 Random 3 
14 2250 10 FCFS 5 
15 2250 15 W-STPT 8 
16 3750 1 W-FLN 3 
17 3750 3 Random 5 
18 3750 5 FCFS 8 
19 3750 10 W-STPT 13 
20 3750 15 W-LTPT 2 
21 6000 1 Random 8 
22 6000 3 FCFS 13 
23 6000 5 W-STPT 2 
24 6000 10 W-LTPT 3 
25 6000 15 W-FLN 5 

 

Table 4. Experimental Table Details

Ex
# 

Avg. TPT 
(Seconds) 

Avg. 
TPT/wf 

(Seconds) 

S/N Ratio 
(ηi) (dB) 

1 88470 117.96 -41.4347 
2 90239 120.3192 -41.6067 
3 95893 127.858 -42.1346 
4 96547 128.7301 -42.1936 
5 99300 132.4 -42.4378 
6 175436 116.9574 -41.3606 
7 178944 119.2966 -41.5326 
8 184207 122.8053 -41.7843 
9 189471 126.314 -42.029 
10 196733 131.1557 -42.3557 
11 259775 115.456 -41.2483 
12 266464 118.4288 -41.4691 
13 269464 119.7621 -41.5664 
14 279153 124.0683 -41.8732 
15 290141 128.9518 -42.2085 
16 420896 112.2392 -41.0029 
17 430534 114.8093 -41.1995 
18 451332 120.3553 -41.6093 
19 466448 124.3863 -41.8955 
20 472018 125.8716 -41.9986 
21 702054 117.0091 -41.3644 
22 725018 120.8365 -41.644 
23 731500 121.9168 -41.7213 
24 761362 126.8938 -42.0688 
25 770334 128.3891 -42.1706 

 

Table 5. Simulation Experiment Results

Factor DOF SSB SSB/DOF F 
WS 4 0.499298 0.124825 16.126 
PM 4 2.946854 0.736714 95.1765 
PS 4 0.023777* 0.005944 
BS 4 0.023888* 0.005972 
Error 8 0.076183* 0.009523 
Total 24 3.57  
(Error) (16) (0.123848) (0.0077405) 
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Figure 3. Taguchi’s experimental framework 

 



Taguchi suggests using a summary statistic, η, called the signal-to-noise (S/N) ratio, as the objective 
function for matrix experiments. Phadke discusses the rationale for using η as the objective function. 
Taguchi classifies objective functions into one of three categories: the smaller-the-better type, the 
larger-the-better type; and the nominal-the-best type (Roy, 2001). Figure 3 shows the particular 
application used in this instance, with Figure 4 outlining the main analysis functions used to examine 
the results of the experiments.  
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ηi= observed Signal/Noise (S/N) ratio. 
for the ith orthogonal experiment. 

 
MSD = mean square deviation for 

smaller-the-better.  
Results = the output or readings 

collected. 
 
m= overall mean value of η 
n = number of experiments performed.  
i = experiment number. 
 
 
 
 
SST = Total sum of squares.  
SSB = Sum of the sums of squares due 

to various factors.  
SSE = Sum of squares due to error. 
 
GTSS = Grand total sum of squares. 
 
SSM = Sum of squares due to the mean. 
 
 
 
 
 
 
 
c = number of factors,  
lj = number of levels for factors j. 
 
 
 
 
 
 
 
 
 
 
 
 
 

2
eσ  = Error variance.  

 

 
Figure 4. Summary of equations used in statistical analysis  

 
 
Throughput time is the selected criterion to measure the cell performance; it can be suitably modified 
into the corresponding Signal to Noise (S/N) ratio – as shown in eq. 1 (Figure 4) – for incorporation 
into the matrix experiment. It may be noted that, the real benefit in using S/N ratios is for situations 
where multiple replications are performed. 
Simulation experiments are performed using the photolithography simulation model. Identical 
experimental testing conditions for each simulation scenario are ensured using the method of common 
random numbers. Each experiment constitutes five repetitions, which is statistically proved to justify 



the model output. Mean Square Deviation (MSD) has been calculated using eq. 2 (Figure 4).  The 
results obtained from simulation model based on the matrix experiment are detailed in (Table 5 in 
Figure).   
The data analysis using Taguchi experimental framework involves the analysis of means (ANOM) and 
analysis of variance (ANOVA). ANOM helps to identify the optimal/near optimal factor 
combinations, whereas ANOVA establishes the relative significance of factors in terms of their 
contribution to the objective function. Figure 5 plots the main effects of each factor level. The optimal 
or near optimal for each factor can be easily identified as the smallest value is the better.  
The main formulas that have been 
used in conducting the ANOVA, 
based on (Roy, 2001) are 
summarized in Figure 4. Phadke 
suggests using F ratio resulting from 
ANOVA only to establish the 
relative magnitude of the effect of 
each factor on the objective function 
and to estimate the error variance. 
However, probability statements 
regarding the significance of the 
individual factors are not made. 
From the ANOVA output, (Table 6 
in Figure 3) the relative effects of the 
factors the product-mix and the 
number of wafers start are seen to be 
most important, followed by factors 
such as product sequence and stepper 
buffer size. This is in agreement with 
the ANOM results. 
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Figure 5. Analysis of means of factor main effects (ANOM) 

 

 
 
6. VERIFICATION AND VALIDATION PHASE 
 
In experiment results, an arithmetic means to estimate the factor effects has been used. The 
assumption of additivity essentially implies the absence of significant interaction effects between 
factors. Taguchi suggests that a verification experiment (with factors at their optimum levels) be run to 
validate the additivity assumption. After running a verification experiment, (Phadke, 1989) points out 
“If the predicted and observed η are close to each other, then we may conclude that the additive model 
is adequate for describing the dependence of η on the various parameters…. On the contrary, if the 
observation is drastically different from the prediction, then we say the additive model is 
inadequate…. This is evidence of a strong interaction among the parameters”. In fact, Taguchi 
considers the ability to detect the presence of interactions to be the primary reason for using 
orthogonal arrays to conduct matrix experiments. 
To validate the assumption of additivity, comparing verification experiment results with a predicted 
optimal/near optimal value has been applied. If the prediction error happens to fall within a two-
standard-deviation confidence limit of the variance of prediction error, the additivity assumption can 
be assumed justified. The corresponding two-standard-deviation confidence limits for the prediction 
error found to be± , while the prediction error = 0.064dB happens to be well within the 
calculated confidence limits, so the additivity assumption is justified.  
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7. RESULTS DISCUSSION 
 
Taguchi experimental design paradigm has been used to gain better understanding of the behavior of 
the assumed parameters. Based on the ANOVA table 6 (Figure 3), the main control parameters (i.e., 
the number of wafers start and product-mix) have a statistically significant impact on the throughput 



time. In contrast, the parameters such as product sequence and stepper buffer size are not seen to be 
statistically significant. The results suggest that experimentation should focus attention on the 
alternatives available for the product-mix and wafers start and only then the other parameters for 
improving the shop global performance. The result is noteworthy, because shop controllers and 
planning team could have typically been tempted to experiment with alternative control rules without 
regard to the possible benefits of trying other controllable factors. The ANOM plot (Figure 5) provides 
two useful insights with regard to wafers start: an increase in the WS from level 1 to level 4 reduces 
the TPT as the utilization of the machines gets higher, until it reaches the best TPT per wafer at WS4. 
For WS5 the performance reduces as a result of increasing waiting times. Moreover, the ANOM plot 
justifies the intuitive opinion with regard to the impact of increasing the product-mix on cell 
performance.  
 
 
8. CONCLUSIONS 

 
Simulation combined with Taguchi experimental design provides a comprehensive understanding of 
the photolithography flexible manufacturing cell performance. This allows investigation of many 
parameters such as product-mix, product volumes, wafers start, product sequence, stepper buffer size, 
number of layers, ..etc. with regard to their effect on system performance. Based on ANOM and 
ANOVA, the significant impact of increasing product-mix and wafers start on throughput time are 
shown. Further, the statistical analysis provided useful insights with regard to near optimum figures of 
product-mix and wafer starts. The results have shown that the effect of changing stepper buffer size 
and product sequence is not significant on throughput time as well as the product sequence. The result 
is noteworthy, because shop controllers have typically been tempted to experiment with alternative 
product sequence to find benefits. The integration between simulation and Taguchi’s methodology has 
provided an expedient platform for quickly checking the parameters that need to be given priority.  
The state-of-the-art time-based simulation model has characterized the performance of 
photolithography tools under various operating conditions efficiently. Moreover, the model is reusable 
for similar tools. The quality of the output has been verified with actual floor data of similar 
conditions. The computer time required to run the simulation model for one experiment was so 
economic as to encourage the production staff to experiment many scenarios.  
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