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Using Dempster-Shafer Theory of Evidence for
Situation Inference *

Susan McKeever**®, Juan Ye?, Lorcan CoyleP, and Simon Dobson®

2Systems Research Group, School of Computer Science and Informatics, University
College Dublin, Ireland, PLero, University of Limerick, Ireland

Abstract. In the domain of ubiquitous computing, the ability to iden-
tify the occurrence of situations is a core function of being ’context-
aware’. Given the uncertain nature of sensor information and inference
rules, reasoning techniques that cater for uncertainty hold promise for en-
abling the inference process. In our work, we apply the Dempster Shafer
theory of evidence to determine situation occurrence based on uncertain
sensor data and inference rules. We also describe a set of evidential op-
erations for sensor mass functions using context quality and evidence
accumulation for temporal situation detection. We demonstrate how our
approach enables situation inference with uncertain information using a
case study based on a published smart home activity data set.

1 Introduction

In the domain of ubiquitous computing, a context-aware system must be able to
perceive the state of entities of interest in the environment, such as users. We
term these states of interest ’situations’, where a situation is a human under-
standable descripiton of an entity state such as 'user at lunch’. The ability to
infer situations, i.e., 'what situation(s) is occurring ’ is a critical function for a
context-aware system, acting as a driver of adaptive behaviour at the application
level. Situation inference is reliant on disparate sensor-based information, and
this-inference process is complicated by the imperfections associated with sensor
information, such as problems of noise, breakdown, network delays and user error
[3]. Furthermore, observations from multiple sensors can lead to conflicts, such
as a user detected in two different locations simultaneously. Therefore, inference
mechanisms that treat sensor information as evidence of fact rather than certain
information are of particular interest in our work.

Bayesian methods, including Bayesian networks [2,10,15] and Hidden Markhov
Models [1,13] have been used to infer situations in context-aware systems. These

* This work is partially supported by Enterprise Ireland under grant number CFTD
2005 INF 217a, “Platform for user-Centred design and evaluation of context-aware
services” and by Science Foundation Ireland under grant numbers 07/CE/1147 “Clar-
ity, the centre for sensor web technologies”, 03/CE2/I303-1 “Lero, the Irish Software
Engineering Research Centre”, and 05/RFP/CMS0062 “Towards a semantics of per-
vasive computing”.
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methods demonstrate that with sufficient training data, higher level context
such as activities can be recognised from lower level sensor information. Pos-
terior probabilities of situation occurrence are calculated and imperfections of
sensor data and inference rules are absorbed invisibly into these probability cal-
culations. Dempster-Shafer theory (DS Theory), which is a generalised form of
Bayesian theory, is a tool for representing and combining evidence. It offers an
alternative to other Bayesian methods when training data is not easily available.
It explicitly quantifies ignorance in the face of uncertain or missing data. It does
not rely on training data and it offers a range of operations that can be used for
propagating evidence from sensor up to situation level in a scrutable manner. In
our—work—we use DS theory to incorporate sensor uncertainty into sensor evi-
dence, and to fuse this evidence in order to infer situations. The novelties of our
approach are multi-fold: (1) it explicity caters for quantified sensor uncertainty
and uncertain inference rules; (2) domain knowledge can be applied in order to
minimise or remove dependance on training data; (3) our approach supports the
recognition of temporal situations where causal contexts are distributed over
time; (4) the inference process from sensor to situation level is scrutable. We
demonstrate our evidence-based situation inference process using sample data
from a publicly available home activity data set [13].

This remainder of this paper is organised as follows: Section 2 describes
related work by other researchers; Section 3 describes the basic concepts of DS
Theory; Section 4 describes situation inference diagrams and the use of DS theory
to infer situations. We provide a demonstration of our inference approach in a
case study in Section 5. Conclusions and further work are described in Section 6

2 Related work

The application of uncertain reasoning techniques is an active research area
within the domain of context-aware computing. In particular, Bayesian methods
and fuzzy logic have been used to determine higher level contexts from lower level
uncertain sensor information. Van Kasteren et al [13] use Hidden Markov Models
to successfully determine a person’s activity in the home, where inference of high
level states (activities), and temporal activity patterns are learned from training
data. Bayesian networks as used by [2,10,15] are used to determine higher level
context states (such as activities in a meeting room) from lower level sensor
data. These approaches require training data which can be difficult to obtain in
particular environments, such as the difficulties of smart home data collection in
real life environments, as noted by Tapia et al [12]. Our approach using DS theory
has limited or no reliance on training data, relying more heavily on domain
knowledge. Fuzzy sets and fuzzy logic as used by [5,7,10] is used to quantify
and reason with imprecise context concepts such as describing temperature of
a room as 'warm’ or ’cold’. We incorporate context fuzziness into our evidence
based approach by including fuzzy membership in our sensor mass functions, as
described in Section 4.2.
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Wau [14] uses DS Theory as a sensor fusion model in context-aware systems.
Sensor evidence is supplied via DS mass functions and fused using Dempster’s
rule of combination. Wu’s work does not include the propagation of evidence to
support higher level context inference. Uncertainty in sensor mass functions is
represented as static weighting of sensors. Wu does introduce a dynamic weight-
ing for evidence sources but this requires the availability of ground truth soon
after evidence fusion. Closest to our work is Hong et al’s [4] work on activity
recognition in smart homes. Similar to our work, they use evidence theory to
propagate sensor evidence up to activity to support activity recognition. They
use the basic DS theory functions of sensor mass functions, Dempster’s combina-
tion rule and sensor discounting to process and fuse evidence. They supplement
these functions with additional evidential operations to move evidence from sen-
sor level up to activity level. Our work differs from Hong’s et al’s work by the
inclusion of context quality information (such as fuzziness and precision) into
sensor mass functions, the processing of evidence for time-distributed situations,
and differing evidential operations for evidence fusion. @

3 Basic Concepts of Dempster-Shafer Theory

Dempster—Shafer theory is a mathematical theory of evidence [11] which is used
to combine separate pieces of information (evidence) to calculate the probability
of an event. In a DS Theory reasoning scheme, the set of possible hypotheses are
collectively called the frame of discernment. This frame © represents the set of
choices {hi hs ...h,} available to the reasoning scheme, where sources (such as
sensors) assign belief or evidence across the frame hypotheses. Let 2° denote the
set of all subsets of © to which a source of evidence can apply its belief. Then
the function m : 2 — [0,1] is called a mass function that defines how belief is
distributed across the frame, if the function satisfies the following conditions:

m(¢) = 0 and ZAQ@ m(A) =1

Based on this, belief from an evidence source cannot be assigned to an empty
or null hypothesis, and belief from the evidence source across the possible hy-
potheses (including combinations of hypotheses) must sum to 1. The least infor-
mative evidence (ignorance) is the assignment of mass by a source to a hypothesis
containing all the elements; i.e., {h1, ha,...h,}. A crucial part of the process of
assessing evidence is the ability to combine evidence from multiple sources. In
DS theory, the combination of evidence from two different independent sources
is accomplished by Dempster’s combination rule:

ZVX,Y:XAY:A mi (X).ma(Y)
1- ZVX,Y:XAY:g{) m (X).ma(Y)

where m12(A)is the combined belief for a given hypothesis A. The numerator
in equation 1 represents evidence for hypotheses whose intersection is the exact

m12(14) = (1)
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hypothesis of interest, A. The denominator, 1 — K is a normalisation factor,
where K is a conflict factor representing all combined evidence that does not
match the hypothesis of interest, A. The value of conflict, K, when combining
evidence is indicative of the level of disagreement amongst the sources of their
belief in hypothesis A.

In Section 4.2, we explain how we apply the DS Theory concepts of mass
functions, frames of discernment and evidence combination to situation infer-
ernce.

4 Situation inference

In this section, we explain how we use Situation Inference Diagrams to capture
the inference routes from sensor information to situations. We then explain how
basic DS theory (mass functions, evidence combination) and additional eviden-
tial operations (context quality in mass functions, evidence transfer, evidence
accumulation) are applied to situation inference.

4.1 Situation Inference Diagrams

In order to infer situations using DS Theory, we need to define how evidence is
propagated across layers of context, using a multi-layered hierarchy consisting
of sensors, abstracted context and situations [8]. We illustrate this hierarchy
using a Directed Acylic Graph (DAG) as shown in Figure 1. Sensors are the root
nodes at the base of the diagram. Sensor readings are abstracted or mapped
to more human understandable context values. For example, a sensor reading
of a user’s location may be generated as a set of coordinates ‘12.4, 10, 5.6,
14:24:08, ID24° and translated using a building layout to a context value of 'Peter
hasLocation MeetingRoomb at 14:24‘. Moving up the hierarchy, each context
value will be mapped to one or more situations, indicating that the occurrence
of a particular context value ’is evidence’ of the situation occurring; i.e., an
inference rule. Depending upon the complexity and range of situations in the
system, higher level situations may also be inferred from lower level situations.
Each solid directed arrow in the graph is interpreted as ‘is evidence of*. The full
notation for the DAG is shown in Figure 2 .

Quantified uncertainty is incorporated into the situation inference DAG at
sensor and inference rule level. At sensor level, if sensor reliability is quantifiable,
it is included as a sensor discount, as described further in section 4.2. Uncertainty
can also be quantified against inference rules. For example, in the home data set
that we have examined, a user ’sometimes’ uses the microwave when preparing
breakfast and this is quantified as 40% of the time, by examining sample occur-
rences of the 'prepare breakfast’ situation in the data. Therefore, a certainty of
0.4 is applied along the edge or inference rule from the context value ‘microwave
used‘ to the situation of ‘prepare breakfast‘.

Situations may be inferred from evidence that does not occur at exactly
the same time and we term these ’time distributed situations’. The situation
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of a user 'preparing breakfast’ may be detected by context values such as the
‘plate cupboard used’, 'grocery cupboard used’, and ’fridge used’ over a period
of time. We represent evidence that accumulates over time by a time period
enclosed in < >’ brackets within the time-distributed situation node on the
DAG. This number indicates the typical duration of the situation. Where the
actual sequence of evidence occurrence is also relevant, the duration is enclosed
by ’> >’ brackets.

Some situations may be detectable by the occurrence of one of a set of situ-
ations. For example, a ’busy in kitchen’ situation may be declared when either
situation ’prepare breakfast’ or ’prepare dinner’ is occurring. This is indicated
on the DAG as ’is a type of’.

4.2 Applying DS Theory to Situation Inference

Once the situation inference hierarcy is determined from sensor to situation
level, we can then apply evidential operations from DS theory as described in
Section 3, and extensions to DS Theory, to produce and propagate evidence
for situation inference. In order to infer situation occurrence, we assess sensor
readings or evidence at specific points in time ¢, where each point is separated
by a time gap, At. At each point in time, the situations with the greatest belief
(evidential support) are believed to be occurring. To achieve this, a number of
evidential operations need to occur from sensor level upwards. (1) At time ¢, each
sensor system defines its belief across the context values for the sensor via a mass
function. (2) Quality information associated with each sensor is used to modify
the belief distribution from its mass function. (3) The belief associated with
each context value is mapped upwards along the inference paths to its associated
situations using compatability relations and evidence propagation between frames
of discernment. This mapping processes continues up the hierarchy of situations.
(4) For each situation, belief from the relevant sources of evidence is fused in
order to determine total belief in the situation at time ¢, using an appropriate
evidence combination rule. (5) For situations that have a time duration, belief
from sources is fused with belief from pre-existing evidence that was captured
within the time duration of the situation.

When these steps have been executed, at time t, a separate level of belief is
available for each situation. A decision step selects those situations of highest
belief, taking into account which situation can occur at the same time.

Sensor Mass functions Mass functions, as explained in Section 3, define how
belief from an evidence source (such as a sensor) is spread across a set of choices
in a frame of discernment. In our approach, a mass function is required for each
sensor, in order to distribute belief for the sensor across the range of possible con-
text values for that sensor; i.e., the frame of discernment for that sensor. In our
activity sensor example, context value ’active’ may be defined as any keyboard
or mouse activity on the computer within the last 10 seconds. If the sensor at
time ¢ has detected a reading 5 seconds ago, the mass function will assign belief
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across the frame of discernment{active, inactive,0} as {1,0,0} respectively. The
mass assigned to 0 represents ignorance, where belief is uncertain and cannot be
sub-divided amongst other elements in the frame.

Using Context Quality in Sensor Mass Functions In the real world, ab-
solutely reliable sources are rarely found. ’'Discount factors‘ are an idea that
dates back to Shafer’s evidence theory work [11] and expanded by Lowrance et
al [6]. They can be used to account for the uncertainty due to unreliable evidence
sources. However, a variety of additional sensor and context quality metrics such
as precision [16] and fuzziness [10] are defined to quantify the imperfections of
sensor information. Precision indicates the range within which a sensor reading
is correct, for a given accuracy. Fuzziness is used to quantify imprecise context.
If such quality information is available and quantifable, we propose that it can
be incorporated into sensor mass functions in order to provide a more realistic
distribution of belief. We illustrate this through a set of examples:

(1) Using precision in mass functions: A location system, Ubisense!, gen-
erates coordinate readings for tags worn for users. The coordinate readings are
then mapped to meaningful locations (context values) within the building based
on a building map. The measured precisions of Ubisense readings are 3.30 and
2.22 meters along the x- and y- axes respectively, as established using training
data in experimental work [16]. When these precisions are used during context
abstraction, they form an area around the coordinate reading, and the user/tag
may be located anywhere within the area. If this area intersects more than one
meaningful space, the proportions of the square in each space can be calculated.
Therefore, a reading which is translated to two context values ’deskl, 0.3’ and
‘desk2, 0.7’, means that the sensor is 30% confident that the user is located at
deskl and 70% confident at desk2. The mass function for this sensor based on
this coordinate reading will generate belief of {0.3,0.7,...,0,0} for a frame of
discernment {desk1,desk2, ..., desk,,0}.

(2) Using context fuzziness in mass functions: Context values can have im-
precise meanings such as ‘active‘ for our activity sensor. The level of imprecision
or fuzziness is represented by a membership value, where the fuzzy membership
function applies a numerical value from 0 to 1 to each element of the fuzzy
set [17]. For our activity sensor, we observe that any keyboard or mouse activ-
ity within the last 10 seconds is definitely active. After 10 seconds, the level or
membership of 'active’ reduces with time, falling to 0 after 60 seconds. The mass
function for the activity sensor will include the fuzzy membership values in its
calculation of belief assignment to the context values, generating belief distribu-
tions such as {0.2,0.8,0} for the frame {active,inactive, 8}, when a reading is
more inactive than active.

(8) Sensor discounting: When a quantified measure of sensor reliability is
available, it is incorporated into the mass function via a sensor discounting func-
tion [11,6]. When a source’s evidence is discounted, the remaining evidence is
applied to the combination of all options in the frame (i.e., ignorance, 6).

! Ubisense is a networked location system: www.ubisense.net



For our Ubisense system, we measured an accuracy of 70% for the precisions
described in example (1), meaning that 30% of readings are believed to be in-
correct. Using Shafer discounting function, the belief is discounted by 0.7. The
remaining 0.3 is attributed to ignorance. Using the Ubisense mass function ex-
ample from (1) of belief {0.3,0.7, ..., 0,0} for a frame {deskl, desk2, ..., desk,,, 0},
the application of the discount factor will alter the belief distribution to {0.21,
0.49, ...,0,0.3} where discounting of evidence has resulted in an quantified un-
certainty of 0.3.

Reliability of a sensor may be a straightforward measure of phsyical sensor
accuracy as supplied by the sensor manufacturer. However, it may also incorpo-
rate additional sources of error such as errors in using a sensor. For example, if a
user is known to forget to wear their Ubisense locator tag 10% of the time, this
will change the discount factor on the Ubisense sensor system from 0.7 to 0.63.

Evidence Transfer Evidence propagation through layers of the hierarchy from
context value upwards is achieved using compatibility relations and evidential
mapping. Compatibility relations [6] define the mappings between the compat-
ible beliefs between two frames of discernment; i.e., the elements from the two
frames that can be true simultaneously. We can use compatibility relations to
define paths for transferring belief from one layer of the situation hierarchy to the
next. For example, a fridge sensor can generate belief across two context values
{FridgeUsed,~FridgeUsed,0}. The use of the fridge is indicative of the ’get
drink’ situation, which has a frame of discernment {GetDrink,~GetDrink,©}.
"Fridge used‘ is compatible with with ’get drink’ (i.e. they are both true simul-
taneously) and so on for the remaining elements in both frames. Having defined
the evidence paths using compatibility relations, we use evidence propagation [4]
to propagate evidence from one frame to another. We apply propagation along
the paths defined by the compatibility relations, enabling mass of compatible
elements to be transferred; e.g., mass of 'fridge used’ can be propagated to 'get
drink’.

Evidence Combination When each context value has propagated its evidence
to situation level, the evidence is combined to produce a final distribution of be-
lief over the choices in the frame of discernment. The basic formalism for evidence
combination from two sources is provided in Dempster’s rule of combination as
described in equation 1 of Section 3. Variations on this combination rule have
been introduced in the literature to deal with alternative combination scenar-
ios, such as the use of evidence averaging for unreliable sources when source
discounting is used [11] and Murphy’s averaged combination rule [9]. Murphy
observed that a single piece of evidence can force certainty or overrule a major-
ity when Dempster’s rule of combination is used. For scenarios where this may
occur (e.g. binary sensors where a single sensor fails to fire), this will distort
the evidence, allowing a single sensor to negate evidence from other sources.
Murphy’s approach is to average the evidence prior to combining, thus ruling
out the dominance of a single sensor. The averaged evidence is then combined
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using Dempster’s combination rule, applied n — 1 times where n is the number
evidence sources. We propose to use both averaging as proposed by Shafer and
Murphy’s alternative combination rule in our work, as demonstrated in section
5, and compare the results in our worked example.

Evidence accumulation over time In order to accumulate evidence for a
situation with a specified duration d, we extend the lifetime of evidence to endure
over the duration of the situation, combining later evidence with earlier evidence
as if it had occurred at the same time, ¢. At the first occurrence of evidence
of a situation (such as ’grocery cupboard’ detected for the ’prepare breakfast’
situation), evidence is captured for this time, ¢. Further evidence for the situation
that occurs during the situation (i.e., between time t and t + d), is fused with
earlier evidence to provide an overall belief in the situation occurrence.

5 Case Study

In this section, we provide a demonstration of our evidence-based situation in-
ferencing approach using a sample of data from Van Kasteren’s home activity
data set [13]. We explain each of the steps from processing of sensor evidence up
to the fusion of evidence into situation beliefs.

5.1 Data set description

The data set was recorded over 28 days in a house where a 26 year old man
lives. 14 sensors were places throughout the house. Each sensor generates binary
output only, outputting a value of 1 when fired. The data set is annotated with
7 situations or activities, such as ’go to bed’, 'take shower’, and ’prepare dinner’.
None of these activities occur at the same time according to the annotation. In
our example, we focus on the three situations that occur in the kitchen: 'prepare
breakfast’, 'prepare dinner’, 'get drink’. Our situation inference DAG for these
situations (Figure 3) contains all kitchen based sensors as root nodes. Because
of the binary nature of the sensors, context values for these sensors are very sim-
ple; e.g., the grocery cupboard sensor firing indicates ’grocery cupboard used’
context. No indication of sensor performance is provided in the data set, so sen-
sor discounting or quality in mass sensor functions cannot be applied. Domain
knowledge in this environment for mapping evidence to situations could, in the-
ory, be available from users (what do you typically do to prepare breakfast?’)
or from examining small amounts of training data.

5.2 Experimental approach

We used a combination of inherent domain knowledge combined with examina-
tion of 5 occurrences of each of the three situations to determine the inference
paths for our DAG. This highlighted some uncertainty in the inference rules,



Prepare Prepare
Breakiast Dinner
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Fig. 3. Situation Inference DAG for kitchen situations: get drink, prepare break-
fast, prepare dinner

such as the occasional use of the microwave in breakfast preparation (20% of the
time), or getting cups from the cups cupboard when preparing dinner (40% of
the time). Each situation is a time-distributed situation so we estimate situation
durations from a combination of data observation and domain knowledge. For
instance, the 'prepare dinner’ activity lasted an average of 38 minutes for the 5
occurrences we observed, with a standard deviation of 24 minutes so we applied
a duration of 62 minutes to capture ’prepare dinner’ evidence. We could have
used alternative duration calculations such as mean duration, minimum duration
or a duration range, depending upon the nature of the situation. From domain
knowledge, we included time as evidence to capture the fact that breakfast oc-
curs in the morning and dinner occurs in the evening. ’Get drink’ can occur at
any time of the day.

We selected 5 consecutive time slices from a single day when the ’prepare
breakfast’ activity was annotated, using time slices of 1 minute (as also used by
[13]). Evidence for the five time slices is shown in Table 1, showing the kitchen
sensor events that occurred over times 9:49 to 9:53 for one day in the data set.
Sensor events outside the kitchen such as ’hall bedroom’ indicating that the hall
bedroom sensor is still firing (open) were discarded as our domain knowledge
suggests that only kitchen based sensors have a direct evidential bearing on
kitchen situation occurrence. The evidential calculations for these time slices
results in total belief for each of the three situations at times 9:49 to 9:53 as
shown in Table 2

The process for inferring situation occurrence using sensor evidence is per-
formed by using the following steps for each time slice:
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‘ Cumulative evidence over situation durations (mins)

|

’Time‘Sensor events ‘Drink (2) ‘Prepare Breakfast (15) ‘Prepare Dinner (62) ‘
9.49 |fridge, plates, fridge fridge, plates, microwave (0.2) |fridge (0.8), plates
microwave
9.50 |groceries fridge fridge, plate, microwave (0.2), |fridge (0.8), plates,
groceries grocery (0.8)
9.51 |none none fridge, plate, microwave (0.2), |fridge (0.8), plates,
groceries grocery (0.8)
9.52 |none none fridge, plates, microwave fridge (0.8), plates,
(0.2), groceries grocery (0.8)
9.53 |microwave, none fridge, plates, microwave fridge (0.8), plates,
groceries (0.2), groceries grocery (0.8)

Table 1. Evidence and cumulative evidence by time slice for each situation

. Use sensor mass functions to obtain context value beliefs.
. Propagate the belief from the context values up to the relevant situations, us-

ing compatibility relations and evidence propagation as explained in Section
4.2,

. Obtain total belief for each situation by combining evidence for the situa-

tion. We will use both basic evidence averaging and Murphy’s alternative
combination rule, as described in Section 4.2.

. Select the situation with the highest belief (given that no situations in the

data set are co-occurring).

For illustration, we explain these steps for the first time slice (9:49):

(1) Use sensor mass functions for context values
Fridge, plates cupboard and microwave sensors are firing. No sensor discount-

ing is used. The three sensor mass functions assign mass to context values as
follows:

{FridgeUsed = 1,~FridgeUsed = 0}

{PlateUsed = 1,~PlateUsed = 0}

{MicrowaveUsed = 1, ~MicrowaveU sed = 0}

In addition, the kitchen sensors that did not fire are evidential, generating

masses as follows:

{CupUsed = 0, -CupUsed = 1}

{GroceriesUsed = 0, ~GroceriesUsed = 1}

{FreezerUsed = 0, FreezerUsed = 1}

{PansUsed = 0, ~PansUsed = 1}

Finally, we are using time as evidence. At 9:49am, the time sensor mass gives:
{Morning = 1, Evening = 0}

(2) Propagate the belief from the context values up to the relevant

situations

For each situation, propagate context value belief to situations of which that

context is evidence, as denoted on the situation inference DAG.



Get drink
{FridgeUsed = 1,~FridgeUsed = 0} —{GetDrink = 1,-GetDrink = 0}
{CupUsed = 0, ~CupUsed = 1} — {GetDrink = 0,-GetDrink = 0.8,0 = 0.2}

Prepare Breakfast:

{FridgeUsed = 1, FridgeNotU sed = 0} —{Break fast = 1,~Break fast = 0}

{MicrowaveUsed = 1,~MicroUsed = 0} —{Breakfast = 0.2,-Breakfast =
0,0 = 0.8}

{PlateUsed = 1, PlatesU sed = 0}—{Break fast = 1, ~Break fast = 0}

{GroceriesUsed = 0, ~GroceriesU sed = 1}—{Break fast = 0, ~Break fast = 1}

{Morning = 1, Evening = 0} —{Breakfast = 1,-Breakfast =0}

Prepare Dinner

{FridgeUsed = 1,~FridgeUsed = 0}—{Dinner = 0.8, ~Dinner = 0,0 = 0.2}

{PlateUsed = 1,-PlateUsed = 0} —{Dinner = 1,~Dinner = 0}

{GroceriesUsed = 0,-GroceriesUsed = 1}—{Dinner = 0,-Dinner = 0.8,0 =
0.2}

{PansUsed = 0, ~PansUsed = 1} —{Dinner = 0,-~Dinner = 0.8,0 = 0.2}

{CupsUsed = 0, ~CupsUsed = 1} —{Dinner = 0, ~Dinner = 0.4,0 = 0.6}

{FreezerUsed = 0,~FreezerUsed} = 1—{Dinner = 0, ~Dinner = 1}

{Morning = 1, Evening = 0} —{Dinner = 0, ~Dinner = 1}

Because this is the first time slice, we do not have any cumulative evidence.
For the next time slice at 9:50, the sensor events from 9:49 will be assessed as
’still happening’ where they contribute to the time-distributed situations, as set
out in Table 1.

Timeslice Averaging Combination Rule
Drink|B’fast|Dinner Drink B’fast Dinner
Belief Conflict|Belief Conflict|Belief Conflict
9.49 0.5 | 0.64 | 0.26 || 0.63 43% |098 22% |0.02 27%

9.50 0.5 [ 084 | 0.37 || 0.63 43% 1 0 02 40%
9.51 0 |084 | 037 0 n/a 1 0 0.2 40%
9.52 0 |084 | 037 0 n/a 1 0 0.2 40%
9.53 0 |084 | 037 0 n/a 1 0 0.2 40%

Table 2. Total belief in situations by timeslice using evidence averaging and
Murphy’s combination rule for ’get drink’ (Drink), 'prepare breakfast’ (B’fast)
and ’prepare dinner’ (Dinner) situations

(3) Obtain total belief in each situation via evidence combination
We calculate total belief in each situation using two different methods: Simple
evidence averaging and Murphy’s version of the Dempster’s combination rule.
In the averaging approach, this involves averaging the belief for each separate
situation. At 9:49, this gives belief of 0.5, 0.64, 0.26 for situations ‘get drink,
‘prepare breakfast, ‘prepare dinner‘ respectively as shown in Table 2. For the
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combination rule, we combine the averaged situation belief n-1 times using the
combination rule in equation 1, where n is the total number of evidence sources
for the situation. Total belief is shown for the three situations for our time slices
in Table 2. We then repeat the steps for the remaining time slices, using new
and cumulative evidence from Table 1.

Looking at Table 2, the situation 'prepare breakfast’ is deemed to be occur-
ring at 9:49. As evidence increases for 'prepare breakfast’ and ’prepare dinner’
(at 9:50) due to the grocery cupboard sensor firing, the belief in these two sit-
uations increases. After 9:50, no further sensors fire until 9:53, but the existing
evidence endures for time slices 9:51 and 9:52. At 9:53 the microwave and grocery
cupboard sensors fire again. However, they do not change the belief because they
fired in previous time slices within the system duration so their evidence is still
active. For the ’get drink’ situation, the situation duration is 2 minutes, so belief
drops to zero at 9:51, 2 minutes after the fridge sensor contributed evidence to
‘get drink’ occurring. For evidence combination, the averaging of evidence pro-
vides the same highest belief answer as the combination rule, but the evidence
does not converge to the same extent as our combination rule. This is because
the combination rule normalises out conflicting evidence and because uncertainty
is re-distributed to the two other elements in the frame of discernment. In our
example, the three assessed situations cannot be co-occurring (according to the
annotations in the published data set), therefore the selection of *which situ-
ation is occurring’ is simply based on the highest belief at time ¢ In a more
complex environment where multiple situations may be co-occurring, we will
need to develop heuristics for belief thresholds in order to decide which situa-
tions are occurring. We anticipate that use of the conflict metric may be useful
in developing decision making heuristics for determining situation occurrence.

6 Conclusion and Future Work

In this paper, we presented an approach to inferring situation occurrence us-
ing the Dempster Shafer theory of evidence. Our approach incorporates context
quality information into sensor evidence, propagates sensor evidence up to situ-
ation level and obtains belief for situations via evidence fusion. We also provided
a mechanism to accumulate evidence for time-distributed situations. We demon-
strated our approach in a case study, using a sample of time-distributed evidence
from a publicly available smart home data set. Our approach enables situation
inference with uncertain information, with limited or no need for training data.

Our inferred situation for our proof of concept demonstration matched the
annotated situation (’prepare breakfast’) for the sample data used. The next
stage of our work is to establish inference results for the full smart home data
set using our DS theory based approach. As part of our evaluation, we will com-
pare our results against published results for the data set that use alternative
uncertain reasoning approaches. We will also test our approach against an intel-
ligent office activity data set that we are collecting in-house. The data set tracks
office-based users using a variety of sensors. We expect that it will provide us
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with richer sensor quality information which we can use to test the impact on
situation inference of using context quality in sensor mass functions.
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