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Riemann tensor of the ambient universe, the dilaton, and Newton’s constant
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We investigate a four-dimensional world, embedded into a five-dimensional spacetime, and find the five-
dimensional Riemann tensor via generalization of the Gauss~-Codacci! equations. We then derive the general-
ized equations of the four-dimensional world and also show that the square of the dilaton field is equal to
Newton’s constant. We find plausible constant and nonconstant solutions for the dilaton.

DOI: 10.1103/PhysRevD.70.044013 PACS number~s!: 04.50.1h, 04.20.Cv, 98.80.2k

Since the pioneering work of Kaluza@1# and Klein @2#,
who unified gravitation with electromagnetism, the implica-
tions of possible extra dimensions to our world have been
under intense investigation—see@3# for an extensive collec-
tion of papers on higher-dimensional unification. Jordan and
Müller @4# and Thiry@5# used the equations of Kaluza-Klein
theory to show that the gravitational constant can be ex-
pressed as a dynamical field. A constant solution for New-
ton’s constant, however, is then allowed only if the square of
the Maxwell electromagnetic tensor vanishes. Here we ex-
amine adual setup in which this problem can be avoided.
Based on the original Kaluza model, we are here considering
a general embedding of a four-dimensional world into a five-
dimensional ambient spacetime. We derive a generalization
of the Gauss~-Codacci! equations by utilizing all degrees of
freedom~the entire geometry! of the ambient spacetime, and
we also show how they affect the physics of the four-
dimensional world. As a result we find a system of equations
for the electromagnetic field, gravitational field, and dilaton
field. One of these equations is a plausible generalization of
the gauge fixed Maxwell equations in the presence of a dila-
ton field. We also show that the square of the dilaton field is
equal to~modulo numerical factors! the Newton’s constant.
The gauge freedom of the electromagnetic fields is trans-
ferred to a freedom in fixing the dilaton field. Apart from the
constant solution for the dilaton, we give an example of a
nonconstant solution describing a time-varying Newton con-
stant in an expanding universe~see also@6–11# and others!.
We also give a general formula for generating different so-
lutions for the dilaton field.

We consider a four-dimensional worldM, embedded into
a five-dimensional spacetimeV ~see@12–22# and references
therein for a detailed discussion on embeddings!. Let yi ( i
51,2,3,4) denote the coordinates onM and xm (m
51,2,3,4,5) denote the coordinates onV. Greek indices will
be related to the five-dimensional spacetimeV, while latin
indices will be associated with the four-dimensional space-
time M. Let c(xm)5s5const be the equation of the hyper-

surfaceM. We assume that this equation is givena priori.
The physical principles motivating the choice of type of hy-
persurface@specified by the functionc(xm)] and the choice
of a particular four-dimensional spacetime slice~given bys)
are open problems for multidimensional theories and not the
subject of our analysis. We will retains as a parameter of the
model.

One can alternatively express the parametric equations of
M asxm5xm(yj ,s) and treat the parameters as a coordinate;
this then represents a coordinate transformation with inverse

yj5yj~xm!, s5c~xm!. ~1!

We assume that this transformation is invertible at each
point. This means that the Jacobi matrices of the transforma-
tion and its inverse have nonvanishing determinants every-
where. Thus, to globally parametrize the foliated five-
dimensional spacetimeV, it is sufficient to use the
coordinates of the four-dimensional worldM and the folia-
tion parameters.

The vector normal to the surface is

Nm5
]c

]xm
. ~2!

Let us also define

ej
m5

]xm

]yj
, nm5

]xm

]s
, Em

i 5
]yi

]xm
. ~3!

The derivatives are related as follows:

]k[
]

]yk
5ek

m]m , ~4!

]n[
]

]xn
5En

k]k1Nn]s . ~5!

Obviously, if we denotee5
m5nm andEm

5 5Nm , then (en
m) and

(En
m) will be the Jacobi matrices of the transformation (xm)

→(yi ,s) and its inverse. Therefore,
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es
mEn

s5dn
m5Es

men
s . ~6!

This orthogonality condition is equivalent to

ei
mEm

j 5d i
j , ~7!

Nmnm51, ~8!

Em
i ei

n1Nmnn5dm
n , ~9!

Nmej
m50, ~10!

nmEm
j 50. ~11!

~Note thatdm
m5dim V55 andd i

i5dim M54.!
Thus the bases (ej

m ,nm) and (Em
j ,Nm) are dual. They do

not depend on the metric of either spacetime, but only on the
particular embedding chosen.

Let us now introduce a scalar fieldf(yk,s), a vector field
Ai(yk,s), and the metric tensorgi j (yk,s), which are
M-valued tensor functions onV. We further define the metric
Gmn of the five-dimensional spacetimeV as an expansion
over the basis vectorsEm

i andNm :

Gmn5Em
i En

j gi j 1~NmEn
i 1NnEm

i !Ai1NmNnf. ~12!

Taking xi5yi , x55s5const, i.e., ei
m5d i

m ,nm5d5
m , Em

i

5dm
i , Nm5dm

5 in Eq. ~12! corresponds to the original
Kaluza model@1#. Klein’s modification@2# gi j →gi j 1AiAj ,
together with the identification off as a dilaton is the model
put forward by Jordan and Mu¨ller @4# and Thiry@5#. We note
that the metric~12! has the same form as the inverse of the
metric of Klein’s model, and thus the two theories are dual:
Kaluza’s model corresponds to slicing, while Klein’s model
corresponds to threading of the five-dimensional spacetime
@15#. The case withAi50 has also been considered~see, for
example,@22,23# and references therein!.

The lack of gauge invariance for the fieldsAi , which we
nevertheless will associate with the electromagnetic poten-
tials, in view of the slicing-threading duality, is compensated
by the freedom to fixf. This, as will become clear later, is
the freedom to fix the dilaton field.

Returning to Eq.~12!, we definegi j as the inverse of the
metric gi j . ThusAi5gi j Aj andA25gi j AiAj .

The inverseGmn of the metricGmn on V is then given by

Gmn5hi j ei
mej

n2uAi~ei
mnn1ei

nnm!1unmnn, ~13!

whereu5(f2A2)21 and hi j 5gi j 1uAiAj . One can easily
check thatGmlGln5dn

m . Using the inverseGmn ~13! of the
metric Gmn , we can raise and lower the five-dimensional
indices to get

Nm5GmnNn5u~nm2Aiei
m!, ~14!

N25NmNm5u, ~15!

nm5Gmnnn5AiEm
i 1Nmf, ~16!

n25nmnm5f. ~17!

Note that whenAi50 and f51, then Nm5nm as in the
Arnowitt-Deser-Misner approach@22#.

The extrinsic curvature is

K jl 5ej
mel

nQmn , ~18!

whereQmn5¹mNn5¹nNm .
Multiplying Eq. ~18! across byEa

j Eb
l and applying the

orthogonality conditions~7!–~11!, one easily finds

Qab5Ea
i Eb

j Ki j 1~NaEb
i 1NbEa

i ! f i1NaNbx, ~19!

with x5nmnnQmn and

f j5nmej
bQmb5AiKi j 1

1

N
] jN, ~20!

whereN5ANmNm.
The four-dimensional Christoffel symbols

g jk
i 5

1

2
gil ~]kgl j 1] jglk2] lgjk! ~21!

can then be expressed as

g j l
i 5~] jel

m1ej
ael

bGab
m !Em

i 2K jl A
i , ~22!

where Gab
m are the five-dimensional Christoffel symbols.

Further, the four-dimensional Riemann curvature tensor

r jkl
i 5]kg j l

i 2] lg jk
i 1g j l

mgmk
i 2g jk

mgml
i , ~23!

using Eqs.~22! and ~7!–~10!, becomes

r jkl
i 5Ea

i ej
lek

mel
nRlmn

a 1Ea
i ~¹mna!~ek

mKl j 2el
mKk j!

1¹l~AiKk j!2¹k~AiKl j !1AiAm~KmlKk j2KmkKl j !,

~24!

whereRlmn
a is the five-dimensional Riemann curvature ten-

sor. The above is ageneralizationof the Gauss equations.
Taking Ai50 and f51, one simply recovers the well
known Gauss equations~see, for example,@24#!

r i
jkl5Ea

i ej
lek

mel
nRa

lmn1Kk
i Kl j 2Kl

iKk j . ~25!

Let us now expand the five-dimensional Riemann curva-
ture tensor over our basis. Using its symmetries we can write

Rlmns5El
i Em

j En
kEs

l Ui jkl 1@~NlEm
j 2NmEl

j !En
kEs

l

1~NnEs
j 2NsEn

j !El
kEm

l #Vjkl

1~NlEm
j 2NmEl

j !~NnEs
l 2NsEn

l !Wjl , ~26!

where the coefficients in this expansion satisfy

Ui jkl 5Ukli j 52Ui jlk 52U jikl , ~27!

Vjkl52Vjlk , Wjl 5Wl j . ~28!

Using Eq.~24!, one can further find
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Ui jkl 5ei
lej

mek
nel

sRlmns

5r i jkl 2~p ikp l j 2p i l pk j!, ~29!

Vjkl5nlej
mek

nel
sRlmns

5AiUi jkl 2
1

N
~¹kp l j 2¹lpk j!, ~30!

wherep j l 5(1/N)K jl .
Finding the remaining tensorWjl is more complicated.

One can easily see that

Wjl 5nmnsej
lel

nRlmns5Sjl 1AkVlk j , ~31!

where

Sjl 5
1

N2
nsej

lel
n~¹lQsl2¹sQnl!. ~32!

In the above we identify derivatives in the direction ofns.
To handle this type of term, we will have to explicitly invoke
the dependence ons.

First, by virtue of Eq.~5!, we get the following expression
for the extrinsic curvature~18!:

K jl 52
N2

2
~¹jAl1¹lAj !1

N2

2
]sgjl

2
1

2
Nl~gkl] jEl

k1gk j] lEl
k1Al] jNl1Aj] lNl!

1
N2

2
Gmn@Ak]k~ej

mel
n!2]s~ej

mel
n!#. ~33!

Using Eqs.~20!, ~31!, ~32!, and~33!, it follows that

Wjl 5
1

N3
¹j¹lN2

2

N4
~] jN!~] lN!1AiAkUi jkl

1
1

N
@¹j~Akpkl!1¹l~Akpk j!#2

1

N
Ak¹kp l j

1
1

N2
pklp j

k2
1

N
]sp j l 1V j l , ~34!

whereV j l contains only terms that are proportional to de-
rivatives of the basis vectors and their duals with respect to
(yk,s).

The five-dimensional Ricci tensor can easily be calculated
from Eq. ~26!:

Rmn5Em
j En

l @hikUi jkl 2N2Ak~Vjkl1Vlk j !1N2Wjl #1~NmEn
l

1NnEm
l !~2hjkVjkl1N2AjWjl !1NmNnhjl Wjl . ~35!

Then the five-dimensional Einstein equations in vacuum

Rmn50 ~36!

reduce to

hikUi jkl 2N2Ak~Vjkl1Vlk j !1N2Wjl 50, ~37!

hjkVjkl2N2AjWjl 50, ~38!

hjl Wjl 50. ~39!

Multiplying Eq. ~37! by Aj and adding it to Eq.~38! allows
us to excludeWjl from Eq.~38!. Then, using the expressions
~29! and ~30! for Ui jkl andVjkl , Eq. ~38! becomes

¹kp l
k2¹lpk

k50. ~40!

Equations~40! ~as we will see below! are ageneralizationof
Maxwell’s equations in a fixed gauge.

One has to make a very important point here. Klein’s
theory corresponds to a threading decomposition of the five-
dimensional spacetime@15#. Rigorous analysis@16# shows
that the curvature tensor of the hypersurface formed is given
by Zelmanov’s curvature tensor, which differs from the ordi-
nary Riemann curvature tensor by additional terms contain-
ing s derivatives of the four-dimensional metric@17–21#. In-
dependence of the parameters forces the two curvature
tensors to be equal and thus represents a surface forming
condition. In Kaluza’s theory, the foliation of the five-
dimensional spacetime corresponds to slicing@15#. Then the
four-dimensional metricgi j naturally appears as the slicing
metric, and imposing independence on the parameters is not
at all necessary.

To simplify the analysis of the physics described by the
fields Ai , f, and N, we will, however, put aside the
s-dependent terms. Also, for simplicity, we will assume that
the basis elements and their duals are constant~thus recov-
ering the original Kaluza theory!. The tensorV j l will then
vanish from Eq.~34!.

Equation~40! becomes

¹kF
kl522Akr

kl1
2

N2
~pkl2p j

jgkl!]kN. ~41!

HereFkl5¹kAl2¹lAk is the Maxwell electromagnetic tensor
with Ak being the electromagnetic potential.

The first term on the right-hand side of Eq.~41! describes
an interaction between electromagnetic and gravitational
fields. We assume that it is much smaller than the remaining
terms, so that we can neglect it. Note thatAk cannot be
‘‘gauged up’’ to increase the scale ofAkr

kl. Furthermore, if
N is a constant, then Eq.~41! becomes the usual Maxwell
equations

¹kF
kl50. ~42!

The remaining two equations are

¹kS f k

N D50, ~43!

r j l 2
1

2
gjl r 5

N2

2
Tjl , ~44!

wherer 5gikr ik and r j l are the four-dimensional scalar cur-
vature and four-dimensional Ricci tensor, respectively.

The energy-momentum tensorTjl is therefore given by
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Tjl 5Tjl
Maxwell1gik¹iBjlk1Cjl 1D jl , ~45!

where

Tjl
Maxwell5gikFi j Fkl2

1

4
gjl FikFik,

Bjlk5Ak¹lAj2Al¹kAj2AjFkl1¹j~AkAl !

1gjl ~Ai¹kAi2Ak¹iA
i !, ~46!

Cjl 5gjl A
iAkr ik22AiAlr i j 22AiAjr il , ~47!

D jl 5
4

N4
~] jN!~] lN!2

2

N3
¹j¹lN

2
2

N2
pk

k~Al] jN1Aj] lN!1
2

N2
@2Akp j l

1Alp j
k1Ajp l

k2gjl ~Aip i
k2Akp i

i !#]kN. ~48!

We will analyze each of these terms separately. The first one
Tjl

Maxwell is the Maxwell energy-momentum tensor. The ten-
sorCjl describes the interaction between the electromagnetic
and gravitational fields. From Eq.~44! we see that, ifN2 is
very small~as we will confirm later!, thenr j l will be of the
order of N2, which justifies the neglect of the interaction
terms in Eq.~41! and the tensorCjl .

Using Eq.~33! in Eq. ~20! and then Eq.~20! in Eq. ~43!,
we see that a constant solution forN is allowed by Eq.~43!
if f satisfies

¹k]kf5
1

2
FikFik , ~49!

whereFik is a solution of Eq.~42!. For the constant solution
for N, the tensorD jl vanishes. Moreover,

0[gi j ¹iTjl 5gi j ¹iTjl
Maxwell , ~50!

since gmlgnk¹m¹nBjlk52(2/N)¹j¹k( f k/N)50 in view of
Eq. ~43!.

In other words, the conservation law~50! is given by the
usual Maxwell energy-momentum tensorTjl

Maxwell and N2

plays the role of the Newton constantGN :

N2

2
5

8pGN

c4
. ~51!

The generalized Einstein and Maxwell equations~41!–~48!
will be modified further upon inclusion ofs-derivative terms.
Equation ~51!, however, holds regardless of whether the
s-derivative terms are included or not. One has to point out
here that in the setup of Thiry@5#, and in @14#, GN.f2,
wheref satisfies Eq.~49!. This implies that a constant solu-
tion for f and, consequently,GN is possible only when the
unphysical constraintFikFik50 is satisfied.

In contrast, in the dual setup, a constant solution is pos-
sible. However,N ~together withAi andgi j ) is a solution to

the system of equations~41!, ~43!, and~44! and, in general,
does not need to be a constant. Then it plays the role of a
dilaton field.

To illustrate this, consider the standard cosmological met-
ric @11# with Em

n 5dm
n :

ds(5)
2 52s2dt21t2/as2/(12a)~dr21r 2dV2!

1a2~12a!22t2ds2. ~52!

Changing variables by r→sgebr with g52(1/2)(1
1a)/(12a) and t1/a→a(t), we get

ds(5)
2 52s2a2@a~ t !#2a22ȧ2~ t !dt212Ardrds

1sa2~ t !e2br~b2dr21dV2!1fds2, ~53!

where Ar5gba2(t)e2br , At5Aw5Au50, and f
5(g2/s)a2(t)e2br1a2(12a)22a2a(t).

We takeb to be a negative constant, so that the fieldAr
will fall off toward infinity. Since a(t) describes the infla-
tion, we note that the fieldAr expands asa2(t). The dilaton
~which models Newton’s constant! varies as

N25~12a!2a22@a~ t !#22a. ~54!

Thus,

Ġ

G
522a

ȧ

a
522aH, ~55!

whereH is Hubble’s constant. Observational limits@7# put
a,1023.

One should note that the four-dimensional metric is nows
dependent, but this does not pose a problem in the slicing
formulation. Only the term]sgjl from the extrinsic curvature
~33! should be recovered.

Finally, we note that the general solution for the dilaton
field can be written as

N25
~detgik!~detEn

m!2

detGmn
, ~56!

for a solutionGmn of Eq. ~36! and embedding specified with
En

m .
To recapitulate, we have found plausible generalizations

of the Einstein-Maxwell equations and explained the origin
of the constant solution for the dilaton~representing New-
ton’s constantGN) as well as the possibilities for modeling
nonconstant solutions for different cosmologies~representing
time-varying GN) in relation to the gauge freedom of our
model.

We thank Vesselin Gueorguiev, Brian Dolan, Brien Nolan,
and Siddhartha Sen for useful discussions and comments.
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