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Abstract

In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-
oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general,
the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity,
flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle
of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software
systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-
adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the
development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To
this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and
their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation
framework can facilitate the software developers on selecting a development methodology that suits their software requirements
and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the
propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software
in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development
methodologies should leave the selection of modelling languages and modelling tools to the software developers.

Keywords

model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software develop-
ment.

I. INTRODUCTION

There is a growing demand for developing applications with aspects such as context awareness and self-adaptive behaviours.
context awareness [1] means that the system is aware of its context, which is its operational environment. Hirschfeld et al. [2]
considered context to be any information that is computationally accessible and upon which behavioural variations depend.
A self-adaptive application adjusts its behaviour according to context conditions arising during execution. A self-adaptive
application modifies its own structure and behaviour in response to changes in its operating environment [3].

In recent years, a significant number of model-driven architecture approaches were proposed for the construction of context-
dependent and self-adaptive applications. The Object Management Group (OMG) presented Model Driven Architecture (MDA)
as a set of guidelines for building software systems based on the use of the MDD methodology [4]. MDA focuses primarily
on the functionality and behaviour of a distributed application or system deployed across many platforms. In MDA, the
functionality and behaviour are modelled once and only once. Thus, MDA defines the notions of a Computation Independent
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM). CIM describes the software requirements
in computational free fashion. A PIM describes the parts of a solution that do not change from one platform to another, and
a PSM includes descriptions of parts that are platform dependent [4].

This article contributes to the knowledge by providing an evaluation framework for most popular model-driven approaches
that were proposed to support the development of self-adaptive software systems. Such evaluation framework can facilitate
software developers on selecting the best development approach that suits their needs and the software requirements. This
article is structured as follows: the self-adaptive software and their self-* properties are defined in Section II. Section III
provides a detailed description of model-driven approaches that were proposed for facilitating the development of self-adaptive
software systems. Section IV proposes an evaluation framework for analysing and evaluating those model-driven approaches.
Section V illustrates the evaluation results, followed by the conclusions of this study.

II. SELF-ADAPTIVE SOFTWARE

Mobile computing infrastructures make it possible for mobile users to run software systems in heterogeneous and resource-
constrained platforms. Mobility, heterogeneity, and device limitations create a challenge for the development and deployment of
mobile software. Mobility induces context changes to the computational environment and therefore changes to the availability
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of resources and services. This requires software systems to be able to adapt their functionality/behaviour to the context changes
[5]. This class of software systems are called context-dependent/self-adaptive applications, which have the ability to modify their
own structure and behaviour in response to context changes in the environment where they operate [3]. Self-adaptive software
offers the users with context-dependent and context-independent functionality. Context-independent functionality (also called
base functionality) refers to software functionality whose implementation is unaffected by the context changes. For example, the
map view and user login forms in mobile map application are context-free functionality (i.e. context changes would not change
their functionality). The context-dependent functionality refers to software functionality, which exhibits volatile behaviour when
the context changes. Self-adaptive software can be seen as a collaboration of individual features spanning the software modules
in several places [2], and they are sufficient to qualify as heterogeneous crosscutting in the sense that different code fragments
are applied to different program parts [6]. Before encapsulating crosscutting context-dependent behaviours into a software
module, the developers must first identify the behaviours in the software requirements. This is difficult to achieve because, by
their nature, context-dependent behaviours are entangled with other behaviours, and are likely to be included in multiple parts
(scattered) of the software modules [7]. Using intuition or even domain knowledge is not necessarily sufficient for identifying
their volatile behaviour; instead, a formal procedure is needed for analysing and separating their individual concerns [8].

Implementing a self-adaptive software system in a resource-poor environment faces a wide rang of variance in platforms’
specifications and Quality of Services (QoS) [9]. Mobile devices have different capabilities in terms of CPU, memory, and
network bandwidth [10]. Everything from the devices used and resources available to network bandwidths and user context
can change extremely at runtime [11].

In general, model-driven architecture has several challenges such as maintaining the correspondence between architectural
models and software implementation in order to ensure that architecture-based adaptation is appropriately executed. The second
issue is providing the necessary facilities for implementing the software in wide-range of platforms. An appropriate way to
study those challenges is to classify them on the basis of adaptation features that they support and how they manage software
variability in the model level [12]. To this aim, the following sections describe several model-driven approaches proposed for
facilitating the engineering self-adaptive software system.

III. MODELLING SELF-ADAPTIVE SOFTWARE

In the classical view of object-oriented software development, the modular structure for software systems has rested on several
assumptions. These assumptions may no longer characterize the challenge of constructing self-adaptive software systems that
are to be executed in mobile computing environments [13]. The most important assumptions in object-oriented development
methodologies are that the decision to use or reuse a particular component/object is made at the time the software is developed.
However, the development of a variety of modern self-adaptive software architectures such as mobile/ubiquitous computing,
and component-based and context-oriented software has emphasized on deferring these decisions about component selection
until runtime. This might increase the software capabilities in terms of variability, adaptability, and maintainability, and increase
the anticipatory level of the software by loading a particular component/service that can handle unforeseen context changes
dynamically.

Supporting the development and execution of self-adaptive software systems raises numerous challenges. These challenges
include: 1) the development processes for building them, 2) the design space, which describes the design patterns and the
best practices of designing their building blocks, i.e. component model or code fragments, 3) the adaptation mechanism that
describes the best adaptation action that can be used under the limited resources of the computational environment.

In general, the development self-adaptive systems faces several challenges such as maintaining the correspondence between
architectural models and system implementation in order to ensure the adaptation action is appropriately executed. The second
issue is providing the necessary configuration that suits the deployment platforms. An appropriate way to study the challenges is
to classify them on the basis of adaptation features that they support and how they manage software variability in the architecture
level [12]. In the following sections, several approaches that target engineering self-adaptive systems are discussed.

A. Model Driven Development and AOP

Carton et al. [8] proposed the Theme/UML, a model driven approach supported by aspect-oriented programming in an
attempt to model various crosscutting concerns of context-aware applications at an early stage of the software development.
Theme/UML provides a systematic means to analyse the requirements’ specification in order to identify base and crosscutting
concerns, and the relationships between them. However, to the best of our knowledge, there is no similar approach that can help
the developers to analyse and understand the context-dependent behaviours in the requirements, design and implementation of
the self-adaptive applications.

The Theme/UML approach was based on the use of the Meta Object Facility (MOF) extension and the ECORE [14]. The
MOF meta model for the development of context-aware mobile applications proposed by de Farias et al. [15] was structured
according to the core and service views of the software system. This approach provides a contextual model that is independent
from the application domain. However, it does not provide high-level abstraction of the software models, which express
conceptual characteristics of the context-dependent behaviours. From a software developer’s perspective, it does not take into
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account architectural or deployment issues, because it is based on the service-oriented architectures. In addition, it has focused
on the model-to-model transformation for generating the software composition. Such approach adds substantial overhead over
the development for writing and configuring the MOF scripts. The Theme/UML methodology limits the development of self-
adaptive applications to a very specific framework that supports the AspectJ and Eclipse Modelling Framework (EMF) [16].
Extending this paradigm for another platform requires a specific compiler that supports Aspect-Oriented Programming (AOP)
and toolset that follow the EMF.

Plastic is another development approach, which uses the MDD paradigm for developing and deploying adaptable applications,
implemented in Java language [5]. The Plastic development process focuses on the model verification and validation and service
composition of java service stubs. The methodology shows a very interesting feature of runtime model verification and validation
mechanism. Unfortunately, the generated software is tightly coupled with the target deployment platform and cannot be used
with a standard development process supported by a standard object-oriented language other than the JAVA and AspectJ
languages. However, the two-paradigm Theme/UML and Plastic face challenges with regard to the model manipulation and
management. These challenges arise from problems associated with (1) defining, analysing, and using model transformations, (2)
maintaining traceability links between model elements to support model evolution and round-trip engineering, (3) maintaining
consistency among viewpoints, (4) tracking versions, and (5) using models during runtime [17].

B. A-MUSE

An MDA-based approach for behaviour modelling and refinement is introduced by Daniele et al. [18]. Daniele et al. proposed
the Architectural modelling for Service Enabling in Freeband (A-MUSE) approach, which focuses on the decomposition of
the PIM model into three levels; each level is used to automate a behavioural model transformation process. Daniele et al.
[18] applied their approach to a Mobile System Domain Specific Language (DSL) (called M-MUSE). Therefore, the platform
independent design phase has been decomposed into the service specification and platform-independent service design steps.
The platform-independent service design model should be a refinement of the service specification, which implies correctness
and consistency, particularly of behavioural issues, which have to be addressed in the refinement transformation. However,
when trying to realize this refinement transformation, a gap between service specification and platform-independent service
design was wide, so that correctness and consistency were hard to guarantee in a single refinement transformation. The authors
approach this problem by proposing multiple rounds of transformation between the PIM and PSM, which requires the developers
to switch simultaneously between the PIM, PSM and the service specifications several times.

C. CAMEL

Context Awareness modelling Language (CAMEL) is an MDD-based approach proposed by Sindico and Grassi [19]. The
approach uses a domain-specific language called JCOOL, which provides a metamodel for context sensing with the supports
of the context model designed using the JCOOL meta model. However, Sindico and Grassi implemented the context binding
as the associate relationship between context value and context entity. On the other hand, context-driven adaptation refers to a
structure or behaviour elements, which are able to modify the behaviour based on context values. The structural or behavioural
insertion is accomplished whenever a context value changes; it uses AOP inter-type deceleration, where the behavioural insertion
is accomplished by means of an AOP advice method to inject a specific code into a specific joinpoint.

The CAMEL paradigm provides insufficient details with regard to the underlying component model or the application
architecture. The authors used their former domain-specific language to support the Context-Oriented Programming (COP)
approach proposed by Hirschfeld et al. [2]. Moreover, CAMEL has no formal MDD methodology that possesses a generic
life cycle that a developer can use. Irrespective of these problems, JCOOL is specific to an AOP framework called the Simple
Middleware Independent LayEr (SMILE) [20]. SMILE platform used for distributed mobile applications [20]. The model
approach in JCOOL supports only ContextJ, which is an extension of the Java language proposed by Appeltauer et al. [21].
The CAMEL methodology requires the software to be re-engineered whenever a new context provider is introduced into the
context model. The developers must build a complete context model for the new values and maintain the underlying JCOOL
DSL and the Unified Modelling Language (UML) model. The CAMEL methodology has adapted AOP and the EMF to
produce a context-oriented software similar to the layered approach proposed by Hirschfeld et al. [2]. This makes CAMEL
limited to the EMF tool support and the ContextJ language [22]. From our point of view CAMEL tightly coupled the software
with modelling language, modelling tool and the target deployment platform.

D. MUSIC MDD

The MUSIC development methodology [23] adapts a model-driven approach to construct the application variability model.
In MUSIC, applications are built using a component framework, with component types as variation points. The MUSIC
middleware is used to resolve the variation points, which involves the election of a concrete component as a realization for the
component type. The variability model defines the component types involved in the application’s architecture and describes
their different realizations. This comprises either a description of collaborating component types and rules for a composite
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realization, or a reference to a concrete component for an atomic realization. To allow the realization of a component type
using external services, the variability model also includes a service description, which is used for service discovery.

The software architecture in MUSIC is a pluggable architecture for self-adaptive applications. It proposes middleware
featuring a generic and reusable context management system. The architecture supports context variation and resource utilization
by separating low-level platform-specific context from higher-level application-specific concerns. The resource utilization is
improved through intelligent activation and deactivation of context-related plug-ins based on the needs of the active application.
The MUSIC middleware architecture defines multiple components that interact with each other to seamlessly enable self-adaptive
behaviour in the deployed applications. These components include context management, adaptation reasoner, and a plug-in
life-cycle management based on the Open Services Gateway initiative framework (OSGI) [24].

At runtime, a utility function is used to select the best application variant; this is the so-called ’adaptation plan’. The utility
function is defined as the weighted sum of the different objectives based on user preferences and QoS. Realistically, it is
impossible for the developer to predict all possible variations of the application when unanticipated conditions could arise. In
addition, mobile computing devices have limited resources for evaluating the many application variations at runtime and can
consume significant amounts of device resources. As an outcome, the benefit gained from the adaptation is negated by the
overhead required to achieve the adaptation [12].

E. Paspallis MDD

Paspallis [25] introduced a middleware-centric development of context-aware applications with reusable components. Essen-
tially, his work is based on the MUSIC platform [26]. According to Paspallis, an MDA-based context-aware application is built
by separating the concerns of the context provider from those of the context consumer. For each context provider, a plug-in or
bundle is planned and designed during the design phase. At runtime, a utility function is used to consider the context state and
perform decision-making process. Once the plug-in is selected to be loaded into the application, middleware support performs
dynamic runtime loading of the plug-in.

However, it is impossible for the developers to predict all the context providers that might produce context information at
runtime. In addition, using this methodology means that the developer is required to design a separate plug-in architecture for
each context provider, which is proportional to the available number of context providers. Additionally, this methodology does
increase the development effort as each plug-in requires a separate development process.

F. U-Music MDD

Khan [27] proposed U-MUSIC methodology. U-MUSIC adapts a model-driven approach to constructing self-adaptive
applications and enabling component model-based, unanticipated adaptation. However, the author has modified the MUSIC
methodology to support semi-anticipated adaptation; also called planning-based adaptation, which enables the software to adapt
among foreseeable context changes. U-MUSIC enables developers to specify the application variability model, context elements,
and data structure. The developers are able to model the component functionalities and quality of service (QoS) properties
in an abstract, platform-independent way. In U-MUSIC, dynamic decision-making is supported by the MUSIC middleware
mentioned above. However, this approach suffers from a number of drawbacks. First, it is well-known that correct identification
of the weight for each goal is a major difficulty for the utility function. Second, the approach hides conflicts between multiple
goals in its single, aggregate objective function, rather than exposing the conflicts and reasoning about them. It would be
optimistic to assert that the process of code generation from the variability models can become completely automatic or that
the developer’s role lies only in application design.

G. CAUCE

CAUCE proposed as a model-driven development approach [28]. The authors defined an MDA approach that focuses on
three layers of models. The first layer confirms to the computational independent model for capturing the conceptual properties
of the applications. The second layer defines three complementary points of view of the software systems. These views include
deployment, architecture and communication. The third layer focuses on converting the conceptual representation of the context-
aware application into a software representation using a multi model transformation. The Atlas Transformation Language (ATL)
is used to interpret the model and convert them into a set of models conforming to the platform independent model. The final
model is transformed using the MOF Script language based on the EMF paradigm [14]. The CAUCE methodology focuses
more on the CIM by splitting this layer into three layers of abstraction, which confirms to the tasks, social and space meta
models. The task model focuses on modelling a set of tasks and the relationships among them that any entity in the system
is able to perform. The social metamodel defines the social environment of the entities in the system and is directly related to
the entity task and entity information that identify of the context-aware application behaviour. The space metamodel defines
the physical environment of the entities in the system. Therefore, this metamodel is directly related to the physical conditions,
infrastructure and location characteristics of the context-aware applications.

However, the CAUCE methodology provides a complete development process for building context-aware applications. Despite
that, CAUCE is limited to specific modelling tool and language, in this case the UML is integrated with EMF. The generated
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application can only be implemented using Java language as it is supported by the ATL and MOF Script languages. However,
it is impossible for the developers to adapt CAUCE for building heterogeneous and distributed mobile applications, which
might have multiple deployment platforms and requires variant implementation languages.

H. ContextUML

Generally, UML profiles and metamodels are used to extend the UML language semantics. ContextUML was one of the
first approaches that targeted the modelling of the interaction between context and web service applications [29]. ContextUML
was extended by Prezerakos et al. [30], using aspect-oriented programming and service-oriented architecture to fulfil the user’s
needs. However, contextUML used a UML metamodel that extended the regular UML by introducing appropriate artifacts
that used to create context-aware applications. contextUML produces a class diagram, which corresponds to the context class
and to specific services. They mitigate the UML relationship and dependency to express the interaction between the context
information and the respective services. A means of parameter injection and service manipulation are used to populate specific
context-related parameters in the application execution loop.

However, the UML profiles and metamodels lack from several features required for modelling the self-adaptive software
system. Ignoring the heterogeneity of the context information, they based their claims on the nature of the context values,
which can fluctuate and evolve significantly at runtime. It is not feasible to this study how the behaviour is modelled when
multiple context values have changed at the same time.

I. COCA-MDA

Accodring to the Context-Oriented Component-based Applications Model-Driven Architecture (COCA-MDA) approach, the
software self-adaptability and dependability can be achieved by dynamically composing software from context-oriented modules
based on the context changes rather than composing the software from functional-oriented modules. Such composition requires
the design of software modules to be more oriented towards the context information rather than being oriented towards the
functionality. The principle of context orientation of software modules was proposed in the COCA-MDA [31]. COCA-MDA
proposes a decomposition mechanism of software based on the separation between context-dependent and context-independent
functionality. Separating the context-dependent functionality from the context-independent functionality enables adaptability
and dependability of software systems with the aid of middleware technology. The middleware can adapt the software behaviour
dynamically by composing interchangeable context-dependent modules based on context changes. COCA-MDA proposes that
software self-adaptability is achieved by having both an adaptive middleware architecture and a suitable decomposition strategy,
which separates the context-dependent functionality from the context-independent functionality of the software systems.

COCA-MDA was proposed as a generic and standard development paradigm towards constructing self-adaptive software
from context-oriented components, which enables a complete runtime composition of the context-dependent behaviours and
provides the software with capabilities of self-adaptability and dependability in mobile computing environment. The context-
oriented component model encapsulates the implementation of the context-dependent parts in distinct architectural units, which
enables the software to adjust its functionality and/or behaviour dynamically. This differs from the majority of existing work,
which seek to embed awareness of context in the functional implementation of applications. The context-oriented software is
developed using a COCA-MDA. Afterwards, the context-oriented software is manipulated at runtime by a COCA-middleware
that performs a runtime behavioural composition of the context-dependent functionality based on the operational context. The
self-adaptive software dependability is achieved through the COCA-middleware capability in considering its own functionality
and the adaptation impact/costs. A dynamic decision-making based on a policy framework is used to evaluate the architecture
evolution and verifies the fitness of the adaptation output with the application’s objectives, goals and the architecture quality
attributes.

The COCA-MDA follows the principles of OMG model-driven architecture. In MDA, there are three different viewpoints of
the software: the Computation Independent View (CIV), the Platform Independent View (PIV), and the Platform Specific View
(PSV). The CIV focuses on the environment of the system and the requirements for the system, and hides the details of the
software structure and processing. The PIV focuses on the operation of a system and hides the details that are dependent on
the deployment platform. The PSV combines the CIV and PIV with an additional focus on the details of the use of a specific
platform by a software system [4]. COCA-MDA partitioning the software into three viewpoints: the structure, behaviour, and
enterprise viewpoints. The structure viewpoint focuses on the core component of the self-adaptive application and hides the
context-driven component. The behaviour viewpoint focuses on modelling the context-driven behaviour of the component,
which may be invoked in the application execution at runtime. The enterprise viewpoint focuses on remote components or
services, which may be invoked from the distributed environment. The COCA-MDA provides the developers with the ability
to specify the adaptation goals, actions, and causes associated with several context conditions using a policy-based framework.
For each COCA-component, the developers can embed one or more Decision PoLicys (DPLs) that specify the architecture
properties. The DPL is described by a state-machine model based on a set of internal and external variables and conditional
rules. The rules determine the true action or else an action based on the variable values. The action part of the state diagrams
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usually involves invoking one or more of the component’s layers. A single layer is activated if a specific context condition is
found, or deactivated if the condition is not found.

The use of COCA-MDA for building self-adaptive applications for indoor wayfinding for individuals with cognitive im-
pairments was proposed in [32]. Evaluating the COCA-MDA productivity among the development cost and effort using The
Constructive Cost Model II (COCOMO II) [33] was demonstrated in [34] . This article focuses on evaluating the features of
COCA-MDA against the above mentioned approaches as shown in the following section.

IV. FEATURE ANALYSIS AND COMPARATIVE STUDY OF MDA-BASED APPROACHES

From the software developer’s perspective, it is vital to know the features of the development paradigm, which might be
used in constructing a self-adaptive application. Feature evaluation of the development methodology can assist the developers
in selecting among the proposed methodologies in the literature for achieving adaptability and dependability of the software
systems. Improving the development of self-adaptive software systems using model driven approach has attained several research
efforts. The target was in general to introduce software with adaptability and variability while focusing on reducing the software
complexity and optimising the development effort.

The examination of software system performance, dependability and availability is of greatest importance for tuning software
system in conjunction with several architecture quality attributes. Such performance analysis was considered by the modelling
Specification and Evaluation Language (MOSEL) [35]. The system modelling using MOSEL illustrates how easily it can be used
for modelling real-life examples from the fields of computer communication and manufacturing systems. However, extending
the MOSEL language towards the modelling and performance evaluation of self-adaptive software system can estimate several
quality attributes of model-based architecture and provides early results about how efficient is the adaptation action.

Kitchenham et al. in [36] proposed the DESMET method, which evaluates software development methodologies using an
analytical approach. Asadi et al. have adapted the DESMET method to analyse several MDA-approaches. The authors adapted
several evaluation criteria that can be used to compare MDA methodologies based on MDA-related features and MDA-based
tool features [37].

However, Calic et al. [38] proposed an evaluation framework to evaluate MDA-based approaches in terms of four major
criteria groups, as follows: I) MDA-related features: The degree to which the proposed methodologies are compliant with
OMG’s MDA specification [4]. II) Quality: Evaluation of the overall quality of the MDA-based approaches including their
efficiency, robustness, understandability, ease of implementation, completeness, and ability to produce the expected results [36].
III) Usability: Simplicity of use and ease of implementation by the developer, which covers clear information about the impact
of the methodology on the development effort [39], [40]. IV) Productivity: The quality of benefits derived from using the
methodology and its impact on the development time, complexity of implementation, code quality, and cost effectiveness [38].
Calic at al. [38] presents the COPE tool, to evaluate the MDA productivity by automate the coupled evaluation of metamodels
and model by recording the coupling history in an history model.

Lewis et al. [41] have evaluated the impact of MDA on the development effort and the learning curve of the MDA-based
development tools based on their own experiences. The authors concluded that the real potential behind MDA is not completely
employed either by current tools or by the proposed MDA approaches in the literature. In addition, the developers have to
modify the generated code such that it is suitable for the target platform. The MDA tools can affect the level of maintenances
required for the generated codes. In the same way, the developer’s level of understanding of MDA tasks and their familiarity
with the target platform have direct impacts on MDA productivity.

The COCOMO II [33] emerged as software cost estimation model, which considers the development methodology pro-
ductivity. The productivity evaluates the quality of benefits derived from using the development methodology, in terms of
its impact on the development time, complexity of implementation, code quality, and cost effectiveness [38]. COCOMO II
allows estimation of the effort, time, and cost required for software development. The main advantage of this model over its
counterparts such as the Software Life-cycle Management (SLIM) model [42] and the System Evaluation and Estimation of
Resources Software Estimation Model (SEER-SEM) [43] is that COCOMO II is an open model with various parameters which
effect the estimation of the development effort. Moreover, the COCOMO II model allows estimation of the development effort
in Person-Months (PM) and the Time to Develop (TDEV) a software application. A set of inputs such as software scale factors
(SF) and 17 effort multipliers is needed. A full description of these parameter is given in the COCOMO II model definition
manual, which can be found in [33]. An example of an evaluation of MDA approaches with COCOMO II can be found in
[44].

In this research, we intend to use an evaluation framework that can test and qualify the ability of MDA-based approaches to
produce the expected results [36] in terms of dynamic adaptation in general, and self-adaptability, in specific. These features
are evaluated in the following sections.

A. Existence of MDA-related Features

MDA features refers to the degree to which the proposed methodologies are compliant with the OMG’s MDA specifications;
these specifications can be divided into the support of CIM, PIM, PSM, model validation, and transformation [4]. In terms of
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MDA features, we adapt the criteria proposed by Asadi and Ramsin [37], which highlights the methodology’s conformance
to the original OMG standard, as shown in Table I. Feature analysis can be performed in two ways: scale form and narrative
form. The scale form attaches the methodology complaint to a specific feature, which is divided into three ranks, from A to
C, as shown in each table. The narrative form captures whether the methodology covers a specific feature based on the level
of involvement.

TABLE I: MDA-related criteria evaluation
Group 
criteria Features Criterion

 Type Description of level UML-based 
meta model CAMEL A-MUSE MUSIC Paspalis U-MUSIC CAUCE COCA-

MDA
Tool suit 
and implementation: 

Scale form A. The methodology does not 
provide a specific tool and there are 
no explicit guidelines as to how to 
select an appropriate alternative.                                                            
B. The methodology does not 
provide a complete toolset, or only 
general guidelines are provided for 
selecting alternative tools.  
C. The methodology provides a 
complete toolset, or provides 
precise guidelines for selecting 
appropriate alternative tools.

A A A C B B A B

Computational independent 
model

Scale form A. Production of the model are not 
addressed by the methodology. 
B. The methodology provides 
general guidelines for creating the 
model; creation steps are not 
determined precisely. 
C. The methodology explicitly 
describes steps and techniques for 
creating the model.

A A A B B B C C

Platform independent model Scale form 

A. Production of the model are not 
addressed by the methodology. 
B. The methodology provides 
general guidelines for creating the 
model; creation steps are not 
determined precisely. 
C. The methodology explicitly 
describes steps and techniques for 
creating the model.

B B B C B C C C
Platform specific model Scale form 

A. Production of the model are not 
addressed by the methodology. 
B. The methodology provides 
general guidelines for creating the 
model; creation steps are not 
determined precisely. 
C. The methodology explicitly 
describes steps and techniques for 
creating the model.

B B C B C C C

Verification and validation Scale form A. The activity is not defined and is 
devolved to the developers. 
B. The activity is defined by the 
methodology, but not in detail. 
C. The methodology provides 
explicit and detailed guidelines and 
techniques for performing the 
activity.

B A B C A A A C
Source model. 
Target model
synchronisation

Scale form 
A. The activity is not defined and is 
devolved to the developers. 
B. The activity is defined by the 
methodology, but not in detail. 
C. The methodology provides 
explicit and detailed guidelines and 
techniques for performing the 
activity.

A A B C A B A A

Use of UML profiles  Narrative Involved: the Methodology depend 
on the UML Profile  
Devolved: Methodology is not using  
UML profile

Involved involved Devolved Devolved Devolved Devolved Devolved Devolved

B. Tool-related feature analysis

The major challenges that developers face when attempting to realize the MDD vision is the selection of a modelling language
and modelling tool. Modelling languages challenges arise from concerns associated with providing support for creating and
using an appropriate modelling abstraction for analysing and designing the software [17]. A second challenge posed by Asadi
and Ramsin [37], that each development methodology generates more specific technical details that suit the underlying modelling
language or modelling tool they used, as each tool requires a learning curve, and it might have some limitation with regard
to the platform and the number of implementation languages they support [41]. This implies that a MDD approach should be
decoupled from using a specific tool or modelling language. The developers have to be free on selecting the tool(s) that fits
their needs and the software under development.

On the other hand, MDD approaches should focus more on describing standard development processes without relaying
on a specific technology or platforms like EMF and ECORE. In terms of the tools the methodology used, the features that
highlight the methodology dependency on the modelling languages and tools are shown in Table II.

TABLE II: MDA tool-related criteria

Criterion 
Name Feature Description of level UML-based 

meta model CAMEL A-MUSE MUSIC Paspalis U-MUSIC CAUCE COCA-
MDA

Model To Model transformation Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Involved Involved Involved Involved Involved Involved Involved

Model to code transformation
Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Devolved Involved Involved Involved Involved Involved Involved

Meta-model maintainability

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Involved Involved Involved Devolved Involved Devolved Involved

Verification of the generated 
model and code

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Devolved Devolved Involved Involved Involved Devolved Involved

Traceability between models

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Devolved Involved Involved Involved Involved Devolved

Involved

C. Quality of the MDA-based Approaches

Quality refers to the overall quality of the MDA-based approaches, including their efficiency, robustness, understandability,
ease of implementation, completeness, and ability to produce the expected results [36]. However, in this research, we have
focused on the ability of the MDA-based approaches to provide the expected results that support the adaptability of the generated
software, whether these results are derived from the code or the architecture. Moreover, we have split these criteria into
four groups: requirements engineering, unanticipated awareness, context model, and modelling context-dependent behavioural
variations.
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1) Requirements Engineering of Context-dependent Behavioural Variations: Requirements engineering refers to the causes
of adaptation, other than the functional behaviour of the self-adaptive system. Whenever the system captures a change in the
context, it has to decide whether it needs to adapt. The MDA-based approaches in the related work were evaluated regarding
whether they support the modelling of context requirements as a specific feature and whether they support the requirements’
engineering in general, as shown in Table III.

In addition, the methodology’s ability to analyse and models the context-dependent behaviour variations requires the MDD
supports at three levels. The first is the requirement analysis at the computational independent model. The second is the
representation of these requirements by means of UML objects at the platform independent model and platform specific
model. The third is the representation of the context-dependent behaviour as runtime objects, which are a code representation
of these requirements [45]. However, the evaluation of these criteria is shown in Table III.

TABLE III: Supporting context-dependent behaviour variations on the analysis, design and implementation

Criterion 
Name Features Criterion 

Type Description of level UML 
metmodel CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE COCA-

MDA

Requirements 
analysis in 
the CIM 

Narrative 

Involved : The methodology supports 
context-dependent behaviour 
concerns.  

Devolved : The methodology does not 
support context-dependent behaviour 
concerns.  

Devolved Involved Devolved Devolved Involved Devolved Devolved Involved

Modelling 
Context-
dependent 
behaviour at 
PIM

Narrative 

Involved : The methodology has 
supports for modelling the context-
dependent behaviours at the PIM.   

Devolved : The methodology has no 
supports for modelling the context-
dependent behaviours at the PIM.  

Devolved Involved Devolved Devolved Devolved Devolved Devolved Involved

Modelling 
Context-
dependent 
behaviour at 
PSM.

Narrative 

Involved : The methodology has 
supports for modelling the context-
dependent behaviours at the PSM.   

Devolved : The methodology has no 
supports for modelling the context-
dependent behaviours at the PSM.  

Devolved Involved Devolved Devolved Devolved Devolved Involved Involved

2) Unanticipated Awareness: This feature captures whether a context change can be predicted ahead of time [46]. Antici-
pation can be classified into three degrees: foreseen, foreseeable, and unforeseen changes. Foreseen refers to the changes that
are handled in the implementation code. Foreseeable refer to the context changes that were predicted at the software design.
Unforeseen refers to the changes that are not modelled at the design or the implementation stage, but are to be handled at
runtime [47]. The evaluation criteria are shown in Table IV with their related scale form.

TABLE IV: Anticipation of context change-related criteria and evaluation results

Criterion 
Name Features Criterion 

Type Description of level UML 
metamodle CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE COCA-

MDA
Foreseen 
changes  

Scale form A. The methodology takes care of the context 
changes implicitly by the code. 

B. The methodology takes care of the context 
changes explicitly by means of UML model

C. The methodology takes care of the context 
changes explicitly enabling the developer to 
model them in abstract level. 

B A B C B C C C

foreseeable 
changes 

Scale form A. The methodology enables the developer to 
plane for the context changes implicitly by 
maintaining the code. 
B. The methodology  planned for  the context 
changes explicitly by the variation model 
supported by planning-based adaptation at 
runtime. 
C. The methodology takes care of the context 
changes and enables the developer to model 
them in an abstract level.  

B A B C B C B C

Unforeseen 
Changes 

Scale form A. The methodology anticipates the context 
changes implicitly by  maintaining the code to 
handle them , static adaptation. 
B. The methodology anticipates the context 
changes explicitly and enables the developer 
to specify several application variations 
models supported by refining the base model. 
C. The methodology anticipates the context 
changes at runtime by means of requirements' 
reflection and allows the developers to 
represent them as runtime objects. 

A A B B B B B C

3) Context Model: This captures the ability of the methodology to incorporate the context information using the ’separation
of concerns’ technique between the context information model and the business logic. The first criterion focuses whether the
methodology supports/uses the separation of concerns in the development processes. The second criterion refers to the ability
to bind the context source to the context provider, as proposed by Sen and Roman [48] and Broens et al. [49] and Paspallis
[50]. The binding mechanism enables the developers to map each context cause to the affected architectural units. The binding
mechanism also enables the application to determine which part has to manage the context changes, by means of the adaptation
mechanism.

The evaluation criteria for the context model are shown in Table V.
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TABLE V: Context model-related criteria and evaluation results

Criterion 
Name Features Criterion 

Type Description of level UML 
metmodel CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE COCA-

MDA
separation of 
concerns between 
the context model 
and the  business 
logic code.

Narrative Implicitly: The context model is 
implicitly handled by the 
generated code.

Explicitly: The context model is 
explicitly separated from the 
generated code.

Implicitly Implicitly Implicitly Explicitly Explicitly Implicitly Implicitly Explicitly

Context Binding Narrative Involved : The methodology 
binding the context information  
to architectural units

Devolved: The methodology is 
does not support context 
binding 

Involved Involved Devolved Devolved Involved Devolved Devolved Involved

4) Modelling Context-dependent Behaviour: These criteria refer to the ability of the model to capture the impact of context
changes on the self-adaptive application’s behaviour. However, Hirschfeld et al. [2] classified these changes into three kinds of
variations: actor dependent, system dependent, and environment dependent behavioural variations. These behavioural variations
requires a separation between their concerns, by separating the context handling from the concern of the application business
logic. In addition, a separation between the application-dependent parts from the application-independent parts can support
behavioural modularization of the application, thereby simplifying the selection of the appropriate parts to be invoked in the
execution, whenever a specific context condition is found. The behavioural modelling criteria are shown in Table VI.

TABLE VI: Modelling context-dependent behaviour variations and evaluation results

Criterion 
Name Features Criterion 

Type Description of level UML 
metmodel CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE COCA-

MDA
Actor-dependent 
behaviour 

Scale form A. The methodology does not capture 
the actor-dependent behaviour   

B. The methodology captures actor-
dependent, implicitly by means 
code weaving and advise.   

C.The methodology captures actor-
dependent behaviour in abstract 
level, manipulating the behaviour 
performed at runtime by means of 
compositional reflection

A A A A A A A C

System-
dependent 
behaviour 

Scale form A. The methodology does not capture 
the system-dependent behaviour. 

B. The methodology captures system-
dependent, implicitly by means of 
code weaving and advise methods.   

C.The methodology capture system-
dependent behaviour in abstract 
level, manipulating the behaviour 
performed at runtime by means of 
compositional reflection

A A A B A B B C

Environment-
dependent 
behaviour 

Scale form A. The methodology does not capture 
the environment-dependent 
behaviour   

B. The methodology captures 
environment-dependent, implicitly 
by means of code weaving and 
advise methods.   

C.The methodology captures 
environment-dependent behaviour 
in abstract level, manipulating the 
behaviour performed at runtime by 
means of compositional reflection

A A A A A A A C

V. EVALUATION RESULTS

Based on the analysis results shown in Tables I, II, III, IV, V, and VI, we find that the discussed methodologies in the related
work suffer from several critical failings in terms of their conformance to the OMG’s guidelines for MDA methodology [4].

First, it is well known that correct identification of the weight of each goal is a major difficulty for the utility functions as
shown in the MUSIC, U-MUSIC and Paspallis methodologies.

Second, these approaches hide conflicts among multiple adaptation goals by combining them into a single, aggregate objective
function, rather than exposing the conflicts and reasoning about them. On the other hand, it would be optimistic to assert that the
process of code generation from models can become completely automatic or that the developer’s role lies only in application
design, as discussed in the above with regard to CAMEL and A-MUSE.

Third, it is impossible for the developers to predict the possible application variations, which will extend the application
behaviour when unanticipated conditions arise, this applied to all methodologies mentioned in the above.

In addition, mobile devices have limited resources for evaluating many application variations at runtime, which might
consumes significant amounts of the allocated resources. As a result, the benefits gained from the adaptation are negated by
the overhead required to achieve the adaptation. Fourth, the previously mentioned methodologies produce an architecture with
a tight coupling between the context provider and the context consumer, which may cause the middleware to notify multiple
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components about multiple context changes. Finally, all the methodologies seem to generate an architecture that is tightly
coupled with the target platform for deployment and the modelling tools they used.

In addition, the developers have to explicitly predict the final composition of the software and the possible variations of the
application, whether at the platform independent model or through the model transformation. Moreover, the developers have
to modify the generated code to be suitable for deployment on the target platform and to be integrated with the middleware
implementation, which is in the best case made a hug gap between the middleware designer and the application developer.
Understandings the modelling tasks and the target platform configurations have limited software developers from employing
MDA-approaches in several platforms.

VI. CONCLUSIONS

With the current state-of-the-art, it is possible to design a system that could adapt its behaviour. However, any adaptation
would either have to be pre-defined at design time, or would have to be a reflective response to some monitored parameters,
perhaps by using the available techniques of model-driven architecture. An effective pre-defined responses would be dependent
on the requirements analyst anticipating and enumerating of all the possible environmental states and the corresponding
behaviour required. A drawback of the reflective response is that the relationship between the adaptation and the objective goal
would be at best implicit, making the verification of goal satisfaction hard or even impossible. The MDD-based approaches
proposed in the literature suffer from a number of drawbacks. First, it would be optimistic to assert that the process of model
transformation and code generation from the software models can become completely automatic and that the developer’s role
lies only in application design. Second, it is impossible for the developer to predict all possible variations of the application
when unanticipated conditions will arise. In addition, mobile devices have limited resources for evaluating many application
variations at runtime and can consume significant amounts of device resources. As result, the benefit gained from the adaptation
is negated by the overhead required to achieve the adaptation. Third, each development methodology generates more specific
technical details that suit the underlying implementation language or modelling tool they used. We found that COCA-MDA is
more capable to meet the requirements of self-adaptive systems and allows the software developers to adapt it in wide range
of execution platforms.
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