
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Masters Science 

2013-12 

Manufacture and Investigation of Organic Composite Polymer Manufacture and Investigation of Organic Composite Polymer 

Based Films for Advanced Flexible Solar Cells Based Films for Advanced Flexible Solar Cells 

Raffie Arshak 
Technological University Dublin 

Follow this and additional works at: https://arrow.tudublin.ie/scienmas 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Arshak, R. (2013.) Manufacture and Investigation of Organic Composite Polymer Based Films for 
Advanced Flexible Solar Cells. Masters Thesis. Technological University Dublin. doi:10.21427/D7GC8C 

This Theses, Masters is brought to you for free and open access by the Science at ARROW@TU Dublin. It has been 
accepted for inclusion in Masters by an authorized administrator of ARROW@TU Dublin. For more information, 
please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scienmas
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/scienmas?utm_source=arrow.tudublin.ie%2Fscienmas%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=arrow.tudublin.ie%2Fscienmas%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


 
 
 
 

Manufacture and Investigation of Organic 

Composite Polymer Based Films for Advanced 

Flexible Solar Cells 

 
 
 
Raffie Arshak, B.Sc. 
 
MPhil Thesis 
 
Dublin Institute of Technology 
 
Supervisors: Dr. Olga Korostynska, Dr. John Doran 
 
School of Physics 
 
Submitted December 2013 



Raffie Arshak MPhil i 

Abstract 

Modern society has created big challenges in the area of sustainable supply of energy to 

satisfy the needs of growing population and to account for depleting fossil fuel 

resources. The Irish Government has set targets for the energy sector by 2020, with 33% 

of electricity to be generated from renewable sources. Organic photovoltaic devices 

offer several advantages over expensive silicon solar cells, including deposition of ultra-

thin films by spin-coating, printing and spray-coating. This in turn provides for the 

exciting possibility to make lightweight, flexible solar cells for a broad range of existing 

and emerging applications for security, military and medicine. 

This research project was inspired by the current drive into finding alternative 

technologies and materials for the design and manufacture of advanced solar cells. The 

primary objective was to tailor the properties of Poly3Hexylthiophene: PhenylC60 

Buturic Acid Methyl Esther composite (P3HT:PCBM) thin films for flexible organic 

solar cells performance. The extensive experimental work was conducted to reveal the 

effect of the solar irradiation and thermal annealing on the dielectric, optical and 

electrical properties of P3HT:PCBM thin films. A common degradation pattern was 

demonstrated in the films after UV exposure whereby the optical absorbance and the 

resistivity were shown to be inversely proportionate. These two correlating techniques 

showed similar patterns after exposure. It was also shown that annealing the structure 

after deposition increased the absorbance in the thin film and the quantum efficiency of 

the final prototype device was related to film morphology. 
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The dielectric properties of these films were studied using a novel microwave 

spectroscopy technique and it is believed to be the first report on the application of this 

novel technique to photovoltaic materials characterisation.  

To examine the dielectric properties of the P3HT:PCBM films using microwave 

spectroscopy, two types of Electro Magnetic (EM) wave sensors were fabricated, one on 

a Rogers substrate with Cu patterns and a second on a flexible substrate with Ag 

patterns.  Both types of EM sensors exhibited shifts in resonant peak frequencies and 

amplitude during exposure to solar irradiation. All other experimental parameters and 

environmental conditions were kept constant. Therefore it is reasonable to conclude that 

the proposed method of microwave spectroscopy is a reliable tool to trace the changes 

in the properties of the materials caused by solar irradiation. The optical properties of 

the P3HT:PCBM films displayed a decrease in absorbance after 40mins solar simulator 

irradiation and then an increase in absorbance from 40 min to 20hrs. The electrical 

properties of P3HT:PCBM films showed a resistance decrease as the films were 

illuminated by a solar simulator from 0 to 40 min, and a subsequent increase in 

resistance up to 20hrs. In addition, a bespoke solar cell on flexible Polyethylene 

terephthalate (PET) was constructed and tested. It exhibited a fill factor and an 

efficiency of 0.3238 and 0.49% respectively. Although the performance is poor 

compared to reported state of the art for organic solar cells, the work demonstrates that 

operational devices can be manufactured under non-optimised laboratory conditions. 
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Abbreviations and Symbols 

AFM  Atomic Force Microscope 

Ag  Silver 

AM  Air Mass 

Cu  Copper 

EM  Electro Magnetic 

εr  Relative Permittivity  

FF  Fill Factor 

HFSS  High Frequency Structural Simulator 

HOMO Highest Occupied Molecular Orbital 

IDE  Interdigitated Electrode 

Imp  Current at Max Power  

ISC  Short Circuit Current 

ITO  Indium Tin Oxide 

Jsc  Short Circuit Current 

LUMO  Lowest Unoccupied Molecular Orbital 

OSC  Organic Solar Cell 

OPV  Organic Photovoltaic 
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P3HT  Poly3Hexylthiophene 

PCBM  PhenylC60 Buturic Acid Methyl Esther 

PEDOT Poly(3,4-ethylenedioxythiophene) 

PET  Polyethylene terephthalate 

PSS  Polystyrene sulfonate 

PV  Photovoltaic 

Rs  Series Resistance 

Rsh  Shunt Resistance 

SMA  Sub Miniature version A 

TE  Transverse Electric 

TEM  Transverse Electromagnetic 

TM  Transverse Magnetic 

UV  Ultraviolet 

VIS  Visible 

Vmp  Voltage at Max Power 

VNA  Vector Network Analyser  

VOC  Open Circuit Voltage 
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Chapter 1: Introduction 

Solar cells are designed to directly convert solar energy to electrical power. Inorganic 

solar cells, especially silicon-based, have been industrialised for a long time because of 

their high power conversion efficiencies [1]. However, they suffer from high costs and 

serious pollution problems. Organic solar cells (OSCs) are regarded as promising 

alternatives to traditional first and second generation solar cells [2-4]. Therefore, the 

research investigations in finding innovative materials, technologies and structures for 

solar cells to satisfy this demand are ongoing. Organic solar cells are of considerable 

importance for use as the next-generation renewable energy sources. Their low cost and 

high flexibility make OSCs attractive candidates as cost-effective and flexible power 

sources, with vast potential for a range of novel applications.  

Polymer solar cells are a new type of photovoltaic conversion device with high potential 

applications in the future energy market since their unique advantages in potential low-

cost production, their flexibility, and light weight. In contrast to many inorganic 

semiconductors, in which photon absorption directly produces free electrons and holes, 

optical absorption in organic molecular and polymer semiconductors mainly creates 

electron−hole pairs (excitons) that are bound at room temperature [5]. 

A special focus in this thesis is made on the materials deposition techniques, as through 

tailoring the properties of active layers, the efficiency of the overall solar cell can be 

increased. In particular, the thin film technology was used due to its cost-effectiveness 

and flexibility in using various substrates and materials, in line with the recent 

developments that suggest that this technology is becoming a prime candidate for future 

organic photovoltaic (OPV) devices. 
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Notably, OPVs structures utilizing semiconducting conjugated polymer photoactive 

layers offer several advantages over expensive silicon solar cells, including deposition 

of ultra-thin films by simple solution processing technologies such as spin coating, 

printing and spray coating.  For bulk heterojunction structures, which use an active layer 

made of an intimate mixture of donor and acceptor materials, energy conversion 

efficiency as high as ~7% could be obtained with a poly-(3-hexylthiophene) (P3HT) and 

[6,6]-phenyl-C61 butyric methyl ester (PCBM) blend.  Theoretical investigations 

predict for these materials an efficiency reaching 11%, which is significantly higher 

than the best performance of present devices [6-8].  

The production of polymers is less financially demanding as compared to traditional Si 

wafers, which are the basis for the first-generation solar cells. Additionally, polymers 

normally have high optical absorption coefficient and therefore very little material is 

needed. Polymers can be dissolved in solvents and deposited on substrates using wet-

processing techniques such as spin coating or roll-to-roll printing [9]. Organic solar 

cells are also attractive because they lack a rigid crystalline lattice and can be deposited 

in flexible substrates. Currently available in the market are up to 180W flexible solar 

panels with 20% efficiency manufactured by companies such as Longsheng Electric 

Co., Ltd.. These are being used to power street lights and other outdoor LED lighting 

systems for example. 

However, technological improvements in new material synthesis and device fabrication 

approaches are necessary for enhancing the solar cell performance to meet the modern 

industry demands. In this context, the field of Organic solar cells can learn much from 

the area of organic light emitting devices, which has already realised commercial 

exploitation. 
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This thesis, entitled “Manufacture and Investigation of Organic Composite Polymer 

Based Films for Advanced Flexible Solar Cells”, reports on the research work 

undertaken towards the development of next-generation organic polymer composite 

materials for flexible solar cell applications. In particular, it investigates the use of non-

optimised laboratory conditions to produce prototype devices and establish the effects 

of thermal annealing, commonly employed in production of commercial devices [10-

14], and exposure to simulated solar radiation, to mimic operational conditions. The 

work therefore explores the possibility of producing operational devices under non-

capitally expensive conditions, without the need of clean rooms etc., as may be 

encountered in third world countries To achieve this aim, thin film technology was used 

because recent developments suggest that it is becoming a prime candidate for future 

photovoltaics due to its versatility in terms of both deposition of functional materials 

and the range of substrates compatible with the process requirements.  

The thesis structure is as follows. Chapter 1 has briefly outlined the area of research and 

justified the need for developing new materials and manufacturing techniques for 

sustainable solar cells. Chapter 2 reviews traditional pn-junction based solar cells and 

the factors that limit their performance, along with discussing the state-of-the-art 

organic solar cells.  

Chapter 3 details the Experimental Procedure employed in this research work, including 

the materials and equipment used, electrodes design methods and parameters, 

preparation procedure for organic films, and testing arrangements for the electrical and 

optical properties characterisation. 

Chapter 4 focuses on the Results of these optical and electrical tests, with specific 

emphasis on novel approach to characterise the dielectric properties of the materials 
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using the microwave spectroscopy. The fundamental principles of operation and design 

of sensors for this task are thoroughly discussed. As a culmination of the research 

experiments, the bespoke prototype organic solar cell was designed and tested and the 

performance of this device is also discussed at the end of this Chapter. 

Finally, Chapter 5 concludes the description of the research outcomes so far and 

suggests directions and options for future work in this area.  
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Chapter 2: Operating Principles of 

Semiconductor and Organic Solar Cell  

2.1. Foreword 

Modern society is confronting big challenges in the area of sustainable supply of energy 

to satisfy the needs of growing population and to account for depleting fossil fuel 

resources. Naturally, solar cell devices are considered as a sustainable and secure 

approach to solve this issue. 

Solar radiation emitted from the sun is electromagnetic radiation with the spectral solar 

radiation distribution in the wavelength range of 200 - 2500 nm, which includes the 

total irradiance of 96.3% and most of the remaining 3.7% at longer wavelengths as 

shown in Fig. 1 [15]. 

 

Figure 1. Solar radiation spectrum [15]. 
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2.2. Fundamentals of Traditional Semiconductor Photovoltaic Cells 

2.2.1. PN Junction Structure 

In traditional inorganic photovoltaic devices the pn-junction structure is responsible for 

conversion of sunlight into electrical energy. A pn-junction is formed by combining a 

positively doped (P-type) and a negatively doped (N-type) semiconductor together. A P-

type semiconductor is achieved by diffusing elements that have three valence electrons, 

such as Boron, onto a silicon wafer. This creates positively charged holes on the 

crystalline silicon matrix. The N-type semiconductor has elements with five valence 

electrons, such as Phosphorus, that are scattered throughout the silicone lattice. When P 

and N type semiconductors are combined, the electrons close to the junction or 

boundary diffuse into the P-type region. Charge builds up upon the interface of the two 

materials, creating an electric field which opposes the flow of electrons. This region is 

known as the depletion zone [16, 17].  

Valence electrons in the silicon semiconductor absorb photons (in the visible range), 

that have enough energy to excite electrons across the semiconductors bandgap. The 

region where this occurs is determined by the materials constructing the device. The 

intrinsic electric field separates the electron and its positively charged hole. Electrons 

flowing in the direction of the electrode to the N-type side flow through an external load 

to produce power [18]. 

2.2.2. Operation and Characteristics of PN Junctions under Solar Illumination 

When solar radiation is absorbed by a pn-junction, electron-hole pairs are generated. If 

the radiation of the solar radiation is weakly absorbed by the material (long wavelength 

radiation) then the generation rate of electron-hole pairs will be uniform in the volume 
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of the solar cell. Under illumination, generation of carriers will occur in the space 

charge region [19]. If an electric field is applied across the junction, these carriers will 

be swept away by the electric field (electrons to the N-side and holes to the P-side). The 

electric field reduce the recombination effect. This causes a build-up of positive and 

negative charge causing a potential difference. The generation of this voltage is called 

the photovoltaic effect [20]. 

In a pn-junction, four types of the electrical currents are present under equilibrium; 

these are due to the movements of electrons, holes, caused by a drift and diffusion. 

When light shines on a pn-junction, large drift current results from minority electrons 

and holes. This is called light generated current IL. The generated voltage forward biases 

the pn-junction and diffusion current flows in the opposite direction. But IL is larger 

than this diffusion current, so the resultant current flows from N to P. This causes the I-

V curve to shift downwards, as shown in Fig. 2 [19]. 

 

Figure 2. (a) Dark I-V curve and (b) its downward shifting when light shines on pn-

junction [21]. 

When solar cells are characterised, four parameters are calculated from the I-V curve, 

namely: short circuit current (ISC or JSC), open circuit voltage (VOC), Fill Factor and 
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Efficiency, as illustrated in Figure 3. The short circuit current (Jsc), is the maximum 

currents that flows in the solar cell when both terminals are shorted and it increases as 

the light intensity increases. The open circuit voltage (Voc) is the voltage between the 

terminals when no current is drawn. Two additional terms are shown in Figure 3 [22], 

Imp and Vmp where Imp is the current at a maximum power and Vmp is the voltage at a 

maximum power.  

  

Figure 3. Short circuit current (ISC), open circuit voltage (VOC), Fill Factor (FF) and 

Efficiency () of a solar cell [22].  

In order for a photon to be absorbed, the photon must have energy higher than the 

bandgap of the material in the solar cell. Therefore, the value of ISC current depends on 

the bandgap of the cell, and the larger the bandgap, the smaller number of photons will 

be absorbed. 

The power from a power source is P = IV. If one uses the current density J, the power 

density is expressed by Eq. 1: 

Pd = JV     Eq.  1 
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The maximum power density, Pmax, occurs somewhere between V = 0 (short circuit) and 

V = Voc (open circuit) at a voltage Vm, as illustrated in Fig. 3. The corresponding 

current density is called Jm, and thus the maximum power density is Pd,m = JmVm. 

When a photon of light is absorbed, the electron moves from the valence band to the 

conduction band, raising its potential energy by an amount equal to the bandgap of the 

material (Eg.) Ideally, if there are no potential drops across the metal contacts, then the 

maximum Voc is equal to the bandgap voltage. If one takes into account the difference 

in potential level of the contacts, a more accurate estimation of the maximum Voc can 

be obtained. Fig. 4 shows how the Fermi levels influence the Voc: 

 

Figure 4. Energy band diagram of pn junction solar cell showing Voc [23]. 

In Figure 4, EFn and EFp are the Fermi levels in the N-side and the P-side respectively 

[23]. In a band structure the Fermi level is a hypothetical energy level of an electron, 

with a corresponding probability of 50 %. The influence of the current due to 

illumination (IL) and the recombination current (Io) on the open circuit voltage is 

described by Eq. 2: 

    
  

 
  (

  

  
  )      Eq.  2. 
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where k is Boltzman’s constant, T is the temperature is degrees Kelvin and q is the 

charge in the electron. Fill factor is a measure of how ‘ideal’ the IV curve is – it is a 

measure of how much of area described by ISC and VOC is filled by the area described by 

Imp and Vmp. FF is defined as the ratio between the maximum power and ideal power by 

Eq. 3: 

    
    

      
    Eq.  3 

Ideally, the maximum FF is 1, which is not practically feasible. The shunt resistance 

(Rsh) or parallel resistance in a solar cell represents the losses or additional current paths 

due to manufacturing defects. The series resistance (resistances in series with the solar 

cell) can be broken into a number of series components, the contact resistance between 

the metal electrodes and the active layer, the resistance of the metal electrodes 

themselves and the resistance of the active layer itself. All these resistances are 

measurable and controllable when choosing the functional materials for photovoltaic 

devices. 

The efficiency () of a solar cell is defined as the power output divided by the power 

input. If the incoming light has a power density Pin, the efficiency will be described by 

Eq. 4: 

   
    

   
      Eq.  4 

Efficiency gives a measure of how much of the open circuit voltage and short circuit 

current is used at maximum power. Using FF, the efficiency can be expressed as Eq. 5: 

   
         

   
    Eq.  5 
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Efficiency is related to the bandgap of the active layer in the solar cells. Therefore, 

depending on the type of solar cell materials used, a maximum efficiency can be 

achieved. The bandgap for most organic solar cells is usually 2 eV or above. The 

maximum efficiency of the overall device can be increased with the use of multi-layer 

solar cells. For example, triple layer cells with concentrator optics are as high as 42.8% 

efficient [24]. For organic solar cells manufactured by Konarka, an OPV company 

based in Massachusetts, an efficiency of 8.3% wa quoted [25], with the current record 

value for organic devices being achieved by Mitsubishi chemical at 11.1% [26]. 

The input power (Pin) can be represented in terms of solar cell area (Asc) and the input 

light (E) in W/m
2
 in accordance to Eq. 6: 

Pin = E Asc     Eq.  6 

Importantly, solar cell efficiencies are measured under standard test conditions (STC), 

which imply a temperature of 25 °C, an irradiance of 1000 W/m
2
 with an air mass 1.5 

(AM 1.5) spectrum [27]. These conditions correspond to a clear day with sunlight 

incident upon a sun-facing 37°-tilted surface with the sun at an angle of 41.81° above 

the horizon [28]. This represents solar noon near the spring and autumn equinoxes in the 

continental United States with surface of the cell aimed directly at the sun. Under these 

test conditions, a solar cell of 20% efficiency with a 100 cm
2
 surface area would 

produce 2.0 Watts of power. 

However, the solar cell efficiency is affected by a range of factors, which can be 

examined by looking at all the losses in the conversion of the light from the sun to 

current and voltage generated in the solar cell. The operational limitations of traditional 

semiconductor solar cells are briefly discussed in the next section.  
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2.2.3. Limitations of Modern Semiconductor PV Devices and Need for New 

Materials 

Understanding the efficiency limitations of solar cells is the most important task in their 

characterisation because it can lead directly to improvements in the cell process. 

Reduced efficiency of solar cells can be due to limitations of material properties or 

technological reasons, such as cell processing capabilities. Transmission losses occur 

due to low energy photons not being absorbed by the cell (typical 20% for single 

junction Si based cell) [29, 30]. Maximum efficiency of an ideal single-junction 

photovoltaic cell is limited to 33% (for 1 sun illumination) by intrinsic losses such as 

band edge thermalisation, radiative recombination, and inability to absorb below-

bandgap photons. This intrinsic thermodynamic limit, named after Shockley and 

Queisser, can be exceeded by utilising low-energy photons either via their electronic up-

conversion or via the thermophotovoltaic conversion process [31]. However, electronic 

up-conversion systems have extremely low efficiencies, and practical temperature 

considerations limit the operation of these converters to the narrow-gap PV cells [29]. 

The thermal losses exist due to excess energy photons, because photon with energy 

equal to the band gap of the material will be absorbed. For photons having energy 

higher than the bandgap, their excess energy will be released as heat. This can be as 

high as 30% [32].  

Figure 5 [22] shows a simplified circuit model for a typical solar cell. It can be seen that 

a Fill Factor loss is caused by the parasitic series (Rs) and shunt resistance (Rsh) of the 

cell. 
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Figure 5. Simplified circuit model for a typical solar cell [22]. 

The next categories of losses are optical and electrical losses such as losses due to 

reflection, incomplete absorption, metal coverage and recombination losses [33, 34]. 

Reflection losses occur since some of the incident photons are reflected from the cell 

surface. This loss can be minimised by the use of anti-reflective coating [35-37]. 

Notably, recombination losses refer to the fact that not all electron-hole pairs contribute 

to the generated current and they can occur in the bulk or on the surface of the solar cell 

device [38-40]. 

Incomplete absorption is a function of solar cell thickness. Since most solar cells are 

becoming thinner and thinner, light trapping schemes can be used to enhance 

absorption. For example, the imprinting of random square based pyramidal textures 

with micrometric scale at the air/glass interface of thin film silicon solar cells was 

suggested as an efficient alternative to anti-reflective coatings to minimise reflection 

losses at the cell entrance [41]. 

To overcome the limitations in the performance of traditional solar cells due to 

constrains set by their functional materials properties, there is a need to develop new 

approaches and materials that would convert solar irradiation into electricity. For that, 



Raffie Arshak MPhil 23 

organic solar sensitive materials are considered as a prime candidate. The next section 

briefly reviews the structure and operational principles of modern organic solar cells. 

2.3. Basic Processes in Organic Solar Cells 

2.3.1. Absorption of Photons and Generation of Charge Carriers in Organic 

Materials 

Organic photovoltaics can be categorised by the types of Donor-Acceptor materials 

used to fabricate the device. The materials in OPV’s are generally conjugated polymers 

or molecules (alternating single and double bonded carbon) and possess delocalised (not 

associated with single atom) electrons that can absorb photons.  The molecular structure 

determines the electronic properties and depending on that structure, they can be classed 

as either electron donors or acceptors as shown below in Figure 6. 

 

Figure 6. Charge carrier generation in organic photovoltaics [42]. 
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In organic semiconductors the absorption of photons results in the formation of bound 

electron hole pairs, i.e. excitons, rather than free charges. The transfer of charges can be 

made possible at the interface between two materials providing that one material has the 

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) levels lower than the other. The one with the higher LUMO can accept an 

electron from the conduction band of the other and is therefore called electron acceptor 

(A). So, the other material is the electron donor (D) [42]. An organic photovoltaic cell 

works in a complementary fashion. Light is absorbed in either of two donor (D) or 

acceptor (A) layers, creating excitonic states which must diffuse to the D/A interface 

where differences in ionization potential and electron affinities of D and A cause these 

excited states to dissociate into free charge carriers (electrons and holes residing on 

molecular species). The combination of diffusion and migration of these charge carriers 

to the collection electrodes, and the harvesting of these charges by these electrodes, 

produces a current in the external circuit, and a specific voltage, the product of which is 

the power produced by the OPV. 

Consequently, an electron acceptor can act as an electron donor for another electron 

acceptor which is weaker. An electron in HOMO absorbs a photon and is excited into 

LUMO and creates an exciton, a bound electron-hole pair. These excitons carry energy 

but no net charge and may diffuse to dissociation sites where their charges can be 

separated [43]. The separated charges then travel to the device electrodes, the holes 

travel to the anode and the electrons travel to the cathode. This produces a voltage and a 

current. A crucial step in the photovoltaic process is the conversion of excitons into 

charge carriers at a polymer–inorganic interface, i.e., at the interface between the active 

layer and the inorganic electrode. High quantum yield of charge carriers can be 

achieved if the excitons can travel far enough from their generation points to an 
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appropriate interface where they can dissociate, injecting electrons into the electrode 

[44]. The holes remaining in the polymer diffuse to the other electrode, completing the 

photovoltaic cycle. Some of the excitons reach relevant interfaces while many of them 

decay by emitting light, or exciting vibrations of the polymer molecules. Table 1 

summarises the conversion steps of light photons into separated charges in an organic 

solar cell. In addition, the loss mechanism and the related electrical quantity used in the 

circuit model are shown. 

Table 1. Light conversion steps and associated loss mechanisms. 

Conversion step Loss Mechanisms 

Light adsorption, exciton creation Reflection, transmission 

Exciton diffusion Recombination of excitons 

Charge separation 

Excitons transfer followed by their recombination; 

no charge separation followed by the 

recombination of excitons 

Charge transport 
Recombination of charges, limited mobility of 

charges 

Charge collection Recombination near electrodes, barriers at the 

electrodes 

In most organic devices, only a small fraction of the incident light is absorbed. A 

bandgap of about 1.1 eV is required to absorb about 77% of solar radiation, while most 

polymers have a bandgap of more than 2 eV, and thus can only absorb about 30% of 

light. The absorbing layer is also quite thin in most photovoltaic devices, less than 

100 nm [45]. 

The free charges must be allowed to reach the electrodes where they constitute the 

photocurrent from the device. The location of the dissociation site is important for the 

extracted photocurrent. Electrons and holes have different mobilities in the material. 
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Trapping into localised stated may occur and irrespective of whether the trapping is 

permanent or temporary, the efficiency of charge transport is diminished. As the risk for 

trapping increases with the distance travelled, a thin layer is better than a thick layer, but 

optical absorption, which is proportional to thickness, is simultaneously reduced. 

Recombination of free charge carriers into excitons, and between one trapped and one 

free carrier, is also another loss mechanism [46]. 

Even if an electron or a hole is present close to an electrode, whether they will pass into 

the outer circuit is not certain. The probability associated with all the barrier penetration 

mechanisms involved at the interfaces towards the metallic surfaces is a function of 

geometry, topology, and interface formation [47].   

Initial organic solar cell structures used overlayed thin films of donor and acceptor 

materials, and the efficiency of the structures depended on the interface area and 

integrity. The interface area was then increased by including alternating layers, but a 

significant advancement was realised through the use of so-called “bulk heterojunction” 

structures, which exploited the fact that the structures could be deposited from binary 

solvent based mixtures and that the donor could be homogeneously dispersed in the 

acceptor matrix, or vice versa as shown in Figure 7, where red indicates the electron 

donor material and blue the electron acceptor material. 

 

Figure 7. Donor-acceptor active layer (Bulk Heterojunction) concept [48].  



Raffie Arshak MPhil 27 

 

2.3.2. Efficient Organic Solar Cell Structures 

To obtain an efficient organic solar cell, all excitons created should form free charge 

carriers. However, during exciton transport luminescence or radiative recombination 

can occur [49, 50]. The exponential lifetime of an exciton (τEX) is determined by the 

reciprocal value of radiative and non-radiative decay rates. For an efficient solar cell, all 

excitons must reach the interface within τEX secs. The transport of the excitons occurs by 

diffusion and the distance an exciton is able to travel, LEX, is determined by Eq. 7: 

    √            Eq.  7 

where DEX is the diffusion coefficient of the excitons. A typical time for τEX is in 

nanoseconds so the distance LEX is less than 10 nm [51]. This means that only excitons 

formed very close to the interface will have a chance to separate. This limitation has 

stimulated the development of different types of solar cell structures. 

2.4. Recent Advances in Polymer Solar Cells 

Organic solar cells are of considerable importance for use as the next-generation 

renewable energy sources. In particular, low cost and high flexibility, key features that 

organic-based electronics can offer, make OSCs attractive candidates as cost-effective 

and flexible power sources based on roll-to-roll manufacturing and large-area 

processability on flexible substrates [52]. 
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2.4.1. Alternatives to ITO 

The ideal transparent conducting electrode should possess high transparency (>80%), 

low resistance (<100 Ω/m
2
), and an appropriate work function (4.5–5.2 eV) [1]. The 

cost of the transparent conducting electrodes is also an important issue for considering 

their practical applications. Among key materials for OSCs, transparent Indium Tin 

Oxide (ITO) electrodes play an important role in the performance of OSCs, since the fill 

factor and short-circuit current density are critically dependent on the series resistance 

and optical transmittance of the transparent electrodes [53]. Although ITO dominates 

modern industry in terms of production of OPV, the scarcity and high cost of indium, 

which is the main element in the ITO electrode, coupled with the cost of the 

manufacturing process, and ion diffusion into polymer layers, are critical drawbacks of 

ITO-based OSCs. In particular, ITO cannot be used for flexible devices because it is 

mechanically rigid and brittle. Also, the energy involved in processing the ITO 

electrode accounts for 87% in roll-to-roll based OSC fabrication [54]. These issues 

drive the researchers and industry to seek possible alternative materials [6-8, 55-61].  

To overcome the drawbacks of ITO electrodes, the use of indium-free transparent 

electrodes such as PEDOT:PSS, carbon nanotube (CNT) electrodes, graphene 

electrodes, and several indium-free oxide electrodes (Ga-ZnO, Al-ZnO, ZnSnO3, Nb-

TiO2) has been the focus of recent research [52]. 

Graphene has wide potential applications in energy-related systems. In particular, 

transparent graphene electrodes fabricated by various methods have been investigated as 

a promising alternative to ITO electrodes due to their low resistance, high transparency, 

superior flexibility, and low cost [62-65]. The single atom thickness of Graphene, its 

high conductivity, optical transparency (97.7%), flexibility and low sheet resistivity 



Raffie Arshak MPhil 29 

make this material an emerging adequate substitute for ITO, especially for ultra-thin or 

flexible photovoltaic devices [66, 67]. Also this material is in high demand for the touch 

screen display in today’s modern tablet computers and smart phones, and is potentially 

suitable for flexible solar cells applications when portable solar cells will be integrated 

into these devices. Transparent graphene thin films can be prepared using a variety of 

techniques including micromechanical exfoliation, epitaxial growth and chemical 

vapour deposition [1].  

Graphene materials are frequently blended with polymers to form composites, 

especially when fabricating flexible devices. Graphene/polymer composites have been 

explored as electrodes of super-capacitors or lithium ion batteries, counter electrodes of 

dye-sensitized solar cells, transparent conducting electrodes and active layers of organic 

solar cells, catalytic electrodes, and polymer electrolyte membranes of fuel cells [1]. 

Graphene/polymer composites can be synthesised by mixing, in situ polymerisation, 

and covalent modification [68-70].  

Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) composite 

materials have attracted significant interest as a promising electrode material to 

substitute the ITO due to their inherent advantages such as high conductivity, high 

transparency in the visible range and long-term stability [52]. Various modifications of 

PEDOT:PSS to have more enhanced conductivity for their potential use as electrodes in 

ITO-free organic-based devices were produced and investigated, including the use of 

high-conductivity PEDOT:PSS, such as Clevios PH500, which resulted in fabrication of 

ITO-free OSCs with efficiencies comparable to traditional ITO-based OSCs [71]. 
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To illustrate the typical structure of DSSC and a schematic diagram of the fabrication 

process steps, one may refer to Fig. 8 [1], which also depicts J-V characteristics of 

DSSC with various electrodes alternative to ITO. 

 

Figure 8. (A) Photograph of a graphene-coated PET substrate, and schematic diagram 

of the fabrication steps involved in preparing a DSSC with a graphene/PEDOT counter 

electrode on a PET substrate. (B) J–V characteristics of DSSCs using as counter 

electrode: graphene/PEDOT/PET (black), PEDOT/PET (green), and Pt/ITO/PET (red). 

(C) J–V characteristics of bended (•) and pristine (▪) DSSCs using 

PEDOT/graphene/PET as counter electrode [1]. 

2.4.2. Dye-Sensitised Solar Cells 

Dye-Sensitised Solar Cells (DSSCs) have received great attention because of their low 

cost, convenient manufacturing processes, and comparable efficiencies to those of solid-

state silicon solar cells [72]. In DSSCs, the dye, usually ruthenium bipyridyl, is excited 

by incident photons. Electrons of the dye are injected to the titania mesoporous 

nanocrystalline wide band gap semiconductor and transported through the nanoparticles 

network by trap mediated diffusion [73]. The dye is regenerated by popular 
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iodine/iodide redox couples in electrolyte. Increasing the efficiency of these cells is 

strongly related to the photon absorption, charge injection, charge transport, dye 

regeneration efficiencies, open circuit voltage, and fill factor of the cell. Although the 

efficiency of the DSSCs have reached so far 12% [74], it can be further improved by 

overcoming obstacles through (1) increasing cell stability by replacing the volatile 

electrolyte with nonvolatile or solid state electrolyte without affecting diffusion of ions, 

(2) increasing the absorption efficiency by engineering the dye molecule or increasing 

the thickness without increase in recombination or decrease in electron lifetime, and (3) 

increase in electron transport by introducing high mobility routes in semiconductor 

matrix or hindering the back reaction by utilizing suitable barrier layer [73]. 

Typical DSSC consist of a working electrode of mesoporous dye-sensitised titania 

nanocrystals coated on transparent conducting electrode, an electrolyte containing a 

redox pair (for example I2/I3
-
), and a platinum-based counter electrode [1]. Ruthenium 

sensitiser-based DSSCs have a photon conversion efficiency reaching 11.9%, which 

gives an open circuit voltage (Voc) of 965 mV, a short circuit current density (Jsc) of 

17.3 mA cm
-2

, and a fill factor (FF) of 0.71 under standard AM 1.5 sunlight at 995 W 

m
-2

 intensity [75]. 

However, the high cost of ruthenium-based sensitisers and platinum-based electrodes is 

still an obstacle to wide-scale commercial exploitation of DSSCs. Accordingly, it is 

important to develop new affordable dye molecules with high efficiency and long 

stability as well as non-noble metal-based electrodes. Enlarging the interfacial area of 

the dye with the electrolyte and accelerating electron transfer in the semiconductor layer 

to reduce the possibility of charge recombination are also important factors for 

improving the performance of DSSCs [1]. 
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2.5. Novel P3HT:PCBM Films for Flexible Solar Cells 

Conjugated polymer-based organic solar cells have received significant attention due to 

their potential for low-cost roll-to-roll manufacturing of large-area solar devices on 

flexible substrates, which open up a vast range of novel applications [76, 77]. Organic 

photovoltaics are expected to be a low cost, environmentally friendly energy solution 

with advantageous properties such as flexibility and light weight that enable their use in 

new applications, and considerable progress in power conversion efficiencies has 

brought this technology closer to commercialisation [1, 78, 79]. 

Among the available polymer solar cell systems, poly(3-hexylthiophene) (P3HT) and 1-

(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) blends show efficiencies of up 

to 4–5% [71]. The Donor−Acceptor pair for P3HT and PCBM is shown in Fig. 9. 

 

P3HT    PCBM 

Figure 9. Donor(left)−Acceptor(right) Pair for Polymer Solar Cells Containing Poly(3-

hexylthiophene) P3HT (left) and [6,6]-Phenyl C61-Butyric Acid Methyl Ester PCBM 

(right) [5]. 
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The investigation of the effects of a cell area on the cell performances in ITO-free 

organic solar cells based on poly(3-hexylthiophene) (P3HT) and 1-(3-

methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) was recently reported [52]. 

Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) 

(PEDOT:PSS) films were used as polymeric transparent anodes for cost-effective ITO-

free OSCs. Importantly, it was found that with increasing cell area from 4.5 to 49.5 mm
2
 

[52], the device performance was continuously decreased mainly due to the decrease in 

the fill factor and the series resistance, suggesting that the sheet resistance of transparent 

electrodes is a dominant factor to limit cell efficiencies in practical large-area solar 

cells. 

The Poly(phenylene-vinylenes) (PPV’s) and P3HT organic polymers are electron rich 

materials that can be oxidized fairly readily, having high-energy HOMO levels, and are 

typically hole conducting materials. Organic materials with high electron affinity are 

much harder to find. Some of the few electron conducting materials are the C60 and 

derivatives alike. C60 is in itself a rather insoluble material, but a soluble PCBM 

derivative is commercially available. The active organic layer in organic solar cells is 

typically constructed from a mixture of polymer and PCBM that forms an 

interpenetrating network. PCBM forms crystallites in the active layer and control over 

size and morphology has significant influence on the efficiency of the device. It has 

been shown that crystallite size increases on heat treatment of a PCBM/P3HT device 

improves the efficiency dramatically [80, 81]. 

The continual developments in efficiency, cost, process, and stability makes polymer-

based organic solar cells more attractive as a cost-effective solution to today's energy-

shortage problems. 
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Having justified the need for developing both novel organic materials for photovoltaic 

applications and corresponding compatible processing technologies, the next Chapter 3 

details the Experimental Procedure used in this work.  

Although many third world countries struggle to produce enough energy with regard to 

electricity, many have an abundance of natural energy from the sun. Therefore this 

project is designed to explore whether operational devices can be made in a non 

specialised laboratory environment. Thin films were deposited from composite 

solutions and both were characterised by UV/vis absorption spectroscopy. This films 

and device structures were characterised by microwave spectroscopy and conductivity 

measurements. Thermal annealing was used in an attempt to improve the properties of 

the active layer. The degradation of the cell under solar exposure was also examined. 

It is important to note that in this research thesis a layer of Indium oxide deposited as a 

thermally evaporated thin film was used as a possible replacement for Indium Tin Oxide 

(ITO) in the construction of the first layer of a prototype solar cell system and as a 

transparent electrode. The details of the deposition parameters are given in the 

Experimental Procedure section.  
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Chapter 3: Experimental Procedure 

The following outlines the experimental methodology and techniques employed to build 

and test the prototype solar cell and study the active layer (P3HT:PCBM). The Q-sun 

solar simulator is introduced in this chapter. This is used for accelerated age testing via 

simulated solar sunlight (which will be demonstrated in chapter 4 Results, using 3 

different techniques Optical, Electrical and Microwave spectroscopy). The UV-Vis 

spectrometer is also introduced and is used throughout this project to measure the 

optical characteristics via absorbance. Also the spin coating technique is used for 

depositing the thin film layers, active and buffer layers for studying the optical 

properties and building the prototype device. The screen printing technique is also 

described; this is used for developing the interdigitated electrode (IDE) sensor for 

studying the electrical properties of the active layer. 

The development of the IDE sensor for the electrical measurements is discussed. 

Sample preparation of the glass substrates for the optical measurements is also 

discussed. The techniques used to build the prototype solar cell are also laid out in this 

chapter. Deposition of a transparent electrode using the Edwards Thermal Vacuum 

Evaporator is carried out and documented in Chapter 3.  

The solution of the active layer was first characterised using UV-Vis Spectrometry. 

P3HT and PCBM (donor and acceptor material) were dissolved in dichlorobenzene and 

the absorbance of this solution was measured individually and combined at a ratio of 

1:1 in glass cuvettes. The typical patterns will be demonstrated in the following chapter. 
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Thin films of approximately 100 nm ware deposited onto glass and flexible substrates 

by spin coating. The layer was also characterised using UV-Vis Spectroscopy. The 

absorbance was measured before and after annealing. UV-Vis spectrometry is also used 

to study the effects on the layer after solar exposure.   

Electrodes were developed for building prototypes and also characterising the layers by 

measuring resistivity and impedance measurements in the microwave region. The first 

electrode was manufactured by Thermal vacuum evaporation. This was an attempt to 

replace the widely used ITO. Indium spheres (ballbearings) were evaporated onto a 

glass substrate to create the transparent electrode in solar cells. The next electrodes were 

developed to study the active layer were the interdigitated electrode (IDE).    

3.1. Materials and Equipment Used 

3.1.1. Q-Sun Xenon test chamber 

The Q-Sun Neon arc chamber reproduces the damage caused by full-spectrum sunlight 

and rain. In a few days or weeks the Q-SUN tester can reproduce the damage that 

occurs over months or years outdoors. For exposing produced films to simulated solar 

light of various intensity, spectrum and duration, Q-Sun Xenon test chamber shown in 

Fig. 10 was used. 
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Figure 10. Q-Sun Xenon test chamber in FOCAS Research Institute, DIT. 

3.1.2. UV-Vis 

Optical absorption measurements were taken using Perkin Elmer Lambda 900 

UV/VIS/NIR spectrophotometer before and after annealing and also before and after 

exposure of the samples to excessive simulated sun light to determine the durability of 

the layers. The measurements were taken using UV-Vis spectrophotometer in FOCAS 

Research Institute, DIT, as illustrated in Fig. 11. The Perkin Elmer Lambda 900 

UV/VIS/NIR spectrometer is a double-beam, double monochromator ratio recording 

system with pre-aligned tungsten-halogen and deuterium lamps as sources. The 

wavelength is from 175 to 3300 nm with an accuracy of 0.08 nm in the UV-Visible 

region and 0.3nm in the NIR region guaranteed. It has a photometric range of +/-6 in 

absorbance mode. 
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Figure 11. Perkin Elmer Lambda 900 UV/VIS/NIR spectrophotometer for assessment of 

the optical properties. 

3.2. Organic Materials Films Preparation 

3.2.1. Materials Mixture and Curing 

P3HT and PCBM materials were purchased from Ossila Chemicals and were mixed at a 

1:1 ratio in dichlorobenzene, which resulted in solution with concentration of 

20 mg/mL. The solution was mixed at 60 °C overnight. 

The buffer layer was manufactured by spin-coating 0.5 ml of PEDOT on a glass 

substrate previously coated with Indium Oxide, at 5000 rpm for 45 secs to achieve 

approximately 40 nm thick layer. 

The active layer was made of Poly (3-hexylthiophene) (P3HT) and Phenyl-C60 butyric 

acid methyl ester (PCBM) were mixed in at 1:1 ratio and dichlorobenzene and stirred at 

60 °C overnight.  
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The back electrode from aluminium film was produced by deposition in thermal 

vacuum evaporation system or by sputtering at a vacuum of 10
-6

 torr with a current 

across the tungsten boat of ~ 1 A to achieve ~ 100 nm thick film. 

3.2.2. Substrates 

The glass substrates were cut into 1”x1” pieces, Ultrasonicated in deionised water, 

acetone and methanol to ensure adequate cleaning, so that there is no possible 

contaminant that can alter the performance of the resultant film. Substrates were then 

also UV-ozone treated for 11 mins before deposition of active functional layers. 

3.2.3. Spin-coating 

Spin-coating was used to deposit the thin film buffer and active layers on the substate, 

parameters such as spin speed, dwell time, acceleration time were optimised in order to 

achieve a certain thickness. The spin-coating process consists of four stages: deposition, 

spin up, spin off and evaporation and is schematically shown in Fig. 12 [82]. A typical 

process involves depositing a small volume of a fluid material onto the centre of a 

substrate and then spinning the substrate at high speed. Centripetal acceleration will 

cause most of the fluid to spread to and off the edge of the substrate, leaving a thin film 

of material on the surface.  
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Figure 12. Illustration of the spin coating process [82]. 

The main advantage of the spin-coating process is that it can produce highly uniform 

films over a wide range, provided planar substrates are used. Furthermore, the process 

can be tightly controlled in order to obtain reproducible film thicknesses [83, 84]. Final 

film thickness and other properties will depend on the nature of the fluid material 

(viscosity, drying rate, percent solids, surface tension, etc.) and the parameters chosen 

for the spin process. Factors such as final rotation speed, acceleration, and fume exhaust 

affect the properties of the coated films. For example, by increasing the angular 

velocity, the film thickness is reduced. 

An increased film thickness can be achieved by repeated spin-coating over previous 

layers, namely by adding the solution onto the centre of the substrate, while it is rotating 

at a high speed. A separate drying step is sometimes added after the high speed spin step 

to further dry the film without substantially thinning it. This can be advantageous for 

thick films since long drying times may be necessary to increase the physical stability of 

the film before handling [85, 86]. 
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Interestingly, a two-step method combining electrodepositing and spin-coating for solar 

cell processing was recently reported [87]. It was used to prepare bilayer heterojunction 

organic solar cells by electrodepositing polythiophene (PTh) and then spin-coating 

chloroform solution of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) onto the 

PTh layer. The influence of film thickness on performance of bilayer solar cells was 

investigated, and the optimised solar cell showed power conversion efficiency of 0.1% 

under the illumination of AM 1.5 (100 mW cm
-2

) simulated solar light [87]. 

In this work, the G3 P-8 series of spin coater (Specialty Coating System (SCS)) was 

used for the thin film deposition, as presented in Fig. 13. 

 

Figure 13. SCS G3p–8 spin-coater. 
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3.3. Electrodes Design and Manufacture 

3.3.1. Electrodes Pattern Design 

Structures with interdigitated electrodes (IDE) are commonly used for chemical and 

physical sensing applications [88-90], particularly for gas sensing [91] in a vast range of 

industrial and biomedical applications [92-95]; in testing food quality [96], for 

measurement of fluid mixtures [97], as lumped elements for integrated circuits and as 

IDE sensors arrays for bacteria detection [98]. Thus, highly selective molecularly 

imprinted polymers layer combined with IDE were used as sensors to study volatiles, 

such as pinene, 7-terpinene and terpinolene, as these are the chemical markers that 

indicate different stages of fruit maturity [96]. Interestingly, the Irish colleagues have 

recently reported on the development of a sensor fabricated by the inkjet-printed 

deposition of polyaniline nanoparticles onto a screen-printed silver interdigitated 

electrode, which was designed for the detection of ammonia in simulated human breath 

samples [95]. 

IDE layout is among the most commonly used periodic electrode structures due to the 

ease of fabrication, flexibility in design, cost effectiveness, no moving parts, fewer 

packaging constraints [99, 100] and one-sided access to the sensing layer [86], which is 

particularly important for studying the properties of materials for solar cells. The IDE 

electrodes structure employed in this work is shown in Fig. 14 (a), where W is finger 

width, G is the electrode gap and L is the length of the finger, whereas Fig. 14 (b) 

specifies the dimensions of a single electrodes pattern in mm.  
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 (a)  (b) 

Figure 14. a) Layout of an interdigitated electrodes pair; b) Dimensions of a single 

electrodes pair pattern in mm. 

Specifically for this work, a pair of the interdigitated electrodes with the dimensions as 

described above was used and a number of devices were printed and tested to ensure the 

repeatability and reproducibility of the results. The photo of the actual typical bare thick 

film silver electrodes pair printed on Alumina substrate used for the electrical 

measurements of the films properties is illustrated in Fig. 15. 

  W 

G 

L 
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Figure 15. Photo of the bare thick film silver electrodes pair printed on Alumina 

substrate used for the electrical measurements of the films properties. 

3.3.2. Screen-Printing Technique 

The fabrication of thick film structures for sensors and semiconductor devices can be 

achieved using a number of approaches with screen-printing being the most popular. 

This is due to the fact that this technique is cost-effective, robust and versatile, giving 

the opportunity to produce complex structures with a range of materials, from metals to 

polymers, printed on virtually any substrate. In this work, the screen-printing technique 

was used for the manufacture of silver electrodes for the electrical characterisation of 

the polymer films, to reveal whether there are any measurable changes in the resistance 

of the structures cause by the influence of artificial solar light. 

Thick-film technology remains popular manufacturing method for many years and its 

main application is in the production of hybrid microelectronic circuits for use in 

telephones, automotive electronics, missile guidance systems, and recently for various 

sensors, including gas sensors, pressure, humidity, radiation and for biomedical 
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applications [21, 85, 86, 101-105]. The main attraction of thick-film technology is its 

versatility, high productivity, reliability and reproducibility, and cost-effectiveness even 

at small or medium scale production. For highly specialised application, thick film 

technology offers the manufacture of devices that are robust, can be miniaturised, can 

be integrated onto the same substrate as the electronics [86] and the printed pattern can 

act as an active component. The films produced using this technology typically measure 

10 – 200 m, and can be deposited on virtually any suitably prepared substrate by a 

number of approaches, including doctor blading [106], screen printing [86], spin coating 

[106, 107], dip coating [108] and thermal spraying .  

The major steps in the production of thick-film silver electrodes via screen-printing are 

outlined below, as this is the approach that was taken in this thesis, where printed metal 

patterns were used as electrodes for electrical characterisation of composite films 

deposited over them. 

The three key processes involved in film fabrication are printing, drying and firing. 

Screen-printing machines consist of five basic components [86]: 

- a system that moves the substrate into the correct position; 

- a vacuum, applied to the underside of the substrate to hold it in position during 

the printing process; 

- a screen mounting; 

- an alignment system for adjusting the screen relative to the substrate; 

- and a system for applying ink and moving a squeegee across a substrate. 

Modern screen-printing technological process normally automatically forces an ink or 

paste through a stainless steel mesh, using a squeegee onto the substrate below it, as 

schematically shown in Fig. 16 [86]. 
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Figure 16. The screen printing process [86]. 

The substrate acts as a physical support for the thick film and the base for electrical 

interconnect patterns, which in this work were integrated, i.e. the electrodes were 

screen-printed over the properly cleaned 96 % alumina with 4 % glass substrates. 

Importantly, the choice of the substrate, in addition to its basic function of structural 

support, was dictated by the following considerations: mechanical strength, smoothness 

of surface texture to promote good film adhesion, chemical and physical compatibility 

with the fired thick film, high electrical insulation resistance to prevent electrical 

leakage currents between closely spaced conductor lines, low thermal expansion 

coefficient to prevent thermal mismatch, high thermal stability to prevent 

decomposition during processing and not least the desire of cost-effectiveness.  

The quality of the printed layer is largely affected by the choice of mask [109-111]. 

Elements such as the material used, the type of coating, the accuracy of the pattern, the 

alignment of the pattern to the mesh, the frame type and method of mounting and 



Raffie Arshak MPhil 47 

supporting the frame for printing are important. Polyester mesh was used in this work 

and the semi-automatic screen printer model was DEK 1022, as shown in the photo in 

Fig. 17.  

 

Figure 17. DEK 1022 semi-automatic screen printer. 

Three different approaches are used in order to form the stencil of the image to be 

printed onto the substrate; plastic sheets, metal masks and photo-emulsions. The latter is 

most popular for thick-film applications and generally uses a water-soluble polymer, 

which becomes insoluble when exposed to UV light [112]. 

There are three types of thick film pastes, which are used to form conductors, resistors 

or dielectrics [86]. The paste can be cermet or polymer in nature, but the main 

requirement is that it must be able to flow through the screen and retain its intended 

shape on the substrate beneath. This depends largely on the pastes flow properties, 

viscosity and particles size in particular. Cermet pastes have a functional ingredient, 

solvent, temporary binder and permanent binder and require firing at high temperatures. 
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For polymer pastes, there is no temporary binder and pastes are dried at temperatures in 

the region of 120 
o
C – 250 

o
C.  

The properties of the squeegee can have a large influence on the quality of the printed 

layers. The main purpose of the squeegee is to bring the screen into contact with the 

substrate, push the paste through the stencil to the substrate, to shear the paste level with 

the top of the screen in order to obtain uniform thickness and to control the rate at which 

the screen peels away from the substrate.  

One of the most commonly used squeegees is the flat or ‘trailing edge’ type. Its flat 

edge is preferable for classic screen printing as it is flexible and exerts uniform pressure 

on the screen. This classic squeegee type was used throughout this work to print the 

thick film electrodes. 

After the screen-printing, the substrates were left to stand in air for 5 minutes to allow 

the silver paste to settle. To remove the organic solvents from the printed layer, so that 

it can take its final form and be immune to smudging, the substrates with printed silver 

electrodes were then placed in a conventional oven at temperature of 100 
o
C for 1 hour. 

Drying also improves adhesions of the printed layers to the substrate.  

The term “firing” refers to a high temperature cycle, the purpose of which is to remove 

the temporary or organic binder from the film, sinter the permanent or inorganic binder, 

and to develop the electrical properties of the paste, while ensuring the film’s adequate 

adherence to the substrate. To achieve these aims, temperatures of up to 1000 
o
C are 

commonly used and the firing stage is performed in a moving belt furnace. Throughput 

speed, peak firing temperature and the total firing time are variable parameters which 

affect the final properties of the film. However, for this work low-temperature silver 
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paste was used and the firing step was not necessary. This fact reduces the cost of 

manufacturing without compromising the quality of the final device. 

3.4. Testing the Optical Properties of the Films 

3.4.1. Samples Preparation on Glass Slides 

To reveal the effect of the simulated solar irradiation on the optical properties of organic 

composite films and to trace the pattern of the changes, the films were deposited on 

transparent glass slides and the optical spectra were measured before and after each 

exposure to solar light. For that, 3 x 1 inch glass slides where first scribed with a manual 

glass cutting tool and split into three equal 1 inch
2
 substrates by means of placing 

uniform pressure on either end at different levels. The slides were initially washed in 

soapy water followed by ultrasonication in deionised water. The samples were then 

scrubbed with lint free wipes with acetone, ethanol and methanol respectively.  

3.5. Organic Solar Cell Prototype Structure Design and Manufacturing 

Procedure 

The properties of the materials which form the active layers of the organic solar cells 

are of fundamental importance and in this work the focus is on studying the electrical, 

optical and dielectric properties of PCBM:P3HT films. However, the performance of 

the film when incorporated in the complete organic based solar cell structure could be 

hindered by many parameters, including the design of the system, thickness of the 

layers, choice of contacts materials and so forth. Therefore, an attempt was made to 

construct a prototype solar cell device with new design. Notably, these prototype cells 

were not built inside a nitrogen-containing glove box, but in an open air, which one may 
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argue could compromise the reliability and the repeatability of the devices. However, 

these were found acceptable for devices kept at constant environmental conditions and 

not exposed to extreme temperature variations or other physical or chemical factors. 

Therefore, this section reports on the manufacture procedure and layout considerations 

for prototype solar cells, with corresponding results given in Chapter 4, Section 4.5. 

3.5.1. Deposition of Transparent Indium Oxide using Thermal Vacuum Evaporation 

The Edwards 306A coating system was used in this research work to evaporate Indium 

spheres in order to achieve transparent conductive electrodes based on Indium Oxide 

thin films, as a cost-effective alternative to traditional approach [113-115]. Notably, the 

melting point of Indium is 157 °C and the glass substrate normally can withstand at 

least 300 °C temperature. Therefore, thermal vacuum evaporation method was chosen 

as the most suitable approach for the manufacture of novel solar cell prototype.  

The vacuum evaporation technique is most suitable for deposition of the materials that 

are difficult to evaporate in air [116]. The method is clean and allows a better contact 

between the layer of deposited material and the surface upon which it has been 

deposited.  In addition, because evaporation beams travel in straight lines, very precise 

patterns may be produced. In general, thermal vacuum deposition produces films with 

structural defects, such as grain boundaries or lattice imperfections [117, 118]. Other 

frequently observed defects include dislocation loops, stacking-fault tetrahedral, and 

small triangular defects; all of these are generally attributed to vacancy collapse [119]. 

Controlling the deposition conditions such as pressure, deposition rate, substrate 

temperature and surface nature can alter the intensity of film defects. Typical thermal 

vacuum deposition system, and one that is available in FOCAS Research Institute of 

Dublin Institute of Technology, is shown in Fig. 18. 
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Figure 18. Typical thermal vacuum deposition system. The photo is taken in the 

laboratory of the FOCAS Institute, Dublin Institute of Technology. 

The settings for the evaporation procedure vary depending on the type of the material 

being deposited and desired film properties, such as thickness and conductivity. The 

mean free path for air at 298 K is approximately 45 cm and 4500 cm at pressures of 10
-4

 

and 10
-6

 torr respectively. Therefore, pressures lower than 10
-5

 torr are necessary to 

ensure a straight-line path for most of the evaporated species and for substrate-to-source 

distance of approximately 10 cm to 50 cm in a vacuum chamber [85, 119]. In this work, 

Edwards E306A vacuum thermal coating system, the schematics of the main 

components of which are illustrated in Figure 19, was used and it satisfied all the 

necessary criteria to ensure uniform film deposition. The coating unit is equipped with a 

550 watt rotary pump and an E040 diffusion pump capable of achieving a vacuum of 

5x10
-7

 mbar.  



Raffie Arshak MPhil 52 

 

Figure 19. Edwards E306A vacuum thermal coating system. 

The substrates with appropriate masks are placed above and at some distance from the 

material being evaporated. This process leaves a thin, uniform film of the deposited 

material on all parts of the substrates exposed by the open portions of the mask. Figure 

20 pictures a bespoke mask used for evaporating Indium Oxide pattern in Edwards 

306E system. This mask was designed and constructed with a view to maximise the 

electric charge collection by the electrodes as a result of solar irradiation induced 

changes in the properties of organic film. The resultant pattern achieved after the 

thermal deposition process is shown in Figure 21. Notably, due to transparent nature of 

Indium Oxide film, this image shows the pattern deposited with Al material, specifically 

to illustrate the layout.  
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Figure 20. Bespoke mask used for evaporating Indium Oxide pattern in Edwards 306E 

system. 

 

Figure 21. Evaporated Al illustrating the pattern for the transparent layer. 

The thermal vacuum deposition system also contains an Edwards FTM5 quartz crystal 

to monitor the rate of film deposition and to measure the film thickness. The mass 

deposited on the quartz crystal during the evaporation alters its natural frequency of 
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vibration. This frequency change can be recorded on the meter of the film thickness 

monitor connected to the quartz crystal. According to the recommended settings, the 

following values were used: density 7.3 and acoustic impedance (Z) 10.49. 

Approximately 0.05 g of Indium spheres measuring 1 mm in diameter and with 99.99% 

purity, purchased from Johnson Matthey Ltd, was loaded into a molybdenum boat. The 

choice of boat material was dictated by the fact, apart from the high melting point, that 

it does not react with indium and is easy to bend to make custom boats. Prior to 

deposition, the boats were thoroughly cleaned in Methanol, IPA and deionised water to 

remove any possible contaminant that can affect the purity of the deposition process.  

When the required vacuum level is achieved, in this work it was 10
-4 

mBar to 10
-3

mBar, 

the 10-30 A current is passed through the boat with the material in it until the content of 

the boat begins to melt, which then evaporates and condenses onto the substrate above 

it. The Penning gauge provided the feedback in order to achieve the required vacuum 

pressure. Specifically, the best conditions that allowed repeated deposition of this films 

with reproducible properties, were when the chamber was pumped down to a pressure 

of 3·10
-4

 mbar and a maximum current was passed across the molybdenum boat of 

30 A. The substrate temperature was controlled using a radiant heater at approximately 

300 
o
C. Under these conditions the films’ deposition rate was 0.028 nm/sec and the 

resultant achieved thickness of Indium oxide layer was 55 nm. 

After deposition, the samples were allowed to cool for 1 hour to reduce the possibility 

of the cracks and structural defects caused by the rapid change in the temperature, 

which is particularly vital for solar cells [120-122].  

Sheet conductance of the layer was measured using a power supply and a bench top 

work meter, as shown in Fig. 22. An 8 V input from the power supply returned ~9 mA 
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output sheet conductance for the 55 nm layer and ~7 mA for the 29 nm layer. Sheet 

resistivity measurements were performed on a Jandal four point probe, the photo of 

which is provided in Fig. 23. The resistivity of the film was measured and found to be 

~40 Ω/sq for 55 nm layer and ~32Ω/sq for 29 nm layer. 

 

Figure 22. Experimental set-up for measuring sheet conductance of the deposited films.  

 

Figure 23. Jandal four point probe. 
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3.5.2. Bespoke Solar Cell Structure 

Two different substrates were used to manufacture the bespoke solar cell, glass and 

flexible PET with ITO (by Sigma Aldrich) already printed. The bespoke solar cell on 

glass substrate was manufactured by consequent deposition of the thin film layers using 

various masks with different patterns and appropriate functional materials, as well as by 

spin-coating of organic solar light sensitive mixture. Figure 24 illustrates the layout of 

the novel bespoke OPV device, whereas Figure 25 (a) shows the final manufactured 

prototype structure, Figure 25 (b) focusing on the electrical contacts.  

 

Figure 24. Bespoke OPV Cell Layout.  
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 (a)  (b) 

Figure 25. (a) final manufactured prototype structure; (b) close-up view of the 

electrical connections. 

Table 2 below summarises each layer material and deposition parameters, as well as 

final layer thickness. 

Table 2. Summary of the solar cell structure and manufacturing process. 

Table of Layers Method Thickness 

Glass Substrate/flexible 

substrate 

Cut and clean DI water, 

acetone, methanol 

 

IO(Indium Oxide) on glass/ 

 

ITO already on flexible 

Thermal evaporate, below  

1e-6torr 

55nm 

PEDOT:PSS Spin coat, anneal 120°C, 10 

mins 

0.5ml 5000rpm 45sec 

~40nm 

P3HT:PCBM  

(Poly3hexylthiophene:Phenyl 

C60 Butyric Acid methyl 

Esther) 

Spin coat, anneal 150°C 

10mins 

0.5ml 1500rpm 45sec 

~80-100nm 

Al (on glass substrate) 

 

Silver paste (on flexible 

substrate) 

Current 1A/s, sputter,  

1e-06 torr 

 

Hand printed, oven bake, 90°C, 

8 mins  

100nm 

 

 

~200um 
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To clarify, a mask for the deposition of the conductive Indium Oxide (and Aluminium) 

layers was first custom-made. Then the active material was prepared in the manner 

described in Section 3.2.1. Briefly, P3HT and PCBM materials purchased from Ossila 

Chemicals were mixed at a 1:1 ratio in dichlorobenzene, with resultant concentration of 

20 mg/mL. The solution was mixed at 60 °C overnight. The glass substrates are cut into 

1”x1” pieces, ultrasonicated in deionised water, acetone and methanol to ensure 

adequate cleaning, so that there is no possible contaminants that can alter the 

performance of the resultant film. The glass substrates were then also UV-ozone treated 

for 11 mins before deposition of active functional layers. Afterwards, Indium Oxide was 

thermally evaporated through the patterned mask in order to coat the substrate with the 

transparent conductive layer. The next layer is the buffer layer, for which purpose 

0.5 ml of PEDOT was deposited on a glass substrate previously coated with Indium 

Oxide, and it was done by spin coating at 5000 rpm for 45 secs to achieve 

approximately 40 nm thick layer.  

The next layer was the active layer and for that Poly (3-hexylthiophene) (P3HT) and 

Phenyl-C60 butyric acid methyl ester (PCBM) were mixed in at 1:1 ratio and 

dichlorobenzene and stirred at 60 °C overnight. And finally, the back electrode from 

aluminium film was produced by deposition in thermal vacuum evaporation system or 

by sputtering at a vacuum of 10
-6

 torr with a current across the tungsten boat of ~ 1 A to 

achieve ~ 100 nm thick film.  

Figure 26 illustrates the set-up for testing the electrical properties of manufactured 

layers. 
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Figure 26. Testing the electrical properties of the glass substrate cell.  

For the flexible PET with coated ITO, the procedure for deposition of PEDOT:PSS and 

P3HT:PCBM is the same as for the glass substrate. Silver paste was chosen as the top 

electrode, it was hand printed and then baked in an oven at 90°C for 8 minutes.  
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Chapter 4: Results and Discussion 

In this chapter, the results of the films will be discussed with particular attention using 

the Microwave spectroscopy technique. The theory, equipment, experimental setup and 

results are all demonstrated. In greater detail, the active layer is examined before and 

after exposure to the simulated sun. The peaks are observed in the layer as the exposure 

increases, frequency and amplitude shifts can also be observed. 

Optical properties versus Electrical results are also demonstrated. The effects of thermal 

annealing on the active layer are also demonstrated. The final prototype testing results 

are carried out discussed in this chapter. In summary, the optical, electrical and 

microwave characteristics of the active layer along with the final test results for the 

prototype, have been studied and presented in this chapter also, beginning with a 

topographical capture using AFM Microscopy.  

4.1. Structural Characterisation by AFM 

An Atomic Force Microscope (AFM) was used to confirm the thickness levels of the 

manufactured layers. AFM, a form of Scanning Probe Microscopy, is a high-resolution 

imaging technique that can resolve features as small as an atomic lattice in the real 

space. It allows to observe and manipulate at the molecular and atomic level. The 

atomic resolution of samples is attained in AFM by monitoring small forces applied 

over a surface using a sharp probe mounted on a flexible cantilever, which acts as a 

spring [123]. The basic components of an atomic force microscope include a 

piezoelectric scanner, flexible cantilever containing a sharp probe, laser, photodiode 
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detector, and feedback electronics. AFM is based on a principle whereby the 

movements of a flexible cantilever containing an atomically sharp probe are monitored 

by changes in laser deflection off a reflective surface on the backside of the cantilever. 

The Asylum MFP-3D BIO AFM available in FOCAS, as shown in Figure 27, is a high-

performance AFM designed specifically for biological applications, and it was used to 

capture the topographic image of the spin coated layer. It is a versatile AFM that 

combines molecular resolution imaging and pico Newton force-based measurements on 

an inverted optical microscope. Combined with its ultra-low noise performance and 

unprecedented precision and accuracy, the MFP-3D-BIO has already raised the bar for 

AFM instrumentation in bioscience and now its capabilities are used to test the 

properties of the materials for the next-generation flexible solar cells. 

 

Figure 27. MFP-3D-BIO AFM in FOCAS Research Institute, DIT.  
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In this work, the Asylum MFP-3D BIO AFM was used to capture the topographic 

image of the spin coated layer, as shown in Figure 28. According to the measurements, 

the topographical profile has the approximate thickness of the layer as 80 nm (edge) and 

170 nm (scratch in the centre). 

 

Figure 28. AFM topographic image of the spin coated layer. (left) edge of a spin coated 

film (right) a scratch in the spin coated film. 
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4.2. Microwave Spectroscopy of P3HT:PCBM films 

4.2.1. Brief review of microwave spectroscopy 

4.2.1.1. Electromagnetic waves 

An Electromagnetic (EM) wave, also known as Transverse Electromagnetic (TEM) 

wave, travels through vacuum in form of energy at the speed of light [124]. Its two main 

components (i.e. electric (E) and magnetic (H) field) oscillate in phase perpendicular 

(Transverse) to each other and perpendicular to the direction of travel (propagation). 

EM waves travel in a harmonic wave pattern which occur at equal intervals in time 

(cycle). The wavelength λ of the EM waves can be described as the distance from any 

point on one cycle to the same position on the next cycle or wave EM wave with a 

wavelength   has a frequency   that travels in vacuum or air (relative permittivity = 1) 

at the speed of light   according to Eq. 8.  

  
 

 
     Eq. 8 

The permittivity of a material derives from its chemical state and structure; molecular 

composition and formation; and atomic valance. The permittivity is a measure of 

various polarisation phenomena that occur at different frequency ranges of oscillating 

electric fields. Dipolar polarisation is induced in molecules with an inherent dipole 

moment (orientation polarisation) [125]. An external electric field causes such 

molecules to rotate over a time period proportional to dipole moment and local 

viscosity. Dipole moment describes the separation of positive and negative charges on a 

molecule yielding the overall polarity. 
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When electromagnetic waves propagate in a medium with relative permittivity (εr) or 

relative permeability (μr) more than 1, Eq. 9 is modified to the following form : 

  
 

√     
    Eq.  9 

EM waves can be classified depending on their wavelengths or frequencies, as for 

example is shown in Table 3. 

Table 3. Electromagnetic spectrum bands wavelengths, frequencies and energy 

Region Wavelength (cm) Frequency (Hz) Energy (eV) 

Radio >10 <3 x 10
9
 <10

-5
 

Microwave 10 – 0.01 3x10
9
 – 3x10

12
 10

-5
 – 0.01 

Infrared 0.01 – 7x10
-5

 3x10
12

 – 4.3x10
14

 0.01 – 2 

Visible 7x10
-5

 – 4x10
-5

 4.3x10
14

 – 7.5x10
14

 2 – 3 

Ultraviolet 4x10
-5

 – 10
-7

 7.5x10
14

 – 3x10
17

 3 – 10
3
 

X-Rays 10
-7

 – 10
-9

 3x10
17

 – 3x10
19

 10
3
 – 10

5
 

Gamma rays <10
-9

 >3x10
19

 >10
5
 

The microwave frequency band is part of the electromagnetic wave spectrum, which is 

referred to as “…alternating current signals with frequencies between 300 MHz and 

300 GHz, with corresponding electrical wavelength between 1 m and 1 mm, 

respectively” [126]. At microwave frequencies, standard circuit theory cannot be used 
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because of the high frequency and short wavelength [127]. The short wavelengths 

involved mean that the propagation time for electrical effects from one point in a circuit 

to another is comparable with the period of the oscillating currents and charges in the 

system. As a result, conventional low-frequency circuit analysis based on Kirchhoff’s 

laws and voltage-current concepts no longer suffices for an adequate description of the 

electrical phenomena taking place. 

Dielectric spectroscopy characterises the dielectric properties of a material under test 

with an oscillating source as a function of frequency. It is based upon the interaction of 

an externally applied oscillating electric field with the electric dipole relaxation moment 

of the tested material expressed in terms of real and imaginary permittivity. A wide 

variety of techniques have been developed that are based upon measuring the 

capacitance and conductance of the materials as a function of frequency. The resulting 

dielectric spectra are interpreted to analyse and differentiate different substances. The 

technique uses only a small amount of power in the microwave region (~ 1 mW) and 

therefore it is non-destructive and non-ionising. 

4.2.1.2. Applications of electromagnetic wave sensing in GHz frequency range 

Electromagnetic wave sensing in the GHz frequency range, or microwave sensing, is a 

novel but rapidly developing technology which has been successfully used as a sensing 

method for various industrial applications including monitoring the water quality [128-

130], solution concentrations [131-133], fluid level measurements [134], material 

moisture content [135, 136], for continuous process monitoring of biogas plants [137], 

for the determination of moisture content in soil [138], for military applications such as 

verification of an activated carbon residual life [139] and in the healthcare industry, for 
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example for real-time monitoring of glucose in diabetic patients [140, 141] and for non-

invasive monitoring of bodily fluids [142].  

Microwaves are largely used for material characterisation since they easily propagate 

through low-loss dielectrics and the amplitude of the electromagnetic wave reflected by 

or transmitted through a material obstacle strongly depends on the dielectric properties 

of the material itself [143]. Distortion of the signal when in contact with the media, such 

as polymer film in this work, appears in the form of broadening or compression of the 

pulse and reaches its maximum at the vicinity of resonant absorption lines [144]. 

Microwave sensors in the form of a cavity resonator for accurate measurements of both 

organic (sugar, alcohol) and inorganic (NaCl, KMnO4) water solution concentrations 

have been reported [131]. Notably, the sensitivity of the sensor in determination of 

NaCl was 0.4 dB/(mg/ml) within 0-1 % concentration range. The sensor was able to 

detect the concentrations of other water solutions, but its sensitivities are strongly 

dependent on the type of tested chemical ingredient. 

Notably, the use of microwave irradiation was reported for synthesis of polymer 

photovoltaic cells [145]. However, no records have been found to date that claim the use 

of electromagnetic waves in microwave the region for actual organic material properties 

characterisation for PV applications. It is strongly believed that the proposed approach 

is novel and has a potential for routine applications along with the electrical and optical 

studies to provide for better understanding of the complex phenomena that solar 

irradiation causes in the properties of organic materials. 

Many different microwave or radio frequency structures, such as coaxial probes, closed 

or open resonators, antennas and transmission lines, have been employed to assess the 
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dielectric properties of material, specifically to measure the permittivity [146]. These 

are briefly described in the next section.  

4.2.1.3. Transmission Lines 

Transmission lines are used to transfer high frequency EM waves (radio waves and 

microwaves) from the source to the destination. The wave that emerges from the source 

is called the incident wave. When it propagates through the transmission line, it will 

face some impedance which can be determined from the line physical characteristics (i.e 

characteristics impedance Z0). Some of the fundamental types of transmission lines are: 

 Waveguide 

 Resonant Cavity 

 Coaxial cable 

 Microstrip. 

Rectangular and circular waveguides can be constructed from conductive materials such 

as aluminium or copper. These types of transmission lines can work efficiently at high 

frequency due to low attenuation and losses. Another variation of waveguides is called 

waveguide coplanar [147]. The drawbacks for these waveguides include them being 

heavy and inflexible to bend. When an EM wave propagates within the waveguide, it 

forms different E and M field configurations; these configurations are called “modes” 

and are depending on the shape and size of the waveguide. Two main types of these 

modes can be exist, transverse electric (TE) and transverse magnetic (TM) modes. The 

difference between the two types is defined by the component of the wave which is 

transverse to the direction of the signal propagation from one end to another where TE 

modes only have a magnetic field component and no electric field component in the 
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direction of propagation and TM modes only have an electric field component with no 

magnetic field component in the direction of propagation. 

Microwave resonators [148] can be constructed from closed sections of rectangular or 

circular waveguides. When both ends of the waveguide are shortened, a cavity is 

formed. According to Bansal [149], cavities use the constructive and destructive 

interferences of multiply reflected waves to cause resonance – for that reason, cavities 

are also called resonators. In resonance, the system tends to oscillate at greater 

amplitude at some frequencies known as resonance frequencies. Each resonance 

frequency has its own “mode”. Depending on the shape and size of the cavity, different 

mode is generated.  

To elaborate further, at certain excitation frequencies, standing waves will form 

within a cavity, and in microwave engineering these are referred to as modes, and can 

be illustrated in terms of the direction and/or intensity of the microwave electric or 

magnetic field components.  Pozar [150] defines Eq. 10 as a method for determining the 

frequency at which such modes will occur:  
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   Eq.  10 

where c is the speed of light, pnm is the m
th

 root of the Bessel function of the n
th

 order for 

TM (transverse magnetic) modes or the m
th 

root of the first derivative of the Bessel 

function of the n
th

 order for TE (transverse electric) modes, a is the radius of the cavity, 

d is the depth of the cavity and l is its length. 
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Each mode will generate a resonant peak.  Since, according to Eq. 10, all 

electromagnetic modes have the same dependence upon 
r

 , when the cavity is 

excited by an appropriate range of frequencies and the resulting spectrum is captured, 

the resonant peaks corresponding to these modes will shift to lower frequencies as εr is 

increased.  Therefore, if exposure to sun light causes a change in dielectric properties 

exhibited by the material, one would expect to see the resonant peaks measured in the 

reflected or transmitted spectrum also shift.  

When designing a microwave cavity, several parameters have to be considered, 

including construction material, energy coupling mechanisms, resonance frequency and 

quality factor, as well as scattering parameters. Metals with high electrical conductivity 

are usually used to confine the EM waves within the cavity so minimum or zero electric 

power loss is achieved. There are two methods for coupling the EM waves to the cavity, 

magnetic flux linkage or electrical field antenna coupling [127]. The first method 

however is normally used for high power applications where a lower loss transmission 

line (i.e. cylindrical or rectangular waveguides) is required to avoid energy losses [151]. 

The cavity can be coupled using either a monopole antenna where the centre conductor 

of a coaxial cable is extended into the cavity or by using a loop antenna in which the 

surface area of the loop is placed perpendicular to the magnetic field (H) lines on the 

inner surface of the cavity as illustrated in Figure 29 [152]. 
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Figure 29. Loop antenna coupling method [152]. 

The main difference between the two antennas is the mode of interest to be excited in 

which the monopole antenna placed on the wall of the cavity where there is a 

perpendicular Electric field (Vertical Magnetic field). This field’s configuration occurs 

in TE modes while the loop antenna placed on the wall of the cavity where there is a 

perpendicular Magnetic field (vertical electric field) and this configuration occurs in 

TM modes. 

The quality factor (Q) [153] is the measure of efficiency with which the energy storing 

element can store maximum energy and is defined as in Eq. 11. The quality factor for 

ideal cavity resonator is infinite, due to the perfect conductor walls, thus, resulting in 

zero energy dissipation, but when the cavity is loaded (material or shape perturbation), 

the quality factor will be decreased (insertion loss) depending on the characteristics of 

the load. Furthermore, different cavity modes can have different quality factors 
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depending on the position of the loaded material in the cavity and its interaction with 

the EM wave. 

    
                                  

                           
   Eq.  11 

4.2.1.4. Scattering Parameters 

Scattering parameters, or S-parameters, quantify how EM waves behave in a closed N-

port resonator [154]. As EM waves are launched from the input port, some of their 

energy will be received on other ports, some will be reflected back. S-parameters can be 

expressed using power values, i.e. Magnitude (dB) and angle f (Hz). An N-port device 

has N
2
 S-parameters; for example, a two-port device has four S-parameters. The 

numbering convention for S-parameters is that the first number following the “S” is the 

port where the signal emerges, and the second number is the port where the signal is 

applied. For example, a cavity with two ports has four S-parameters as shown in 

Figure 30:  

S21 – refers to the signal that is transmitted from port 1 and received on port 2. 

S12 – refers to the signal that is transmitted from port 2 and received on port 1. 

S11 – refers to the signal that is transmitted from port 1 and received on port 1 

(reflected). 

S22 – refers to the signal that is transmitted from port 2 and received on port 2 

(reflected). 
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Figure 30. Block diagram of S-parameters for two ports cavity. 

The S-parameters, S11 and S21 are determined by measuring the magnitude and phase of 

the incident, the reflected and the transmitted voltage signals when the output is 

terminated in a perfect Zo (a load that equals the characteristic impedance of the test 

system) [155]. 

Notably, microwave resonators can be used in different application such as filters [156, 

157], oscillators [158], material sensing [159-162] and tuned amplifiers [163]. The 

previous applications would use small transmitted power ≤ 10mW, while cavities and 

waveguides can also be used in high power applications such as material heating [164], 

plasma generation [165] and microwave-assisted synthesis of organic materials for PV 

applications [145]. 

The coaxial cable, as shown in Figure 31, consists of two conductor wires. The outer 

wire is in a form of a shield around the inner conductor. They are separated by a high 

permittivity semiconductor layer which minimises the external radiation interference 

[166]. The most common use for this type of transmission line is the TV cable which 

carries the signal from the antenna to the TV set. Coaxial cable connectors are designed 

to maintain the shielding that the coaxial design offers. Many types are available such as 
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N-Type and Sub-Miniature version A (SMA) Connectors [167], as illustrated in Figure 

32. 

 

Figure 31. Coaxial cable. 

  

Figure 32. N-Type and SMA coaxial cable connectors. 

The microstrip [168] is the most popular type of planner transmission line (Figure 33) 

[169], it can be fabricated using the Printed Circuit Board (PCB) method where a thin 

conductor is printed to act as the inner wire of the coaxial cable but flattened, the 

ground plane will do the same job as the outer shield of the coaxial cable. This 

configuration is useful when other RF components are needed to be connected to 

N-type 

SMA 



Raffie Arshak MPhil 74 

transmission line as shown in Figure 34 [170]. The drawback for it is that it suffers from 

radiation loss. 

 

Figure 33. Typical microstrip transmission line [169]. 

 

Figure 34. PCB with microstrip transmission line connected to resistor [170]. 

Notably, among the above-described methods, transmission line is the most studied 

structure for high frequency measurements, including the characterization of low-k 

dielectric thin film. 

However, the microwave planar printed patterns for various sensing applications are 

increasingly used due to their versatility, flat profile and low weight. Their design can 

be tailored to suit particular applications, coupled with reliability and cost-efficiency. 
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They are easily manufactured using common methods for printed circuit board 

production, and their impedance can be matched to the input line by altering the micro-

strip line feed configuration. 

The patch antenna represents the frequency-selective element of a phase shift transistor 

oscillator. The active integrated antenna frequency of operation is determined by both 

the patch geometry and the electrical loads connected at the two microstrip ends [171]. 

A convenient termination is normally represented by two open-ended stubs whose 

electrical length is /4 at the patch resonant frequency, where  is a complete 

wavelength. 

For example, a coaxial-fed patch antenna suitable for non-destructive porosity 

measurements in low-loss dielectric materials has been reported [172]. The variation of 

the patch resonant frequency when it is put on the surface of the material under test was 

used to estimate the dielectric permittivity at 2.4 GHz ISM (Industrial Scientific and 

Medical) frequency bands. The estimated porosity was in good agreement with that 

obtained by the conventional mechanical measurements, and the mean percent error was 

less than 13.5%. 

The performance of a microstrip resonator depends on its electromagnetic field 

distribution, resonant frequency and quality factor Q. Since the emergence of microstrip 

technology as a dominant architecture, varying types of microstrip resonators have been 

developed to suit the needs of different microwave circuits [135]. 

To clarify the principle behind testing material properties with electromagnetic waves 

used in this work, it is worth mentioning that microwave sensors in the form of planar 

printed patterns operate based upon the fact that an object under test, e.g. a film 

sensitive to sun light, when placed into the vicinity or in direct contact with a 
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microwave sensor, interacts with the electromagnetic waves in a unique manner, which 

can be specifically correlated with the properties of this material. In particular, the 

sensing is based on interaction of propagating or resonating modes with the solution 

under test. Due to this interaction, the permittivity of the material changes and it 

manifests itself as a frequency change, attenuation, reflection of the signal or a phase 

shift. In the microwave region up to frequencies of about 100 GHz, the complex 

dielectric spectrum of, for example, water can be well represented by a Debye type 

relaxation function [173]. A Debye dielectric is the representative linear dispersive 

medium and is often used to model electromagnetic wave interaction with water based 

substances including biological material [174]. It should be noted, nevertheless, that 

water is a complex media which changes its structure depending on the structure of the 

material in contact with it. This fact was experimentally and theoretically confirmed in 

[175], where the dielectric properties of water bound to soil were investigated. The 

current understanding suggests that the closer the water layer is to the particle the more 

distorted is its structure compared to the structure of free water. 

By considering how reflected (S11) microwave signals vary at discrete frequency 

intervals, the change in the signal can be linked to the composition of the object under 

test. These signals vary depending upon properties of the material / film presented to the 

sensing structure, such as conductivity and permittivity [176].  Conductivity is a 

measure of a material’s ability to conduct an electric current. Permittivity is a measure 

of how an electric field is affected by a dielectric medium, which is determined by the 

ability of a material to polarise in response to the field, and reduce the total electric field 

inside the material. Therefore, permittivity (εr), as defined in Eq. 12, relates to a 

material’s ability to transmit an electric field and is a complex value which varies with 
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changing frequency, and accounts for both the energy stored by a material (ε') as well as 

any losses of energy (ε'') which might occur:  

      Eq.  12 

Notably, ε' and ε'' represent respectively real and imaginary parts of the complex 

permittivity value (εr), which depends on frequency. This frequency dependence is 

specific for each material and therefore can be used as an indicator of its properties 

[133]. As a material in close proximity of EM field changes its state or properties, it is 

likely that its permittivity will change leading to a change in sensor response if the 

material is the target of EM radiation.  By measuring this response over a range of 

frequencies, one can characterise materials in order to infer their properties.   

In order to get maximum sensitivity of the microwave sensor, the material under test 

must be positioned near to the field maximum. However, other resonant modes could 

also provide useful information and in some cases, as the research reported in this paper 

shows, depending on IDE sensor configuration, low-order resonant modes could be 

more sensitive to the minute variations in dielectric properties of the material under test. 

4.2.2. Experimental setup for microwave spectroscopy measurements 

The design of any microwave sensor is the key parameter that regulates its performance. 

Sensors with the IDE structure shown in Figure 35, operating at microwave frequencies 

were chosen for their versatile design that combines ease of manufacturing with the 

desired functionality. Silver was used as the conductive metal material for the both 

bottom layer, which acted as a ground plane, and the IDE pattern on the top layer to 

maintain chemical neutrality when the device is placed in contact with water. The 

thickness of the Ag layers was 35 µm and the width of each line on top pattern is 2 mm. 

𝜀𝑟 = 𝜀′+ 𝑗𝜀′′ 
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Figure 35. Electromagnetic wave sensor with printed metal pattern and light-sensitive 

P3HT:PCBM layer. 

Figore 36 displays optical images of the manufactured prototype microwave sensor on 

DuPont™ Pyralux® AP Polyimide Flexible Laminate substrate with 50.8 µm thickness, 

which is bent to illustrate its flexibility. The thin flexible substrate provides not only 

structural benefit for a wide range of applications, but also plays a pivotal role in 

controlling the strength of a microwave signal fed into the sensor. Thicker substrates are 

prone to the following effect: as the substrate thickness increases, surface waves are 

introduced which are not usually desirable because this results in a lower electric field 

density [177]. The surface waves travel within the substrate and they are scattered at 

bends and surface discontinuities and affect the printed metal pattern and its polarisation 

characteristics [178].  
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Figure 36. Optical image of the 3 pair IDE microwave sensor, which is bent to illustrate 

the flexibility of the polymer substrate [177]. 

Each sensing method has its limitations, and in the case of the planar type 

electromagnetic wave sensors, the properties of the materials used for the substrate and 

as ground and top metal layers play pivotal role, along with the structure of the device 

itself, in determining the boundaries of sensitivity to the sensing method. Therefore, to 

ensure that the changes in the dielectric properties of P3HT:PCBM films are only due to 

their exposure to the simulated sun irradiation, alternative EM sensor was used in 

parallel, namely, having identical layout to one depicted in Figure 35, but with Rogers® 

material used as a substrate and Cu metal for both bottom and top antenna patterns. This 

EM device without SMA is illustrated in Figure 37.  

                 

Figure 37. Optical image of a EM wave sensor head constructed on Rogers® substrate 

and having Cu metal patterns. 
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A distinct feature of IDE type sensors is their superior sensitivity to change close to the 

sensor surface, with this sensitivity decaying rapidly with distance away from the 

surface. Reported simulations of the 3D IDE sensor structure, created using the Ansoft 

High Frequency Structural Simulator (HFSS) finite element modelling software (see 

Figure 38), demonstrate this feature [177].  This model, whose performance has been 

verified against real-world measurements, is constructed such that the sensor is placed 

inside a suitably sized air box - the outer faces of this box are assigned as radiation 

boundaries.  Adaptive meshing is used for the simulation, with approx. 25,000 

tetrahedra being required for a converged solution.  Notably, the electric field intensity 

(shown in V/m) falls rapidly as one moves away from the electrodes. This is 

advantageous as it reduces significantly the chance of undesirable factors influencing 

sensor response. 

 

Figure 38. HFSS model of EM wave sensor field [177]. 



Raffie Arshak MPhil 81 

A vector network analyser (VNA) is used to generate high frequency signals and 

measure the parameters of electrical network, typically the S-parameters. VNAs contain 

both a source and multiple receivers, and generally display amplitude ratios and phase 

information (frequency or power sweeps). In this work, the electromagnetic wave 

sensors with light-sensitive coatings on top of the metal pattern were each attached to a 

Rohde and Schwarz ZVA24 vector network analyser via a coaxial cable. 

SMA type connectors were used as they are very common, popular and readily available 

for work of this nature. The sensor and associated equipment were all specified for 50 Ω 

impedance. Thus, depending on the size of the pattern or substrate, the connector 

dimensions may vary [179]. Molex edge mount connectors were used in this work. This 

SMA type was chosen as it is designed to excite a printed IDE sensor horizontally to 

maximise the available signal. 

The VNA used for the purposes of data acquisition from the sensors, with this unit 

being appropriately calibrated according to manufacturer specifications, is shown in 

Figure 39. The data (60,000 points for each measurement) was captured in the 

frequency range of 1-15 GHz for the reflected (S11) signals. All the measurements were 

performed at constant temperature of 18 C. Each sample was measured for at least 7-9 

times and the results were repeatable with less than 5% deviation and reproducible. 

Notably, average sensor responses are depicted in the graphs shown in following 

section. 
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Figure 39. Measurement setup showing VNA and a microwave sensor connected via 

coaxial cable [177]. 

4.2.3. Films reproducibility verification by microwave measurements 

Throughout the experimental work, all samples, i.e. deposited films, were produced in 

at least triplicate to ensure that the devices are reproducible, and also each measurement 

was performed numerous times, the number depending on the nature of measurement, 

to ensure repeatability of the results. In all the experiments, the environmental 

conditions were maintained at a constant temperature and humidity level, to eliminate 

their effect on the properties of the P3HT:PCBM samples.  

Despite taking special care to thoroughly follow the experimental procedures when 

depositing the films and using optical inspection of the devices to confirm the absence 

of the defects in their structure, it is more reassuring to perform additional non-

destructive measurements of the films properties. One such method to confirm the 

reproducibility of the devices employed in this work is measuring their electromagnetic 

wave spectra to assess that the dielectric properties are identical, or at least that the 
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possible variations in their properties are negligible and for laboratory type prototype 

can be acceptable as negligible. Thus, by recording the EM spectra in 0.01-15 GHz 

frequency interval for a number of samples and contrasting them with each other, one 

may reveal the presence of the defects in their structure. For example, Fig. 40 illustrates 

the typical S11 signal distribution of the microwave sensor on Rogers® substrate with 

Cu pattern in 0.01-15 GHz range when in contact with two P3HT:PCBM films samples. 

 

Figure 40. S11 signal distribution of the microwave sensor on Rogers substrate with Cu 

pattern in 0.01-15 GHz range when in contact with two P3HT:PCBM samples. 

The measurements revealed that S11 signal distribution for the two P3HT:PCBM 

samples is almost identical throughout the whole measurement range, which confirms 

the reproducibility of the films. Importantly, each spectrum was recorded with the 

accuracy of 60,000 points per measurement range, providing superior resolution. The 

next section examines the effect of the solar irradiation on the microwave spectra of 

these samples. 
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4.2.4. Solar Exposure Effects on a microwave sensor with a flexible polymer 

substrate and Ag pattern 

Once the reproducibility of the samples was confirmed, the electromagnetic wave 

sensors were used to reveal if there are any changes in dielectric properties of the 

P3HT:PCBM films caused by their exposure to simulated solar light in the Q-Sun Xe-1 

Xenon Test Chamber, which was briefly described in Section 3.1.1. Since all other 

experimental parameters, including temperature and humidity were kept constant during 

all the measurements, any changes in the films’ properties can only be attributed to the 

effect of the solar irradiation.  

For the measurements of the P3HT:PCBM films’ dielectric properties, electromagnetic 

wave spectra were recorded for the films deposited over EM sensors on flexible 

substrate with Ag antenna patterns. Full EM spectra in 0.01-15 GHz range for bare 

sensors and for as-deposited, and exposed to sun light for 1 hour and 20 hours 

P3HT:PCBM films are shown in Figure 41. It is clearly seen that the sensor can 

distinguish the presence of a thin P3HT:PCBM layer, as the spectra for the film and the 

air alone are different even to the eye.  
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Figure 41. S11 signal distribution of the microwave sensor on flexible substrate with Ag 

pattern in 0.01-15 GHz frequency range when in contact with air and P3HT:PCBM 

films irradiated for 0, 1 and 20 hours. 

However, it is of paramount importance for this research to reveal if there are any 

changes in the material properties caused by the exposure to the sun light, and for that a 

closer look at various parts of the microwave spectra were taken, focusing on the 

resonant peaks where the changes are the most pronounced. Thus, Figure 42 depicts S11 

signal distribution of the microwave sensor on flexible substrate with Ag pattern in 0.6-

1.4 GHz frequency range when in contact with air and P3HT:PCBM films, as-deposited 

and irradiated for 1 and 20 hours. The first resonant peak occurring just below 1.2 GHz 

experienced a shift in the resonant frequency towards lower values with the increased 

duration of the exposure to sun light, while at the same time the module of the 

amplitude of this peak decreased.  
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Figure 42. S11 signal distribution of the microwave sensor on flexible substrate with Ag 

pattern in 0.6-1.4 GHz frequency range when in contact with air and P3HT:PCBM 

films irradiated for 0, 1 and 20 hours. 

Similar behaviour can be seen for the second resonant peak, which occurred in the 

region of 2.8-3.0 GHz and is shown in Figure 43. As with the first resonant peak, the 

exposure to the sun light for 1 and 20 hours has caused a shift in the resonant frequency 

from 2.921 GHz for as-deposited P3HT:PCBM film to 2.903 GHz and 2.887 GHz when 

exposed to 1 h and 20 h respectively. The amplitude of the peak has also experienced a 

change, in line with the behaviour of the first resonant peak. 
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Figure 43. S11 signal distribution of the microwave sensor on flexible substrate with Ag 

pattern in 2.2-3.2 GHz frequency range when in contact with air and P3HT:PCBM 

films irradiated for 0, 1 and 20 hours. 

However, the changes in the amplitude of the S11 signal in the subsequent third, fourth 

and fifth resonant peaks in the frequency range of 7.0-9.5 GHz were almost negligible, 

or within the experimental uncertainty, whereas the shift to the lower frequencies took 

place with increased exposure to sun light, following a trend set by the first and second 

resonant peaks. S11 signal distribution of the microwave sensor on flexible substrate 

with Ag pattern in 6.0-10.0 GHz frequency range when in contact with air and 

P3HT:PCBM films irradiated for 0, 1 and 20 hours is depicted in Figure 44.  
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Figure 44. S11 signal distribution of the microwave sensor on flexible substrate with Ag 

pattern in 6.0-10.0 GHz frequency range when in contact with air and P3HT:PCBM 

films irradiated for 0, 1 and 20 hours. 

The experiments using EM sensors on flexible substrates with P3HT:PCBM films 

deposited over them revealed that exposure to Q-Sun light clearly resulted in a change 

in the dielectric properties of the films, causing both shift in the position of all the 

resonant peaks and changes in their amplitudes, which were especially evident for the 

first and second resonant peaks.  

4.2.5. Solar Exposure Effects on a Microwave sensor with a Rogers substrate and a 

Cu pattern 

To confirm that the observed behaviour trend described in Section 4.2.3 is indeed the 

property of the produced P3HT:PCBM films and not effected principally by the design 
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and the materials of the EM sensor, the following section describes the results of the 

studies of the films deposited on sensors with Rogers substrate, which had Cu metal for 

the purpose of back layer and front antenna pattern. The measurements were perform in 

a similar fashion, with films being exposed to simulated sun light for 1 hour and 20 

hours and their properties were recorded at 0.01-15 GHz frequency range, while all 

other environmental parameters were kept constant. This is to ensure that any changes 

in the material’s dielectric properties are only connected with the influence of solar 

irradiation. Moreover, as in previous case, it was proven that time alone, i.e. 20 hours, 

does not cause measurable changes in the material properties that can be recorded with 

this electromagnetic wave sensing method. This fact was confirmed by repeatedly 

measuring as-deposited P3HT:PCBM films over a period of time comparable with the 

time it took to achieve equivalent of 20 hours solar exposure. However, this is only 

valid when the films were kept in air-tight container at constant environmental 

conditions, as exposure to elevated temperatures, humidity or any physical or chemical 

substances, including gases, could lead to deterioration of the material properties to a 

degree that they would not be suitable for PV purposes. However, it is beyond the scope 

of this work to investigate the range of operational parameters that are suitable for 

reliable long-term operation of P3HT:PCBM films for conversion of the solar energy 

into electricity. The aim is to prove the concept that this novel material composition, 

deposited using the procedure described in Section 3.2.3, is a suitable candidate for 

cost-effective organic solar cells.  

Accordingly, Figure 45 depicts S11 signal distribution of the electromagnetic wave 

sensor on Rogers substrate with Cu pattern in 0.01-15.0 GHz frequency range when in 

contact with air and P3HT:PCBM films irradiated for 0, 1 and 20 hours. The change in 

the dielectric properties of the film as a result of the solar irradiation influence is clearly 
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visible in the whole measurement spectra range. However, the changes in the 

electromagnetic wave spectra distribution are more pronounced at or near the resonant 

peak regions. Thus, Figure 46 focuses more closely on 6.5-8.5 GHz frequency region, 

which contains third and fourth resonant peaks. Interestingly, the third resonant peak 

frequency changes with the exposure time, shifting towards lower frequencies as the 

time progresses. For as-deposited P3HT:PCBM film the third peak frequency was 

recorded at 7.41 GHz, and it has decreased to 7.29 GHz after 1 hour irradiation 

exposure and further to 7.21 GHz after 20 hours of exposure. Regarding the peak 

amplitude values, they remained reasonably stable after the initial 1 hour irradiation.  

Contrary to this behaviour, the forth resonant peak amplitude has experienced dramatic 

changes in its module values, i.e. from -11 dBm for as-deposited films to -31 dBm after 

20 hours of simulated sun light exposure. At the same time, a gradual shift towards the 

lower frequencies can be noticed at this forth resonant peak, caused by the increase in 

the exposure time. Although this trend is in line with behaviour of the third resonant 

peak, the changes are ten-fold smaller, i.e. the reduction is at the range of MHz, rather 

than GHz. 
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Figure 45. S11 signal distribution of the electromagnetic wave sensor on Rogers 

substrate with Cu pattern in 0.01-15.0 GHz frequency range when in contact with air 

and P3HT:PCBM films irradiated for 0, 1 and 20 hours. 

Notably, with both types of the electromagnetic sensors used, all the results reported 

above show clear considerable change in the dielectric properties of deposited 

P3HT:PCBM films caused by the exposure to solar irradiation. Both signal amplitude 

changes and resonant peaks frequency shifts were recorded, and since all other 

experimental parameters and environmental conditions were kept constant, it is 

reasonable to conclude that the proposed methods of microwave spectroscopy is a 

reliable tool to trace the changes in the properties of the materials caused by the 

simulated Q-Sun irradiation. 
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Figure 46. S11 signal distribution of the microwave sensor on Rogers substrate with Cu 

pattern in 6.5-8.5 GHz frequency range when in contact with air and P3HT:PCBM 

films irradiated for 0, 1 and 20 hours. 

The next section focuses on the investigation of the changes in the optical properties of 

the P3HT:PCBM films under the influence of sun light, in an attempt to reveal the 

correlation between the properties and the exposure effects. Once it is achieved, it 

would assist in predicting the behaviour of complex composite organic films for PV 

purposes and accordingly could suggest new materials compositions to achieve the 

desired solar cells performance in various conditions.  
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4.3. Optical Properties of P3HT:PCBM  

4.3.1. Optical Properties of P3HT:PCBM Solutions 

The absorption spectra measurements of the raw solutions were taken using the Perkin 

Elmer Lambda 900 UV/VIS/NIR spectrophotometer. To begin, the background 

correction was set by inserting a blank cuvette and running the spectrometer. Regio-

regular P3HT was used as a light absorbing and electron donating material, while a 

soluble C60 derivative, PCBM was used as the acceptor material. The optical absorption 

spectra of these solutions were recorded on numerous occasions to ensure validity of the 

results. Three solution samples: PCBM, P3HT and PCBM:P3HT were prepared and 

inserted in glass cuvettes. For the PCBM sample, 10 mg of acceptor fullerene PCBM 

was dissolved in 1 ml dichlorobenzene. In P3HT sample, 10 mg of donor polymer 

P3HT was dissolved in 1 ml of dichlorobenzene, and for PCBM:P3HT solutions these 

were mixed at a ratio of 1:1 volume. The samples were combined by pumping forward 

and back through a syringe into a test tube with approximately 8 to 10 repetitions. 

Figure 47 illustrates the spectra for PCBM, P3HT and PCBM:P3HT solutions. 
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Figure 47. Illustration of the spectra for PCBM, P3HT and PCBM:P3HT solutions. 

Observing from the higher wavelength the PCBM solution, these spectra show optical 

absorbance gradually increasing as the wavelength decreases. In molecular C60 in 

toluene solution, a similar sharp peak is observed at ~410 nm, and this derives from 

transitions between molecular orbitals. A similar peak is observed at approximately 

~420 nm in this experiment in dichlorobenzene solution. The C60 Fullerene solution also 

illustrates a typical finger print peak at approximately ~330 nm. In the spectral range 

between 350 nm and 198 nm, three absorption peaks are distinct, at 328 nm, 256 nm 

and 211 nm. Peaks at 430 nm to 350 nm region can be explained by electronic 

transitions that demonstrate some vibrational structure [180-182]. 

In this work, P3HT with a LUMO level of 3.1 eV was used, and its absorption spectrum 

in dichlorobenzene was demonstrated. This illustrates the typical peak absorption wave 

band for P3HT at about 420 nm to 600 nm. 
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4.3.2. The effect of Annealing on the Optical Properties of P3HT:PCBM Films 

This section reports on the effect of the annealing on the optical properties of 

P3HT:PCBM films. Three thin film samples of P3HT:PCBM were prepared by spin 

coating onto 1 inch glass substrates. The substrates were cleaned with acetone and ultra-

sonicated in de-ionised water for 15 minutes, then wiped with ethanol and methanol 

with lint free wipes respectively. Again, 10 mg of P3HT and PCBM was dissolved in 

1 ml of solvent 1,2dichlorobenzene. The solution was spin coated on the glass substrates 

for 45 seconds at 1500 rpm in order to achieve an approximately 80 – 100 nm thick 

layer. To confirm the individual characteristics and layer thickness, AFM was used, as 

described earlier in Section 4.1. The solutions were then mixed at a ratio of 1:1 and also 

spin coated on the glass substrates. Sample 1 was annealed at 90 C for 10 minutes, 

sample 2 and 3 were both dried naturally at room temperature and the absorption spectra 

of these samples were then recorded. 

For the P3HT:PCBM films fabricated from 1,2 dichlorobenzene solvent, Figure 48 

shows the UV spectra for a 1:1 ratio blend thin films of three samples. It is clear that 

annealing has affectively increased the absorption spectra of the films and therefore this 

manufacturing step was used during the fabrication of the organic solar cell prototype 

device. The λ-max is 558 nm showing a red-shift and clear shoulders appear at 525 nm 

and 610 nm. These shoulders are explained by the high degree of ordering in P3HT 

[183]. The peak in the absorption may be attributed to an interchain interaction among 

P3HT chains. UV-Vis absorption bands were observed at 335, 565 and 615 nm. The 

peaks below the 350 nm range are directly associated to the added PCBM fullerene. The 

peaks above this range are the P3HT characteristic peaks in the absorption wavelength 

of 450 – 650 nm. 
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Figure 48. UV-Vis absorption of P3HT:PCBM thin films spin coated from 

1,2 dichlorobenzene (1:1) annealed and dried naturally. 

4.3.3. The effect of Q-sun Exposure on the Optical Properties of P3HT:PCBM Films 

Table 4 details the Q-Sun Xenon Test Chamber Settings used for the exposure of 

manufactured organic films to simulated solar irradiation, with the view to trace the 

illumination – induced changes in the properties of these films. 

Table 4. Q-Sun Xenon Test Chamber Settings 

 

Figure 49 contains a series of screen-shot images from the UV-Vis Spectrometer that 

trace the changes in the optical absorption spectra after 0, 10 min, 20 min, 40 min and 

30 hours of irradiation. 
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It can clearly be seen that, as result of exposure to simulated sunlight, the optical 

absorption, across the spectral range is diminished. Figure 49 shows for example the 

absorbance at 500nm as a function of exposure time. Such a “bleaching” of the 

absorbance in the visible region is typical of photooxidation of the -electron system, 

reducing the molecular conjugation [184]. 

  

 



Raffie Arshak MPhil 98 

 

Figure 49. Screen-shot images that trace the changes in the optical absorption spectra 

after 0, 10 min, 20 min, 40 min and 20 hours of irradiation. 

4.4. Electrical Properties of P3HT:PCBM Films 

This experiment was done in parallel with the absorption experiment described above. 

In order to measure the optical and electrical measurements, both the glass samples (for 

optical) and samples with screen-printed IDE electrodes (for electrical measurements) 

were prepared simultaneously from the same solutions and their exposure to solar 

irradiation was carried out together. Spin coating, annealing and Q-sun exposure times 

were all kept identical for comparison purposes. 

Four IDE samples were prepared by spin coating with the same spin parameters, with 

the active layer from P3HT:PCBM solution. The samples were then annealed in an oven 



Raffie Arshak MPhil 99 

at 90°C for 10 mins. Figure 50 illustrates 2 IDE structures screen printed on a ceramic 

substrate (as originally shown in figure 13) with the spin coated active layer. Each IDE 

structure has 2 contacts which are called measurement point 1 (MP.1) and measurement 

point 2 (MP.2). The resistance of the active layer is measured across these contacts, 

before and after exposure to the simulated solar irradiance in the Q-sun. The results 

were recorded before exposure and after 10 min, 20 min, 40 min and 20 hours. These 

results are tabulated in Table 5 for MP.1 and Table 6 for MP.2. Notably, after 0 to 40 

min exposure, all samples showed a decrease in resistance, and for all plots except 

Sample 4 MP.1, the resistance increases with the increase from 40 to 1200 mins 

exposure. 

 

Figure 50. Measurement points for the electrical characterisation of the films.  
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Table 5. Electrical properties measurements for the four samples at MP.1. 

 

Figure 51. Dependence of the resistance on exposure time for the four samples at MP.1. 



Raffie Arshak MPhil 101 

Table 6. Electrical properties measurements for the four samples at MP.2. 

 

Figure 52. Dependence of the resistance on exposure time for the four samples at MP.2. 

Analysing together the changes in the dielectric, optical and the electrical properties of 

the manufacture organic thin films, one may firmly conclude that there exists a strong 

correlation between these changes, and the results showed a certain repeatable trend. In 

the next section, a flexible organic solar cell device was designed, constructed and 

tested. 



Raffie Arshak MPhil 102 

4.5. Flexible Solar Cell Prototype Testing 

The aim of this research was to build a novel cost-effective organic solar cell structure 

suitable for the next-generation flexible applications with enhanced solar irradiation 

conversion efficiency. This section summarises the testing results. Figure 53 illustrates 

the experimental setup for the flexible solar cell prototype characterisation. On the left 

side of Figure 53, the solar cell is illuminated by the Fostec lamp. Behind the solar cell 

is a pyranometer which measures the light intensity. Figure 54 shows the pyranometer 

from Kipp & Zonen in more detail On the right hand side of Figure 53, the Keithley 

voltage source meter is illustrated and connected to a PC running a LabView program. 

This program records the currents through the solar cell for each voltage input and plots 

the I-V and Power-V characteristics for the solar cell.   

 

Figure 53. Experimental setup for solar cell prototype characterisation. 
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Figure 54. Pyranometer from Kipp & Zonen, for measuring the simulated solar 

irradiance/light intensity. 

Figure 55 displays the graphical interface for testing the electrical properties of the 

constructed solar cell prototype. This figure illustrates the current and power vs voltage 

curves for a commercially available solar cell. Figure 56 illustrates the current-voltage 

characteristics and the power versus voltage characteristic of the flexible solar cell. 

 

Figure 55. Graphical interface illustrating the electrical properties of a commercially 

available solar cell. 
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Figure 56. (a) Current-voltage characteristics of the prototype solar cell and (b) the 

dependence of power on voltage. 

From Figure 56, it can be observed the short circuit current (Jsc) is 88.9 µA (1), while 

the open circuit voltage (Voc) is 71 mV (2). Maximum power Vm occurs at a voltage of 

40.326 mV (3) and the corresponding current at this voltage is ~50 µA (4). From these 

values, the fill factor (FF) can be concluded using Eq. 3 to be 0.3238. Fill factors above 

0.7 are expected for more ideal cells. The losses in fill factor could be due to high series 

resistance in the contacts and low shunt resistance in the cell. In Figure 56, the current 

begins to drop quite quickly after a voltage of 20 mV. If the series resistance is low 

(more desirable), then the voltage at which the current starts to drop would be much 

higher, and much closer to the open circuit voltage. 
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The calculated efficiency is 0.499%. These results indicate high power loss and can be 

attributed to shunt resistance in the cell, i.e. an alternative path in the cell for current to 

flow. This is more than likely caused by manufacturing flaws/problems rather than the 

actual cell design. In addition, high shunt resistance causes a loss in voltage produced 

by the cell, as is the case in this cell. An open circuit voltage of 71 mV is achieved in 

this cell, when a value of greater than 400 mV would be expected for a well 

manufactured cell.  
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Chapter 5: Summary, Conclusion and 

Future Work 

This research thesis reported on the experimental work conducted is in the area of 

renewable energy production, in particular in the design, manufacture and 

characterisation of advanced cost-effective printed solar cells based on the organic 

materials. It was shown that organic photovoltaic devices offer several advantages over 

expensive silicon solar cells, including deposition of ultra-thin films by spin-coating, 

printing and spray-coating. This in turn provides for the exciting possibility to make 

lightweight, flexible solar cells for a broad range of existing and emerging applications 

for security, military and medicine. 

In Chapter 1, the research area is presented and the need for developing new materials 

and manufacturing techniques for sustainable solar cells is justified. Chapter 2 reviewed 

the traditional pn-junction solar cells and the factors that limit their performance. The 

state-of-the-art organic solar cell is also discussed.  

Chapter 3 presented the experimental procedure used in this body of work, including the 

materials and equipment utilised, electrodes design methods and parameters, the 

preparation methods for the organic films, and the test setups for the electrical and 

optical properties characterisation. 

In Chapter 4, the results of the optical and electrical tests are presented, with specific 

emphasis on the novel approach used to characterise the dielectric properties of the 

materials, microwave spectroscopy. The fundamental principles of operation and design 
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of the sensors are comprehensively discussed. The dielectric properties of the 

P3HT:PCBM films using microwave spectroscopy were presented. Two types of EM 

waves sensors were fabricated, one on a Rogers substrate with Cu patterns and a second 

on a flexible substrate with Ag patterns.  Both of these EM sensors demonstrated shifts 

in resonant peak frequencies and amplitude during exposure to solar irradiation. During 

these experiments, all other experimental parameters and environmental conditions were 

kept constant. Therefore, it was reasonable to conclude that the proposed methods of 

microwave spectroscopy is a reliable tool to trace the changes in the properties of the 

materials caused by the simulated Q-Sun irradiation.  

The optical properties of the P3HT:PCBM films displayed a decrease in absorbance up 

to 40 mins solar simulator irradiation and then an increase in absorbance from 40 min to 

20 hrs.  

The electrical properties of P3HT:PCBM films showed a resistance decrease as the 

films were illuminated by an AM1.5 solar simulator from 0 to 40 min, and a subsequent 

increase in resistance up to 20 hrs.  

To finish, a bespoke solar cell on flexible PET was constructed and tested. It exhibited a 

fill factor and an efficiency of 0.3238 and 0.49% respectively. It should be remembered 

these P3HT:PCBM films were fabricated in open air in order to mimic a mass-

production environment. As a consequence, problems occur in the manufacturing 

process thus degrading the solar cell performance. Various past published work on 

organic solar cells are manufactured in nitrogen glove boxes to guarantee reproducible 

and optimal results. Solving the problems pertaining to open air fabrication is crucial 

step in the production of mass produced rigid and flexible polymer solar cells.   



Raffie Arshak MPhil 108 

References 

[1] Y. Sun and G. Shi, "Graphene/polymer composites for energy applications," 

Journal of Polymer Science, Part B: Polymer Physics, vol. 51, pp. 231-253, 

2013. 

[2] Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. 

Wadi, "Solar energy harvesting with the application of nanotechnology," 

Renewable and Sustainable Energy Reviews, vol. 26, pp. 837-852, 2013. 

[3] T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, and F. C. Krebs, "Business, 

market and intellectual property analysis of polymer solar cells," Solar Energy 

Materials and Solar Cells, vol. 94, pp. 1553-1571, 2010. 

[4] F. C. Krebs, S. A. Gevorgyan, B. Gholamkhass et al, "A round robin study of 

flexible large-area roll-to-roll processed polymer solar cell modules," Solar 

Energy Materials and Solar Cells, vol. 93, pp. 1968-1977, 2009. 

[5] E. Klimov, W. Li, X. Yang, G. G. Hoffmann, and J. Loos, "Scanning Near-Field 

and Confocal Raman Microscopic Investigation of P3HT−PCBM Systems for 

Solar Cell Applications," Macromolecules, vol. 39, pp. 4493-4496, 2006. 

[6] B. Arredondo, C. De Dios, R. Vergaz, A. R. Criado, B. Romero, B. 

Zimmermann, and U. Wurfel, "Performance of ITO-free inverted organic bulk 

heterojunction photodetectors: Comparison with standard device architecture," 

Organic Electronics: physics, materials, applications, vol. 14, pp. 2484-2490, 

2013. 

[7] M. A. Rahman, A. Rahim, M. Maniruzzaman, K. Yang, C. Lee, H. Nam, H. 

Soh, and J. Lee, "ITO-free low-cost organic solar cells with highly conductive 



Raffie Arshak MPhil 109 

poly(3,4 ethylenedioxythiophene): P-toluene sulfonate anodes," Solar Energy 

Materials and Solar Cells, vol. 95, pp. 3573-3578, 2011. 

[8] W. Yu, F. Meng, Y. Wang, P. Xu, and L. Shen, "ITO-free polymer solar cells 

with Ag/WO3 semi-transparent electrodes," in 2012 International Symposium on 

Photonics and Optoelectronics, SOPO 2012, Shanghai, China, IEEE Photonics 

Society; IEEE Wuhan Section; Optics Photonics Society of Singapore; Wuhan 

University; Beijing Jiaotong University. 

[9] D. Angmo, T. T. Larsen-Olsen, M. Jrgensen, R. R. Sndergaard, and F. C. Krebs, 

"Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free 

polymer solar cell modules and facile product integration," Advanced Energy 

Materials, vol. 3, pp. 172-175, 2013. 

[10] J. Bergqvist, C. Lindqvist, O. Backe, Z. Ma, Z. Tang, W. Tress, S. Gustafsson, 

E. Wang, E. Olsson, M. R. Andersson, O. Inganas, and C. Muller, "Sub-glass 

transition annealing enhances polymer solar cell performance," Journal of 

Materials Chemistry A, vol. 2, pp. 6146-6152, 2014. 

[11] Y. A. M. Ismail, T. Soga, and T. Jimbo, "The contribution of coumarin 6 in light 

harvesting and photocurrent of P3HT:PCBM bulk heterojunction solar cell," 

Solar Energy Materials and Solar Cells, vol. 94, pp. 1406-1411, 2010. 

[12] M. G. Sousa, A. F. Da Cunha, P. A. Fernandes, J. P. Teixeira, R. A. Sousa, and 

J. P. Leitao, "Effect of rapid thermal processing conditions on the properties of 

Cu 2ZnSnS4 thin films and solar cell performance," Solar Energy Materials and 

Solar Cells, vol. 126, pp. 101-106, 2014. 

[13] C.-T. Wu, H.-P. Kuo, H.-A. Tsai, and W.-C. Pan, "Rapid dye-sensitized solar 

cell working electrode preparation using far infrared rapid thermal annealing," 

Applied Energy, vol. 100, pp. 138-143, 2012. 



Raffie Arshak MPhil 110 

[14] J. Yang and T.-Q. Nguyen, "Effects of thin film processing on pentacene/C60 

bilayer solar cell performance," Organic Electronics: physics, materials, 

applications, vol. 8, pp. 566-574, 2007. 

[15] C. Sirisamphanwong and C. Sirisamphanwong, "The Effect of Photon Flux 

Density and Module Temperature on Power Output of Photovoltaic Array," 

Energy Procedia, vol. 34, pp. 430-438, 2013. 

[16] J. K. Rath, "Thin-Film Silicon Solar Cells," in Advanced Silicon Materials for 

Photovoltaic Applications, ed: John Wiley & Sons, Ltd, 2012, pp. 311-353. 

[17] B. Sopori, "Thin-Film Silicon Solar Cells," in Handbook of Photovoltaic Science 

and Engineering, ed: John Wiley & Sons, Ltd, 2005, pp. 307-357. 

[18] A. Kitai, "The PN junction Diode," in Principles of Solar Cells, LEDs and 

Diodes: The role of the PN junction, ed: John Wiley & Sons, Ltd, 2011, pp. 69-

122. 

[19] J. J. Loferski, "Photovoltaic Devices," in digital Encyclopedia of Applied 

Physics, ed: WILEY-VCH Verlag GmbH & Co KGaA, 2003. 

[20] J. Toušek, "Photovoltaic Effect in Heterojunctions with Recombination in the 

Space Charge Region," physica status solidi (a), vol. 137, pp. 277-285, 1993. 

[21] D. Vincenzi, M. A. Butturi, V. Guidi, M. C. Carotta, G. Martinelli, V. Guarnieri, 

S. Brida, B. Margesin, F. Giacomozzi, M. Zen, G. U. Pignatel, A. A. Vasiliev, 

and A. V. Pisliakov, "Development of a low-power thick-film gas sensor 

deposited by screen-printing technique onto a micromachined hotplate," Sensors 

and Actuators, B: Chemical, vol. 77, pp. 95-99, 2001. 

[22] D. Rekioua and E. Matagne, "Modeling of Solar Irradiance and Cells," in 

Optimization of Photovoltaic Power Systems, ed: Springer London, 2012, pp. 

31-87. 



Raffie Arshak MPhil 111 

[23] S. M. Sze and K. K. Ng, "Physics and Properties of Semiconductors—A 

Review," in Physics of Semiconductor Devices, ed: John Wiley & Sons, Inc., 

2006, pp. 5-75. 

[24] S. Tsuda, T. Matsuyama, M. Kameda, K. Wakisaka, S. Nakano, M. Ohnishi, and 

Y. Kuwano, "Development of New Technologies for High-Efficiency A-Si Solar 

Cells," in Clean and Safe Energy Forever, T. Horigome, K. Kimura, T. 

Takakura, T. Nishino, and I. Fujii, Eds., ed Oxford: Pergamon, 1990, pp. 142-

146. 

[25] "Konarka-Power-Plastic-achieves-8.3%-efficiency-certification-from-NREL," 

Renewable Energy World, 29 Nov 2010 2010. 

[26] T. Nozawa, "Mitsubishi Chemical Claims Efficiency Record for Organic Thin-

film PV Cell," 1 Jun 2012 2012. 

[27] C. A. Gueymard, D. Myers, and K. Emery, "Proposed reference irradiance 

spectra for solar energy systems testing," Solar Energy, vol. 73, pp. 443-467, 

2002. 

[28] W. Durisch, J. Urban, and G. Smestad, "Characterisation of solar cells and 

modules under actual operating conditions," Renewable Energy, vol. 8, pp. 359-

366, 1996. 

[29] S. V. Boriskina and G. Chen, "Exceeding the solar cell Shockley–Queisser limit 

via thermal up-conversion of low-energy photons," Optics Communications, vol. 

314, pp. 71-78, 2014. 

[30] C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. 

del Cañizo, and I. Tobias, "Modifying the solar spectrum to enhance silicon 

solar cell efficiency—An overview of available materials," Solar Energy 

Materials and Solar Cells, vol. 91, pp. 238-249, 2007. 



Raffie Arshak MPhil 112 

[31] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n 

Junction Solar Cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961. 

[32] N. Robertson, "Organic Photovoltaics. Mechanisms, Materials, and Devices. 

Herausgegeben von Sam-Shajing Sun und Niyazi S. Sariciftci," Angewandte 

Chemie, vol. 118, pp. 7479-7479, 2006. 

[33] J. Szlufcik, G. Agostinelli, F. Duerinckx, E. V. Kerschaver, and G. Beaucarne, 

"IIb-2 - Low cost industrial technologies of crystalline silicon solar cells," in 

Solar Cells, T. Markvart and L. Castañer, Eds., ed Oxford: Elsevier Science, 

2005, pp. 89-120. 

[34] H. Wirth, "Chapter Three - Crystalline Silicon PV Module Technology," in 

Semiconductors and Semimetals. vol. Volume 89, P. W. Gerhard and R. W. 

Eicke, Eds., ed: Elsevier, 2013, pp. 135-197. 

[35] A. Alemu, A. Freundlich, N. Badi, C. Boney, and A. Bensaoula, "Low 

temperature deposited boron nitride thin films for a robust anti-reflection coating 

of solar cells," Solar Energy Materials and Solar Cells, vol. 94, pp. 921-923, 

2010. 

[36] H. Cui, S. Pillai, P. Campbell, and M. Green, "A novel silver nanoparticle 

assisted texture as broadband antireflection coating for solar cell applications," 

Solar Energy Materials and Solar Cells, vol. 109, pp. 233-239, 2013. 

[37] D. Zhang, I. A. Digdaya, R. Santbergen, R. A. C. M. M. van Swaaij, P. 

Bronsveld, M. Zeman, J. A. M. van Roosmalen, and A. W. Weeber, "Design and 

fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction 

silicon solar cells," Solar Energy Materials and Solar Cells, vol. 117, pp. 132-

138, 2013. 



Raffie Arshak MPhil 113 

[38] R. Hoenig, A. Kalio, J. Sigwarth, F. Clement, M. Glatthaar, J. Wilde, and D. 

Biro, "Impact of screen printing silver paste components on the space charge 

region recombination losses of industrial silicon solar cells," Solar Energy 

Materials and Solar Cells, vol. 106, pp. 7-10, 2012. 

[39] L. A. Kosyachenko, X. Mathew, V. Y. Roshko, and E. V. Grushko, "Optical 

absorptivity and recombination losses: The limitations imposed by the thickness 

of absorber layer in CdS/CdTe solar cells," Solar Energy Materials and Solar 

Cells, vol. 114, pp. 179-185, 2013. 

[40] A. Shah, "Chapter IC-1 - Thin-Film Silicon Solar Cells," in Practical Handbook 

of Photovoltaics (Second Edition), A. McEvoy, T. Markvart, and L. Castañer, 

Eds., ed Boston: Academic Press, 2012, pp. 209-281. 

[41] J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. 

Ding, F. Meillaud, F.-J. Haug, and C. Ballif, "Geometric light trapping for high 

efficiency thin film silicon solar cells," Solar Energy Materials and Solar Cells, 

vol. 98, pp. 185-190, 2012. 

[42] H. Derouiche and V. Djara, "Impact of the energy difference in LUMO and 

HOMO of the bulk heterojunctions components on the efficiency of organic 

solar cells," Solar Energy Materials and Solar Cells, vol. 91, pp. 1163-1167, 

2007. 

[43] S.-S. Sun, "Design of a block copolymer solar cell," Solar Energy Materials and 

Solar Cells, vol. 79, pp. 257-264, 2003. 

[44] K. Kawata, V. M. Burlakov, M. J. Carey, H. E. Assender, G. A. D. Briggs, A. 

Ruseckas, and I. D. W. Samuel, "Description of exciton transport in a 

TiO2/MEH–PPV heterojunction photovoltaic material," Solar Energy Materials 

and Solar Cells, vol. 87, pp. 715-724, 2005. 



Raffie Arshak MPhil 114 

[45] L. Shi, Z. Zhou, and B. Tang, "Optimization of Si solar cells with full band 

optical absorption increased in all polarizations using plasmonic backcontact 

grating," Optik - International Journal for Light and Electron Optics, vol. 125, 

pp. 789-794, 2014. 

[46] C. M. Proctor, M. Kuik, and T.-Q. Nguyen, "Charge carrier recombination in 

organic solar cells," Progress in Polymer Science, vol. 38, pp. 1941-1960, 2013. 

[47] J. Gaume, C. Taviot-Gueho, S. Cros, A. Rivaton, S. Thérias, and J.-L. Gardette, 

"Optimization of PVA clay nanocomposite for ultra-barrier multilayer 

encapsulation of organic solar cells," Solar Energy Materials and Solar Cells, 

vol. 99, pp. 240-249, 2012. 

[48] "http://www.nanochemistry.it/download/BHJ_0203t.gif." 

[49] C.-H. Chia, W.-C. Fan, Y.-C. Lin, and W.-C. Chou, "Radiative recombination of 

indirect exciton in type-II ZnSeTe/ZnSe multiple quantum wells," Journal of 

Luminescence, vol. 131, pp. 956-959, 2011. 

[50] J.-C. Wang, Y.-T. Liang, F.-C. Cheng, C.-H. Fang, H.-I. Chen, C.-Y. Tsai, J.-A. 

Jiang, and T.-E. Nee, "Enhancement of exciton radiative recombination for In-

doped ZnO nanowires with aluminum cylindrical micropillars," Journal of 

Luminescence, vol. 136, pp. 11-16, 2013. 

[51] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, 

"Exciton dissociation at a poly(p-phenylenevinylene)/C60 heterojunction," 

Synthetic Metals, vol. 77, pp. 277-280, 1996. 

[52] J. S. Yeo, J. M. Yun, S. S. Kim, D. Y. Kim, J. Kim, and S. I. Na, "Variations of 

cell performance in ITO-free organic solar cells with increasing cell areas," 

Semiconductor Science and Technology, vol. 26, 2011. 

http://www.nanochemistry.it/download/BHJ_0203t.gif.


Raffie Arshak MPhil 115 

[53] Y.-Y. Choi, S. J. Kang, H.-K. Kim, W. M. Choi, and S.-I. Na, "Multilayer 

graphene films as transparent electrodes for organic photovoltaic devices," Solar 

Energy Materials and Solar Cells, vol. 96, pp. 281-285, 2012. 

[54] N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, "A life cycle 

analysis of polymer solar cell modules prepared using roll-to-roll methods under 

ambient conditions," Solar Energy Materials and Solar Cells, vol. 95, pp. 1293-

1302, 2011. 

[55] J. Ajuria, I. Ugarte, W. Cambarau, I. Etxebarria, R. Tena-Zaera, and R. Pacios, 

"Insights on the working principles of flexible and efficient ITO-free organic 

solar cells based on solution processed Ag nanowire electrodes," Solar Energy 

Materials and Solar Cells, vol. 102, pp. 148-152, 2012. 

[56] F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan, M. Salinas, M. Halik, S. 

Spallek, B. Butz, E. Spiecker, T. Ameri, N. Li, P. Kubis, D. M. Guldi, G. J. 

Matt, and C. J. Brabec, "ITO-free and fully solution-processed semitransparent 

organic solar cells with high fill factors," Advanced Energy Materials, vol. 3, pp. 

1062-1067, 2013. 

[57] Y.-C. Huang, F.-H. Hsu, H.-C. Cha, C.-M. Chuang, C.-S. Tsao, and C.-Y. Chen, 

"High-performance ITO-free spray-processed polymer solar cells with 

incorporating ink-jet printed grid," Organic Electronics: physics, materials, 

applications, vol. 14, pp. 2809-2817, 2013. 

[58] Y. Li, L. Mao, Y. Gao, P. Zhang, C. Li, C. Ma, Y. Tu, Z. Cui, and L. Chen, 

"ITO-free photovoltaic cell utilizing a high-resolution silver grid current 

collecting layer," Solar Energy Materials and Solar Cells, vol. 113, pp. 85-89, 

2013. 



Raffie Arshak MPhil 116 

[59] R. R. Sondergaard, M. Hosel, M. Jrgensen, and F. C. Krebs, "Fast printing of 

thin, large area, ITO free electrochromics on flexible barrier foil," Journal of 

Polymer Science, Part B: Polymer Physics, vol. 51, pp. 132-136, 2013. 

[60] S. Wilken, D. Scheunemann, V. Wilkens, J. Parisi, and H. Borchert, 

"Improvement of ITO-free inverted polymer-based solar cells by using colloidal 

zinc oxide nanocrystals as electron-selective buffer layer," Organic Electronics: 

physics, materials, applications, vol. 13, pp. 2386-2394, 2012. 

[61] W. Yu, L. Shen, F. Meng, Y. Long, S. Ruan, and W. Chen, "Effects of the 

optical microcavity on the performance of ITO-free polymer solar cells with 

WO3/Ag/WO3 transparent electrode," Solar Energy Materials and Solar Cells, 

vol. 100, pp. 226-230, 2012. 

[62] D. S. Hecht and R. B. Kaner, "Solution-processed transparent electrodes," MRS 

Bulletin, vol. 36, pp. 749-755, 2011. 

[63] K. Ueno, "Solution processed graphene transparent conductive film," 2012, pp. 

49-52. 

[64] Y. Wu, X. Zhang, J. Jie, C. Xie, B. Sun, Y. Wang, and P. Gao, "Graphene 

transparent conductive electrodes for highly efficient silicon nanostructures-

based hybrid heterojunction solar cells," Journal of Physical Chemistry C, vol. 

117, pp. 11968-11976, 2013. 

[65] Q. Zhang, X. Wan, F. Xing, L. Huang, G. Long, N. Yi, W. Ni, Z. Liu, J. Tian, 

and Y. Chen, "Solution-processable graphene mesh transparent electrodes for 

organic solar cells," Nano Research, vol. 6, pp. 478-484, 2013. 

[66] D. Angmo and F. C. Krebs, "Flexible ITO-free polymer solar cells," Journal of 

Applied Polymer Science, vol. 129, pp. 1-14, 2013. 



Raffie Arshak MPhil 117 

[67] Y.-Y. Choi, S. J. Kang, H.-K. Kim, W. M. Choi, and S.-I. Na, "Multilayer 

graphene films as transparent electrodes for organic photovoltaic devices," Solar 

Energy Materials and Solar Cells, vol. 96, pp. 281-285, 2012. 

[68] M. B. Avinash, K. S. Subrahmanyam, Y. Sundarayya, and T. Govindaraju, 

"Covalent modification and exfoliation of graphene oxide using ferrocene," 

Nanoscale, vol. 2, pp. 1762-1766, 2010. 

[69] T. D. Dao, H.-I. Lee, H. M. Jeong, and B. K. Kim, "Direct covalent modification 

of thermally exfoliated graphene forming functionalized graphene stably 

dispersible in water and poly(vinyl alcohol)," Colloid and Polymer Science, vol. 

291, pp. 2365-2374, 2013. 

[70] G. Wei, M. Yan, R. Dong, D. Wang, X. Zhou, J. Chen, and J. Hao, "Covalent 

modification of reduced graphene oxide by means of diazonium chemistry and 

use as a drug-delivery system," Chemistry - A European Journal, vol. 18, pp. 

14708-14716, 2012. 

[71] S.-I. Na, B.-K. Yu, S.-S. Kim, D. Vak, T.-S. Kim, J.-S. Yeo, and D.-Y. Kim, 

"Fully spray-coated ITO-free organic solar cells for low-cost power generation," 

Solar Energy Materials and Solar Cells, vol. 94, pp. 1333-1337, 2010. 

[72] T. V. Arjunan and T. S. Senthil, "Review: Dye sensitised solar cells," Materials 

Technology, vol. 28, pp. 9-14, 2013. 

[73] M. R. Golobostanfard and H. Abdizadeh, "Hierarchical porous titania/carbon 

nanotube nanocomposite photoanode synthesized by controlled phase separation 

for dye sensitized solar cell," Solar Energy Materials and Solar Cells, vol. 120, 

Part A, pp. 295-302, 2014. 

[74] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. 

W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, "Porphyrin-



Raffie Arshak MPhil 118 

sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 

percent efficiency," Science, vol. 334, pp. 629-634, 2011. 

[75] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. 

W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, "Porphyrin-

Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 

Percent Efficiency," Science, vol. 334, pp. 629-634, November 4, 2011 2011. 

[76] Y. Chuo, B. Omrane, C. Landrock, J. Aristizabal, D. Hohertz, S. V. Grayli, and 

B. Kaminska, "Powering the future: Organic solar cells with polymer energy 

storage," IEEE Design and Test of Computers, vol. 28, pp. 32-40, 2011. 

[77] D. F. Zeigler, K.-S. Chen, H.-L. Yip, Y. Zhang, and A. K. Y. Jen, "Tunable 

light-harvesting polymers containing embedded dipolar chromophores for 

polymer solar cell applications," Journal of Polymer Science, Part A: Polymer 

Chemistry, vol. 50, pp. 1362-1373, 2012. 

[78] A. Anctil, C. W. Babbitt, R. P. Raffaelle, and B. J. Landi, "Cumulative energy 

demand for small molecule and polymer photovoltaics," Progress in 

Photovoltaics: Research and Applications, vol. 21, pp. 1541-1554, 2013. 

[79] A. B. Kaul, "Nano-enabled green technologies for electronics and energy 

applications," in Nanotechnology 2012: Bio Sensors, Instruments, Medical, 

Environment and Energy - 2012 NSTI Nanotechnology Conference and Expo, 

NSTI-Nanotech 2012, June 18, 2012 - June 21, 2012, Santa Clara, CA, United 

states, 2012, pp. 716-719. 

[80] M. T. Khan, R. Bhargav, A. Kaur, S. K. Dhawan, and S. Chand, "Effect of 

cadmium sulphide quantum dot processing and post thermal annealing on 

P3HT/PCBM photovoltaic device," Thin Solid Films, vol. 519, pp. 1007-1011, 

2010. 



Raffie Arshak MPhil 119 

[81] S.-O. Kim, D. Sung Chung, H. Cha, J. Wan Jang, Y.-H. Kim, J.-W. Kang, Y.-S. 

Jeong, C. E. Park, and S.-K. Kwon, "Thermally stable organic bulk 

heterojunction photovoltaic cells incorporating an amorphous fullerene 

derivative as an electron acceptor," Solar Energy Materials and Solar Cells, vol. 

95, pp. 432-439, 2011. 

[82] K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, "6 Studies of spin-coated 

polymer films," Annual Reports Section "C" (Physical Chemistry), vol. 101, pp. 

174-201, 2005. 

[83] S. Choi, B.-Y. Park, and H.-K. Jung, "Growth and characterization of sol-gel 

prepared Gd2O3 films as gate insulators for Zn-Sn-O thin film transistors," Thin 

Solid Films, vol. 535, pp. 291-295, 2013. 

[84] R. Meier, M. A. Ruderer, A. Diethert, G. Kaune, V. Korstgens, S. V. Roth, and 

P. Muller-Buschbaum, "Influence of film thickness on the phase separation 

mechanism in ultrathin conducting polymer blend films," Journal of Physical 

Chemistry B, vol. 115, pp. 2899-2909, 2011. 

[85] K. Arshak and O. Korostynska, Advanced materials and techniques for 

radiation dosimetry: Artech House, 2006. 

[86] D. Morris, K. Arshak, A. A., and K. O., "Metal Oxide Nanostructures for 

Advanced Pressure Sensing Applications," in Metal Oxide Nanostructures and 

Their Applications, A. Umar and Y.-B. Hahn, Eds., ed: American Scientific 

Publishers, 2010, pp. 281-381. 

[87] W. Yu, B. Xu, Q. Dong, Y. Zhou, J. Zhang, W. Tian, and B. Yang, "A two-step 

method combining electrodepositing and spin-coating for solar cell processing," 

Journal of Solid State Electrochemistry, vol. 14, pp. 1051-1056, 2010. 



Raffie Arshak MPhil 120 

[88] M. Kitsara, D. Goustouridis, S. Chatzandroulis, M. Chatzichristidi, I. Raptis, T. 

Ganetsos, R. Igreja, and C. J. Dias, "Single chip interdigitated electrode 

capacitive chemical sensor arrays," Sensors and Actuators, B: Chemical, vol. 

127, pp. 186-192, 2007. 

[89] D. M. Snyder and P. Vadgama, "Impedance resonance: A novel technique for 

signal acquisition from interdigitated electrodes (IDE) in sensor applications," 

IEEE Sensors Journal, vol. 9, pp. 143-145, 2009. 

[90] E. Valera, O. Casais, M. Vetter, and A. Rodriguez, "-Porous Silicon (PS) gas 

sensor based on interdigitated -electrodes (IDE's)," in 2007 Spanish Conference 

on Electron Devices, SCED, January 31, 2007 - February 2, 2007, Madrid, 

Spain, 2007, pp. 197-200. 

[91] K. Arshak and I. Gaidan, "Development of a novel gas sensor based on oxide 

thick films," in EMRS 2004, Symposium D: Functional Oxides for Advanced 

Semiconductor Technologies, 2005, pp. 44-49. 

[92] D. T. Nguyen, M. T. Nguyen, G. T. Ho, T. N. Nguyen, S. Reisberg, B. Piro, and 

M. C. Pham, "Design of interpenetrated network MWCNT/poly(1,5-DAN) on 

interdigital electrode: Toward NO2 gas sensing," Talanta, vol. 115, pp. 713-717, 

2013. 

[93] M. Babaei and N. Alizadeh, "Methanol selective gas sensor based on nano-

structured conducting polypyrrole prepared by electrochemically on interdigital 

electrodes for biodiesel analysis," Sensors and Actuators, B: Chemical, vol. 183, 

pp. 617-626, 2013. 

[94] P. Teerapanich, M. T. Z. Myint, C. M. Joseph, G. L. Hornyak, and J. Dutta, 

"Development and improvement of carbon nanotube-based ammonia gas sensors 



Raffie Arshak MPhil 121 

using ink-jet printed interdigitated electrodes," IEEE Transactions on 

Nanotechnology, vol. 12, pp. 255-262, 2013. 

[95] T. Hibbard, K. Crowley, and A. J. Killard, "Direct measurement of ammonia in 

simulated human breath using an inkjet-printed polyaniline nanoparticle sensor," 

Analytica Chimica Acta, vol. 779, pp. 56-63, 2013. 

[96] H. F. Hawari, N. M. Samsudin, A. Y. M. Shakaff, Y. Wahab, U. Hashim, A. 

Zakaria, S. A. Ghani, and M. N. Ahmad, "Highly selective molecular imprinted 

polymer (MIP) based sensor array using interdigitated electrode (IDE) platform 

for detection of mango ripeness," Sensors and Actuators, B: Chemical, vol. 187, 

pp. 434-444, 2013. 

[97] T. Hofmann, K. Schroeder, J. Zacheja, and J. Binder, "Fluid characterization 

using sensor elements based on interdigitated electrodes," Sensors and 

Actuators, B: Chemical, vol. B37, pp. 37-42, 1996. 

[98] X. Tang, D. Flandre, J.-P. Raskin, Y. Nizet, L. Moreno-Hagelsieb, R. Pampin, 

and L. A. Francis, "A new interdigitated array microelectrode-oxide-silicon 

sensor with label-free, high sensitivity and specificity for fast bacteria 

detection," Sensors and Actuators, B: Chemical, vol. 156, pp. 578-587, 2011. 

[99] K.-L. Chen, S. Wang, J. C. Salvia, R. Melamud, R. T. Howe, and T. W. Kenny, 

"Wafer-level epitaxial silicon packaging for out-of-plane RF MEMS resonators 

with integrated actuation electrodes," IEEE Transactions on Components, 

Packaging and Manufacturing Technology, vol. 1, pp. 310-317, 2011. 

[100] G. Mottet, J. Villemejane, L. M. Mir, and B. L. Pioufle, "A technique to design 

complex 3D lab on a chip involving multilayered fluidics, embedded thick 

electrodes and hard packaging - Application to dielectrophoresis and 



Raffie Arshak MPhil 122 

electroporation of cells," Journal of Micromechanics and Microengineering, vol. 

20, 2010. 

[101] A. Crew, D. Lonsdale, N. Byrd, R. Pittson, and J. P. Hart, "A screen-printed, 

amperometric biosensor array incorporated into a novel automated system for 

the simultaneous determination of organophosphate pesticides," Biosensors and 

Bioelectronics, vol. 26, pp. 2847-2851, 2011. 

[102] K. Arshak and O. Korostynska, "Thin- and thick-film real-time gamma radiation 

detectors," IEEE Sensors Journal, vol. 5, pp. 574-580, 2005. 

[103] N.-J. Choi, H.-K. Lee, S. E. Moon, W. S. Yang, and J. Kim, "Volatile organic 

compound gas sensor based on aluminum-doped zinc oxide with nanoparticle," 

Journal of Nanoscience and Nanotechnology, vol. 13, pp. 5481-5484, 2013. 

[104] M. Choudhary, N. K. Singh, V. N. Mishra, and R. Dwivedi, "Selective detection 

of hydrogen sulfide using copper oxide-doped tin oxide based thick film sensor 

array," Materials Chemistry and Physics, vol. 142, pp. 370-380, 2013. 

[105] S. E. Moon, H. K. Lee, N. J. Choi, J. Lee, C. A. Choi, W. S. Yang, J. Kim, J. J. 

Jong, and D. J. Yoo, "Low power consumption micro C2H5OH gas sensor based 

on micro-heater and screen printing technique," Sensors and Actuators, B: 

Chemical, vol. 187, pp. 598-603, 2013. 

[106] A. J. M. Frood, S. P. Beeby, M. J. Tudor, and N. M. White, "Photoresist 

patterned thick-film piezoelectric elements on silicon," Journal of 

Electroceramics, vol. 19, pp. 327-331, 2007. 

[107] P. M. Faia, C. S. Furtado, and A. J. Ferreira, "Humidity sensing properties of a 

thick-film titania prepared by a slow spinning process," Sensors and Actuators, 

B: Chemical, vol. 101, pp. 183-190, 2004. 



Raffie Arshak MPhil 123 

[108] A. Lozinski, "Thin pyroelectric PLZT film obtained with sol-gel technology," 

Journal of Electroceramics, vol. 19, pp. 303-306, 2007. 

[109] B. M. Austin, "Thick-film screen printing," Solid State Technology, vol. 12, pp. 

53-58, 1969. 

[110] G. Galbiati, V. D. Mihailetchi, A. Halm, R. Roescu, and R. Kopecek, "Results 

on n-type IBC solar cells using industrial optimized techniques in the fabrication 

processing," in 1st International Conference on Crystalline Silicon 

Photovoltaics, SiliconPV 2011, April 17, 2011 - April 20, 2011, Freiburg, 

Germany, 2011, pp. 421-426. 

[111] S. Joo and D. F. Baldwin, "Advanced package prototyping using nano-particle 

silver printed interconnects," IEEE Transactions on Electronics Packaging 

Manufacturing, vol. 33, pp. 129-134, 2010. 

[112] A. Hobby, Printing Thick Film Hybrids: DEK Printing Machines Ltd, 1997. 

[113] D. A. Alsaid, E. Rebrosova, M. Joyce, M. Rebros, M. Atashbar, and B. Bazuin, 

"Gravure printing of ITO transparent electrodes for applications in flexible 

electronics," IEEE/OSA Journal of Display Technology, vol. 8, pp. 391-396, 

2012. 

[114] J.-W. Kang, S.-P. Lee, D.-G. Kim, S. Lee, G.-H. Lee, J.-K. Kim, S.-Y. Park, J. 

H. Kim, H.-K. Kim, and Y.-S. Jeong, "Reduction of series resistance in organic 

photovoltaic using low sheet resistance of ITO electrode," Electrochemical and 

Solid-State Letters, vol. 12, pp. H64-H66, 2009. 

[115] K. Lim, S. Jung, J.-K. Kim, J.-W. Kang, J.-H. Kim, S.-H. Choa, and D.-G. Kim, 

"Flexible PEDOT: PSS/ITO hybrid transparent conducting electrode for organic 

photovoltaics," Solar Energy Materials and Solar Cells, vol. 115, pp. 71-78, 

2013. 



Raffie Arshak MPhil 124 

[116] G. Zha, H. Zhou, J. Gao, T. Wang, and W. Jie, "The growth and the interfacial 

layer of CdZnTe nano-crystalline films by vacuum evaporation," Vacuum, vol. 

86, pp. 242-245, 2011. 

[117] M. L. Vega, H. Libardi, R. M. Faria, R. F. Bianchi, and A. Marletta, "Surface 

morphology, optical and electrical characterization of poly(p-

phenylenevinylene) multilayer films," in 2005 12th International Symposium on 

Electrets, ISE 12, September 11, 2005 - September 14, 2005, Salvador, Bahia, 

Brazil, 2005, pp. 520-523. 

[118] M. Voigt, J. Pflaum, and M. Sokolowskr, "Growth morphologies and charge 

carrier mobilities of pentacene organic field effect transistors with rf sputtered 

aluminium oxide gate insulators on ITO glass," Physica Status Solidi (A) 

Applications and Materials Science, vol. 205, pp. 449-460, 2008. 

[119] K. Arshak, O. Korostynska, J. Harris, D. Morris, A. Arshak, and E. Jafer, 

"Properties of BGO thin films under the influence of gamma radiation," Thin 

Solid Films, vol. 516, pp. 1493-1498, 2008. 

[120] K.-S. Shin, H.-J. Park, B. Kumar, K.-K. Kim, S.-G. Ihn, and S.-W. Kim, "Low-

temperature growth and characterization of ZnO thin films for flexible inverted 

organic solar cells," Journal of Materials Chemistry, vol. 21, pp. 12274-12279, 

2011. 

[121] S. Tamulevicius, "Stress and strain in the vacuum deposited thin films," 

Vacuum, vol. 51, pp. 127-139, 1998. 

[122] J. Wu, F. Ang, C. Zhao, and J. S. Smith, "Electrical properties of N-type CdS 

and P-type CdTe thin films in CdS/CdTe solar cells," in 2013 20th IEEE 

International Symposium on the Physical and Failure Analysis of Integrated 



Raffie Arshak MPhil 125 

Circuits, IPFA 2013, July 15, 2013 - July 19, 2013, Suzhou, China, 2013, pp. 

385-389. 

[123] A. M. Whited and P. S. H. Park, "Atomic force microscopy: A multifaceted tool 

to study membrane proteins and their interactions with ligands," Biochimica et 

Biophysica Acta (BBA) - Biomembranes, vol. 1838, pp. 56-68, 2014. 

[124] D. H. Staelin;, A. W. Morgenthaler;, and J. A. Kong, Electromagnetic waves. 

Englewood Cliffs, N.J.: Prentice Hall, 1998. 

[125] S. Grimnes and Ø. G. Martinsen, "Chapter 3 - DIELECTRICS," in 

Bioimpedance and Bioelectricity Basics (Second Edition), ed New York: 

Academic Press, 2008, pp. 57-92. 

[126] D. M. Pozar, Microwave engineering: Wiley, 1997. 

[127] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. Hoboken, New 

Jersey: John Wiley & Sons, 2005. 

[128] O. Korostynska, A. Mason, and A. I. Al-Shammaa, "Flexible microwave sensors 

for real-time analysis of water contaminants," Journal of Electromagnetic Waves 

and Applications, vol. 27, pp. 2075-2089, 2013. 

[129] O. Korostynska, K. Arshak, V. Velusamy, A. Arshak, and A. Vaseashta, "Recent 

Advances in Point-of-Access Water Quality Monitoring," in NATO Advanced 

Study Institute on Technological Innovations in Detection and Sensing of 

Chemical, Biological, Radiological, Nuclear - (CBRN) Threats and Ecological 

Terrorism, 6-17 June 2010, Dordrecht, Netherlands, 2012, pp. 261-8. 

[130] O. Korostynska, A. Mason, and A. I. Al-Shamma'A, "Proof-of-concept 

microwave sensor on flexible substrate for real-time water composition 

analysis," in 2012 6th International Conference on Sensing Technology, ICST 



Raffie Arshak MPhil 126 

2012, December 18, 2012 - December 21, 2012, Kolkata, India, 2012, pp. 547-

550. 

[131] B. Kapilevich and B. Litvak, "Microwave sensor for accurate measurements of 

water solution concentrations," in APMC Asia-Pacific Microwave Conference, 

Bangkok, 2007, pp. 1-4. 

[132] M. Ortoneda-Pedrola, O. Korostynska, A. Mason, and A. I. Al-Shamma'A, 

"Real-time sensing of NaCl solution concentration at microwave frequencies 

using novel Ag patterns printed on flexible substrates," in 17th Conference in the 

biennial Sensors and Their Applications, September 16, 2013 - September 18, 

2013, Dubrovnik, Croatia, 2013. 

[133] M. Ortoneda-Pedrola, O. Korostynska, A. Mason, and A. I. Al-Shamma'A, 

"Real-time microwave sensor for KCl, MnCl2 and CuCl solutions concentration 

with Ag patterns printed on flexible substrates," in 17th Conference in the 

biennial Sensors and Their Applications, September 16, 2013 - September 18, 

2013, Dubrovnik, Croatia, 2013. 

[134] J. D. Boon and J. M. Brubaker, "Acoustic-microwave water level sensor 

comparisons in an estuarine environment," in OCEANS, Quebec, Canada, 2008, 

pp. 1-5. 

[135] B. Jackson and T. Jayanthy, "A novel method for water impurity concentration 

using microstrip resonator sensor," in Recent Advances in Space Technology 

Services and Climate Change (RSTSCC), Chennai, India., 2010, pp. 376-379. 

[136] C. Bernou, D. Rebière, and J. Pistré, "Microwave sensors: a new sensing 

principle. Application to humidity detection," Sensors and Actuators B: 

Chemical, vol. 68, pp. 88-93, 2000. 



Raffie Arshak MPhil 127 

[137] T. Nacke, A. Barthel, C. Pflieger, U. Pliquett, D. Beckmann, and A. Goller, 

"Continuous process monitoring for biogas plants using microwave sensors," in 

12th Biennial Baltic Electronics Conference (BEC) Tallinn, Estonia, 2010, pp. 

239-242. 

[138] K. Y. You, J. Salleh, Z. Abbas, and L. L. You, "A rectangular patch antenna 

technique for the determination of moisture content in soil," in Progress in 

Electromagnetics Research Symposium, PIERS 2010 Cambridge, July 5, 2010 - 

July 8, 2010, Cambridge, MA, United states, 2010, pp. 850-854. 

[139] A. Mason, O. Korostynska, S. Wylie, and A. I. Al-Shamma’a, "Non-destructive 

evaluation of an activated carbon using microwaves to determine residual life," 

Carbon, vol. 67, pp. 1-9, 2014. 

[140] O. Korostynska, A. Arshak, P. Creedon, K. Arshak, L. Wendling, A. I. Al-

Shamma'a, and S. O'Keeffe, "Glucose monitoring using electromagnetic waves 

and microsensor with interdigitated electrodes," in IEEE Sensors Applications 

Symposium, SAS, New Orleans, LA, USA, 2009, pp. 34-37. 

[141] A. Mason, S. Wylie, A. Thomas, H. Keele, A. Shaw, and A. Al-Shamma’a, 

"HEPA Filter Material Load Detection Using a Microwave Cavity Sensor," 

International Journal on Smart Sensing and Intelligent Systems, vol. 3, pp. 322-

337, Sep 2010. 

[142] A. Al-Shamma'a, A. Mason, and A. Shaw, "Patent: Non-Invasive Monitoring 

Device," US2012150000 (A1), WO2010131029 (A1), EP2429397 (A1), 2012. 

[143] A. Mason, O. Korostynska, and A. I. Al-Shamma’a, "Microwave Sensors for 

Real-Time Nutrients Detection in Water," in Smart Sensors for Real-Time Water 

Quality Monitoring, S. C. Mukhopadhyay and A. Mason, Eds., ed: Springer 

Berlin Heidelberg, 2013, pp. 197-216. 



Raffie Arshak MPhil 128 

[144] E. M. Georgiadou, A. D. Panagopoulos, and J. D. Kanellopoulos, "Millimeter 

Wave Pulse Propagation through Distorted Raindrops for LOs Fixed Wireless 

Access Channels," Journal of Electromagnetic Waves and Applications, vol. 20, 

pp. 1235-1248, 2006/01/01 2006. 

[145] Z. Wu, B. Fan, A. Li, F. Xue, and J. Ouyang, "Low-band gap copolymers of 

ethynylfluorene and 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-

dione synthesized under microwave irradiation for polymer photovoltaic cells," 

Organic Electronics, vol. 12, pp. 993-1002, 2011. 

[146] W. N. Liu, Y. Yang, and K. M. Huang, "A Radio Frequency Sensor For 

Measurement Of Small Dielectric Property Changes," Journal of 

Electromagnetic Waves and Applications, vol. 26, pp. 1180-1191, 2012/06/01 

2012. 

[147] R. Simons, Coplanar Waveguide Circuits, Components, and Systems: John 

Wiley & Sons, 2001. 

[148] D. M. Pozar, "Microwave resonator," in Microwave Engineering, Second ed: 

John Wiley & Sons, inc, 1998, pp. 313-323. 

[149] R. Bansal, Handbook of engineering electromagnetics. USA: Marcel Dekker, 

2005. 

[150] D. M. Pozar, "Circular Waveguide," in Microwave Engineering, 3rd ed New 

York: John Wiley and Sons, 2005, pp. 119-20. 

[151] P. Kumar, D. M. Kim, M. H. Hyun, and Y.-B. Shim, "An all-solid-state 

monohydrogen phosphate sensor based on a macrocyclic ionophore," Talanta, 

vol. 82, pp. 1107-1112, 2010. 

[152] M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, 

Sensing, and Plasma Generation: William Andrew, 2010. 



Raffie Arshak MPhil 129 

[153] U. A. Bakshi and A. V. Bakshi, Transmission lines and waveguide: Technical 

Publications Pune, 2008. 

[154] V. Guillard, M. Mauricio-Iglesias, and N. Gontard, "Effect of novel food 

processing methods on packaging: Structure, composition, and migration 

properties," Critical Reviews in Food Science and Nutrition, vol. 50, pp. 969-

988, 2010. 

[155] J. Goh, "Real Time Water Pipes Leak Detection Using Electromagnatic Waves 

for The Water Industry," 2011. 

[156] L. H. Chua and D. Mirshekar-Syahkal, "Accurate and direct characterization of 

high-Q microwave resonators using one-port measurement," Microwave Theory 

and Techniques, vol. 51, pp. 978-985, 2003. 

[157] J. Lee and K. Sarabandi, "Synthesizing microwave resonator filters," Microwave 

Magazine, IEEE, vol. 10, pp. 57-65, 2009. 

[158] R. C. Taber and C. A. Flory, "Microwave oscillators incorporating cryogenic 

sapphire dielectric resonators," Ultrasonics, Ferroelectrics and Frequency 

Control, vol. 42, pp. 111-119, 1995. 

[159] L. Wendling, J. D. Cullen, A. Al-Shamma’a, and A. Shaw, "HFSS Analysis of 

Online Electromagnetic Wave Alcohol Sensor," presented at the GERI Annual 

Research Symposium, Liverpool, UK, 2008. 

[160] J. H. Goh, A. Mason, A. I. Al-Shamma’a, M. Field, M. Shackloth, and P. 

Browning, "Non Invasive Microwave Sensor for the Detection of Lactic Acid in 

Cerebrospinal Fluid (CSF)," presented at the Sensors and their Applications 

XVI, Cork, Ireland, 2011. 

[161] A. J. Cano, P. J. Plaza-Gonzalez, F. Penaranda-Foix, and J. M. Catala-Civera, 

"Non-invasive Microwave Sensors for the Monitoring of the state of Liquids 



Raffie Arshak MPhil 130 

Used in the Polyurethane Industry," in International Conference on Sensor 

Technologies and Applications., 2007, pp. 56-61. 

[162] J. Sheen, "Measurements of microwave dielectric properties by an amended 

cavity perturbation technique," Measurement, vol. 42, pp. 57-61, 2009. 

[163] M. J. Prest, Y. Wang, F. Huang, and M. J. Lancaster, "Tuning of a 

superconducting microwave resonator at 77 K using an integrated 

micromachined silicon vertical actuator," Journal of Micromechanics and 

Microengineering, vol. 20, 2010. 

[164] C. O. Kappe, A. Stadier, and D. dallinger, Microwaves in organic and medical 

chemistry, second ed. Austria: John Wiely & sons, 2012. 

[165] Y. Carmel, K. Minami, W. Lou, R. A. Kehs, and W. W. Destler, "High-power 

microwave generation by excitation of a plasma-filled rippled boundary 

resonator," Plasma Science, vol. 18, pp. 497-506, 1990. 

[166] A. Gokhale, Introduction To Telecommunications, second edition ed.: Thomson 

Delmar, 2004. 

[167] N. Baloian, J. A. Pino, and H. U. Hoppe, "Dealing with the students' Attention 

Problem in computer supported face-to-face lecturing," Education Technology & 

Society, vol. 11, pp. 192-205, 2008. 

[168] D. M. Pozar, "Microwave Engineering ", 3rd ed New York: John Wiley and 

Sons, 2005, pp. 143-149. 

[169] P. K. Kundu, A. Chatterjee, and P. C. Panchariya, "Electronic Tongue System 

for Water Sample Authentication: A Slantlet-Transform-Based Approach," 

Instrumentation and Measurement, IEEE Transactions on, vol. 60, pp. 1959-

1966, 2011. 



Raffie Arshak MPhil 131 

[170] E. Garcia-Breijo, J. Atkinson, J. Garrigues, L. Gil, J. Ibanez, M. Glanc, and C. 

Olguin, "An electronic tongue for monitoring drinking waters using a fuzzy 

ARTMAP neural network implemented on a microcontroller," in Industrial 

Electronics (ISIE), 2011 IEEE International Symposium on, 2011, pp. 1270-

1275. 

[171] F. Völgyi, "Microstrip Transmission- and Reflection-Type Sensors Used in 

Microwave Aquametry," in Electromagnetic Aquametry, K. Kupfer, Ed., ed: 

Springer Berlin Heidelberg, 2005, pp. 243-256. 

[172] A. Zucchelli, M. Chimenti, E. Bozzi, and P. Nepa, "Application of a Coaxial-fed 

Patch to Microwave Non-Destructive Porosity Measurements in Low-Loss 

Dielectrics," Progress In Electromagnetics Research M, vol. 5, pp. 1-14, 2008. 

[173] U. Kaatze, "Electromagnetic Wave Interactions with Water and Aqueous 

Solutions," in Electromagnetic Aquametry, K. Kupfer, Ed., ed: Springer Berlin 

Heidelberg, 2005, pp. 15-37. 

[174] S. Sardeshpande and A. Chatterjee, "Electromagnetic Wave Propagation in 

Linearly Dispersive Media Using Higher-Order Weno Scheme," Journal of 

Electromagnetic Waves and Applications, vol. 23, pp. 2135-2142, 2009/01/01 

2009. 

[175] D. A. Boyarskii, V. V. Tikhonov, and N. Y. Komarova, "Model of Dielectric 

Constant of Bound Water in Soil for Applications of Microwave Remote 

Sensing," Journal of Electromagnetic Waves and Applications, vol. 16, pp. 411-

412, 2002/01/01 2002. 

[176] D. Kajfez, "Temperature characterization of dielectric-resonator materials," 

Journal of the European Ceramic Society, vol. 21, pp. 2663-2667, 2001. 



Raffie Arshak MPhil 132 

[177] O. Korostynska, A. Mason, and A. I. Al-Shamma’a, "Flexible microwave 

sensors for real-time analysis of water contaminants," Journal of 

Electromagnetic Waves and Applications, vol. 27, pp. 2075-2089, 2013/11/01 

2013. 

[178] C. A. Balanis, Antenna Theory: Analysis and Design 3rd ed. United States: 

Wiley-Blackwell, 2005. 

[179] D. Guha and Y. M. M. Antar, Microstrip and Printed Antennas: New Trends, 

Techniques and Applications. Chichester, West Sussex, United Kingdom: 

Wiley, 2010. 

[180] S. Couris, E. Koudoumas, F. Dong, and S. Leach, "Nonlinear optical properties 

of fullerenes," in Proceedings of the 1996 Conference on Lasers and Electro-

Optics Europe, CLEO/Europe, September 8, 1996 - September 13, 1996, 

Hamburg, Ger, 1996, p. 292. 

[181] S. Couris, E. Koudoumas, A. A. Ruth, and S. Leach, "Concentration and 

wavelength dependence of the effective third order susceptibility and optical 

limiting of C60 in toluene solution," Journal of Physics B: Atomic, Molecular 

and Optical Physics, vol. 2, pp. 4537-4554, 1995. 

[182] E. Koudoumas, F. Dong, S. Couris, and S. Leach, "High order nonlinear optical 

response of fullerene solutions in the nanosecond regime," Optics 

Communications, vol. 138, pp. 301-304, 1997. 

[183] C. Bounioux, R. Itzhak, R. Avrahami, E. Zussman, J. Frey, E. A. Katz, and R. 

Yerushalmi-Rozen, "Electrospun fibers of functional nanocomposites composed 

of single-walled carbon nanotubes, fullerene derivatives, and poly(3-

hexylthiophene)," Journal of Polymer Science, Part B: Polymer Physics, vol. 49, 

pp. 1263-1268, 2011. 



Raffie Arshak MPhil 133 

[184] L. Oneill, P. J. Lynch, N. McGoldrick, H. J. Byrne, and M. McNamara, "Kinetic 

studies of the photo-degradation of poly(arylene vinylenes)," Journal of 

Luminescence, vol. 132, pp. 2217-2223, 2012. 

 

 


	Manufacture and Investigation of Organic Composite Polymer Based Films for Advanced Flexible Solar Cells
	Recommended Citation

	Thesis Cover page_arshak
	MasterThesisCorrections_Arshak

