An open Approach to Contextualising Heterogeneous Cultural Heritage Datasets

John McAuley
Technological University Dublin, john@tudublin.ie

James Carswell
Technological University Dublin, jcarswell@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/dmccon

Part of the Computer Sciences Commons, and the History of Art, Architecture, and Archaeology Commons

Recommended Citation

This Conference Paper is brought to you for free and open access by the Digital Media Centre at ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
2007-04-01

An open approach to contextualising heterogeneous cultural heritage datasets

John McAuley
Dublin Institute of Technology, john@dmc.dit.ie

James D. Carswell
Dublin Institute of Technology, jcarswell@dit.ie

Recommended Citation
McAuley, John and Carswell, Dames D.: An open approach to contextualising heterogeneous cultural heritage datasets. Proceedings of the 35th Annual Conference on Computer Applications and Quantitative Methods in Archaeology (CAA2007); Berlin, Germany; April, 2-6, 2007
ABSTRACT

This paper describes a semantic museum application, which aims to present a holistic impression of the Etruscan civilisation. Through the use of a distributed computing paradigm and the CIDOC CRM ontology, the system presents a unified view of a fragmented heritage, while supporting browse and search at a semantic level. Within the cultural heritage world, however, much value is placed on ‘context’, both in describing and presenting heritage artefacts. From this perspective, a platform built upon the distributed search paradigm, although useful in many respects, does not convey how an artefact sits within a broader setting. Narrative concepts are proposed as a way of reconciling heritage artefacts with their original context. A community of domain experts (i.e. Etruscan archaeologists and heritage professionals) is supported in contributing their knowledge and interpretation through a comprehensive authoring process. Narrative content is then organised according to several broad, hierarchically structured topics known as the ‘Sphere of Knowledge’ and a domain ontology describing the artefacts and monument of the Etruscan people. Each artefact is consequently represented through the text and associated with broader topics from the ‘Sphere of Knowledge’.

Keywords
Semantic, Ontology, Database, Narrative, Context
enhanced narrative to several multimedia devices known as virtual wings (VW). The XML web service technology is used as means of interfacing the appearance layer with the virtual wings. It was felt that a service orientated and platform neutral architecture (SOA) supports a clear demarcation between the internal workings of a virtual wing and the overall data model of the system. In this way, new virtual wings may be added without a reliance on proprietary software or adjustments to the system architecture. Virtual wings are currently conceived as operating within three possible spheres:

- Firstly, as contextualised panoramic images. This innovative approach supports a comprehensive way of integrating conceptual models, such as the *TARCHNA* Domain & Narrative Ontologies, into panoramic images. The approach specifies semantic hotspots or trigger points whereby a visitor can query the image and receive information from the semantic model. It offers a new paradigm for accessing and interacting with semantically contextualised multimedia [6].

- Secondly, as handheld interactive tools. As both GPS¹ and PDA² technologies evolve into lightweight and economical location aware handheld devices, it has become increasingly possible to develop high bandwidth GPS applications for mobile devices. This VW is thought of as offering visitors a unique opportunity to explore ancient sites through real-time GPS based digital narrative, and thought of as similar to a personal guide.

- Thirdly, as a customised virtual museum. This option consists of narrative rich multimedia based applications operating within a museum space.

3. Adding Context through Narrative

The heritage domain is to be understood as consisting of expressions, some of which are tangible and others less so. Tangible heritage is embodied in physical objects and artefacts that give an anthropological significance to a society or people. As tangible heritage is considered both representative and metaphorical, its context however remains abstract and intangible [7]. This context is an amalgam of what Svensson calls *knowledge systems or life ways*, and relates to an artefact but is not intrinsically part of one [8]. In order to understand the significance of an artefact requires it to be presented within a broader context.

Narrative is proposed as a way of reconciling physical artefacts with their original intention or historic context and, in our case, presenting a holistic impression of Etruscan heritage. The aim is to support a team of domain experts (archaeologists, researchers, etc.) develop narrative presentations, which describe artefacts with their original intention or historic context and, in broader context.

In order to understand the significance of an artefact requires it to be presented within a broader context.

Narrative is proposed as a way of reconciling physical artefacts with their original intention or historic context and, in our case, presenting a holistic impression of Etruscan heritage. The aim is to support a team of domain experts (archaeologists, researchers, etc.) develop narrative presentations, which describe artefacts and their context within Etruscan society. In discussions with several archaeologists, the problem of assigning context to digital artefacts was raised. They suggested that in a cultural heritage setting, an artefact’s context can be understood as a combination of its function and role within a specific society.

1 Global Positioning System or GPS is a satellite navigation system.
2 Personal Digital Assistants or PDA’s are versatile handheld personal computers.

Figure 1. TARCHNA System Architecture

2.1 Source

The source tier consists of several heterogeneous data-sources, each exhibiting a separate (i.e. dissimilar) database schema, and three Ontologies developed upon the CIDOC CRM data standard [1]. The first or *TARCHNA* domain ontology provides a common reference model on which to integrate the different database schemas. This integration takes the form of a “Database to Ontology” mapping, whereby the elements defined by the database schema are expressed in terms of the ontology’s concepts. Unlike other efforts, such as ARTISTE [2], the database mappings are held in the ontology. In this way, the mapping information can be accessed in the same way as instances of the ontology classes - thus removing the need for an external procedure to access mapping files or altering the individual database schemas. Two other ontologies, “Sphere of Knowledge” and “Narrative Ontology” also sit in the source tier of the system; each is discussed in later sections. All three ontologies are represented in the RDF formalism and stored in a sesame RDF store [3].

2.2 Knowledge

The knowledge or second tier is the central constituent of the system. It consists of several authoring tools, which support domain experts to develop narrative content, and the *TARCHNA* engine, which guides interaction between the *TARCHNA* domain ontology and the individual databases. The *TARCHNA* engine processes requests expressed as ontological concepts, and converts them into separate SQL statements relevant to each dataset. This process occurs at two different stages: firstly when authors wishing to write a narrative search the system for relevant artefacts on which to base their narrative content; and secondly when a request is accepted from the *TARCHNA* web service, the engine retrieves all narrative content related to a specific artefact, or conversely, retrieves all artefacts related to a specific narrative. The *TARCHNA* engine and authoring tools were developed in the Java programming language with the Protégé Ontology API [4, 5].

2.3 Appearance

The third and final tier acts as the disseminating component of the system, and distributes data (i.e. artefacts) related to a specific narrative, or conversely, retrieves all artefacts related to a specific narrative. The *TARCHNA* engine and authoring tools were developed in the Java programming language with the Protégé Ontology API [4, 5].
From this perspective, artefacts are presented as references to physical objects from the underlying datasets, many of which are accompanied by multimedia illustrations, while their context is woven into the narrative text and buttressed with ontology concepts, representing both function and role, from the Sphere of Knowledge (ontology).

3.1 TARCHNA Ontologies

In summary, the TARCHNA system uses ontologies to define narrative concepts and represent the domain to which they relate. Several distinctions were made to help formalise this process. Firstly, the domain was divided between aspects of tangible heritage, in the form of physical artefacts and monuments, and the broader concepts of Etruscan culture, such as economy, history, and religion. Each was represented by a separate ontology developed upon the CIDOC CRM data standard. The first, eponymously named the TARCHNA Domain Ontology, is a formal definition of Etruscan artefacts and monuments. It functions as an umbrella ontology for the addition of supplementary datasets without the need for replication across repositories, while supporting a faceted search paradigm, and presenting the user with a unified view of a fragmented heritage. The ontology was developed in coordination with a team of archaeologists who have extensive experience of Etruscan antiquity.

The second ontology however is a less formal representation, and describes the broader concepts of Etruscan culture. The ‘Sphere of Knowledge’ Ontology exhibits weaker semantics by way of hierarchically ordered terms. An explanation of each is provided with a (natural language) scope note. The motivation in using a less formal approach lay with supporting a community of domain experts. It was felt that the community should be involved in, as much as possible, the initial development and continuous refinement of the ontology. In this way the community’s knowledge may evolve, and consequently be reflected in the ontology, with the addition of new collections and narrative content. This method was successfully demonstrated by Srinivasan during his work on the Village Voice project where he approached the development of structured knowledge in terms of community participation and mutability. [9] He refers to the concept as fluid ontologies, or ‘flexible knowledge structures that evolve and adapt to a communities’ interest [10].

The third and final representation is the TARCHNA Narrative Ontology. This draws on much of the work by Mulholland and others when formally describing narrative concepts [11-13]. Narrative is thought of as an epistemological container for communicating heritage content. It does this by specifying several properties which tie together concepts from both the TARCHNA Domain Ontology and the Sphere of Knowledge in a single narrative presentation. The former describes artefacts by way of direct relations or characteristics of artefacts through indirect relations, while the latter discusses broader domain concepts which often represent the function and role of an artefact.

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has title</td>
<td>title</td>
<td>Title of the narrative.</td>
</tr>
<tr>
<td>Has text</td>
<td>text</td>
<td>Text of the Narrative</td>
</tr>
<tr>
<td>Has author</td>
<td>author</td>
<td>Author of the narrative</td>
</tr>
<tr>
<td>Has direct relation</td>
<td>concept</td>
<td>Relation to artefact as represented in the ontology</td>
</tr>
<tr>
<td>Has indirect relation</td>
<td>concept</td>
<td>Relation to characteristics as represented in the ontology</td>
</tr>
<tr>
<td>Has contextual relation</td>
<td>term</td>
<td>Relation to terms from the ‘Sphere of Knowledge’</td>
</tr>
</tbody>
</table>

TARCHNA Narrative is stored as class instances in the narrative ontology. In this way it is abstracted from the underlying datasets, but can still reference database objects via direct and indirect relations.

Figure 2. TARCHNA Ontologies.

4. Authoring Scenario

The authoring process, illustrated in Figure 3, takes place in the knowledge tier of the system. Domain experts are provided with a personal narrative space, in which they can add, edit, and delete narrative content. The authoring process is divided into a number of steps, each contributing towards a completed presentation.

Table 1. Illustrates the conceptual structure of a TARCHNA narrative and the relation between narrative and domain.
The following scenario illustrates how a domain expert (Tom) contributes narrative content to the TARCHNA system:

Tom, an archaeologist working on a dig in Tarquinia (an ancient city in Italy), wishes to discuss Etruscan musical instruments as a whole but would like to focus on the Lituus3 as an example of the “fruits” of Etruscan culture. He approaches the system with several concepts in mind. Naturally, he wishes to feature the artefact itself, and would further like to discuss its role and function within Etruscan society. In step 1 of the authoring process he is asked to choose the theme of his narrative. The theme denotes the nature or broad idea of the text and, from the systems point of view, illustrates the author’s interests. For this example, Tom wishes to discuss musical instruments and therefore chooses the theme Finding from the list presented in Figure 4.

At this point the TARCHNA engine (Figure 1) receives the search criteria and translates the ontology concepts into individual SQL statements relevant to each of the heterogeneous datasets. This process involves querying the TARCHNA Domain Ontology (stored in RDF) for the mapping information applicable to each database. The resulting RDF triples are transformed into SQL statements (Figure 6) and each database is queried.

3 The Lituus was both a crooked staff, usually held by influential individuals, and an L-shaped wind instrument. Although it functioned as a musical instrument, its role was often during religious rituals.
Figure 7. Step 3: the results of a search for describing the wind instrument Lituus. **Indirect Narrative** allows the author to write about the characteristics of the Lituus without reference to an actual artefact; conversely, **Direct Narrative** supports the author in discussing an actual artefact from the system.

The results of Tom’s search are divided under the headings of **Direct** and **Indirect Narrative**. While **Direct Narrative** discusses artefacts with reference to specific database objects, an **Indirect Narrative** discusses characteristics of artefacts as represented by concepts within the TARCHNA Domain Ontology (e.g. Shape: Lituus, or Material: Bronze).

There are several incentives motivating this approach. Firstly, authors are supported in discussing artefacts from a general perspective, without relying on reference to a specific database object. This could amount to a discussion on Etruscan musical instruments, without explicit artefact references, but with an indication as to the shape of Lituus for example and consequently to any artefact of that type. It is suggested that the approach could draw on a more active participatory role from the reader, as the narrative acts as a gateway to further exploration of, in this case, Etruscan musical instruments. Secondly, the concept of indirect narrative supports collections that may be added to the TARCHNA system at a later date. For example, let’s consider artefacts with the shape of a Lituus that are discussed by an indirect narrative. If a new collection is added and, following the mapping procedure, there are new artefacts of shape Lituus present, those artefacts are immediately associated with that indirect narrative. Thirdly, an author wishing to contribute to the system’s content is not discouraged from doing so by the absence of a particular artefact, and is instead proffered with the opportunity to contribute, albeit from a more general perspective.

Returning to the example, it can be seen from Figure 7 that, in this instance, Tom’s search yields a reference to a bronze Lituus with the uid RC 85689-17. Tom decides therefore to concentrate on a direct narrative discussing the value of the Lituus within Etruscan culture. He chooses the Lituus reference (as illustrated in Figure 7) and proceeds directly to writing his text.

Figure 8 illustrates the TARCHNA Narrative Page. The author is presented with a Title Box (1), the Sphere of Knowledge or listing of terms broadly fitting the Etruscan domain (2), the artefact chosen as the corollary of the previous search (3), and a larger Text Box (4). Tom enters the title ‘The Lituus within Etruscan culture’ into the title box, and begins to write his text.

New Tarchna Narrative

Art and artefacts 2

<table>
<thead>
<tr>
<th>History of Etruscan studies</th>
<th>Art and Artefacts 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economy</td>
<td>Etruscan Offering</td>
</tr>
<tr>
<td>Architecture and town planning</td>
<td>Art and Artefacts 2</td>
</tr>
<tr>
<td>Society and government</td>
<td>Tyrrhenian Archaological</td>
</tr>
<tr>
<td>History</td>
<td>Materials: Bronze</td>
</tr>
<tr>
<td>Language and literature</td>
<td>Shape: Lituus</td>
</tr>
<tr>
<td>Customs</td>
<td>Environment and landscape</td>
</tr>
<tr>
<td>Religion</td>
<td>Add a Glossary Term</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td></td>
</tr>
<tr>
<td>Environment and landscape</td>
<td></td>
</tr>
</tbody>
</table>

Having completed his text, Tom chooses the terms from the Sphere of Knowledge which best describes his narrative content. Again, the sphere of knowledge is a less formal ontology illustrating the broader aspects of Etruscan culture. Each term, from *Art and Artefacts* to *Environment and Landscape*, represents the top level of the ontology. By clicking on a term, the author expands the ontology tree and a more specialised branch of the hierarchy is displayed. In this example, Tom is discussing a particular type of musical instrument, therefore the term *Customs* is chosen, followed by the more specialised term of *music and musician* depicting the artefact’s function. However, a Lituus had a different role in Etruscan society, it was often used during votive offerings and other religious rituals, and as a result Tom expands the term of religion choosing both *Rituals in a sacred context* and *Offering* (Figure 9).
5. Discussion

This paper introduced a unique way of presenting geographically disparate heritage collections. The key advantages of which are listed below:

5.1 An open approach to interoperability

Separating responsibility between tiers serves a very specific purpose by way of semantic interoperability, and promoting new and exciting ways of accessing cultural heritage information. A key principle behind this approach was that the system rely on no single data model, therefore databases can be added or removed with the minimal of effort. In this way, amendments to a data source do not impact the underlying semantic structure, and through the TARCHNA web service, developers are encouraged to invent new ways of exploring the narrative content.

5.2 A collected view of distributed heritage

Heritage collections are often distributed across several, geographically remote, museum databases. By separating functionality between tiers and mapping collections into single umbrella ontology, the TARCHNA system presents a collected view of a distributed heritage. While users are supported searching multiple datasets, data replication is avoided, and cultural institutions retain tutelage over digitised collections.

5.3 Enhanced data dissemination with contextualised narrative content

Heritage professionals have acknowledged the importance of “context” when presenting artefacts to the general public. By foregrounding artefacts within a narrative backdrop, it is proposed that objects are considered from a broader contextual perspective.

6. Conclusion

The TARCHNA system presented in this paper proposes a novel way of contextualising heterogeneous datasets through the construction and presentation of knowledge intensive narrative. The system hinges on an open approach to information by promoting a clear separation of source, knowledge, and appearance. The multi-tiered architecture, while supporting semantic integration of heterogeneous datasets and avoiding data replication, provides a platform independent way to interact with and disseminate knowledge based narrative.

Currently, the system is being used by a number of archaeologists developing a suite of narrative discussing varying aspects of Etruscan heritage. While the approach was developed to support cultural institutions to amalgamate artefacts and present a holistic understanding of a specific heritage, it is not proprietary to subject matter or domain. The multi-tiered architecture supports data integration at both the procurement and dissemination stages, while the knowledge layer exploits narrative as a unifying platform, and presents both knowledge and data in an engaging format.

7. ACKNOWLEDGMENTS

T.Arc.H.N.A is a 3 year project partly funded by Culture 2000 (2004 -1488/001 -001 CLT-CA22) that started in September 2004. Seven project partners are involved; the University of Milan in Italy, the Computer Science Department at Claude Bernard University in Lyon, France, the Institute of Archaeology/Art Collections at University of Bochum, Ruhr, Germany, the Dublin
Institute of Technology and University College Dublin both based in Ireland, the Department of Classical Archaeology at the University of Warsaw, Poland and the Aristotle University of Thessaloniki situated in Greece. Further information is available from the project website [15].

8. REFERENCES