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On Inpainting the Adress Algorithm

Derry FitzGerald† and Dan Barry∗

Audio Research Group
Dublin Institute of Technology,
Kevin St, Dublin 8, IRELAND

E-mail: †derry.fitzgerald@dit.ie ∗dan.barry@dit.ie

Abstract — The Adress algorithm has been demonstrated to be capable of separating
sound sources from instantaneous linear mixtures, provided that the sources have a
unique pan position in the stereo field. However, a shortcoming of the Adress algorithm
is that all time-frequency bins outside of the chosen azimuth range are set to zero,
resulting in audible artifacts in the resynthesised sound. Here we show that an inpainting
algorithm based on NMF is capable of estimating these missing values and improves on
the results obtained using Adress only.
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I Introduction

Audio inpainting has been proposed as a means of
estimating missing values or corrupted values in
audio signals [1]. Typical applications include the
recovery of portions of audio distorted by impul-
sive noise or clipping, or the estimation of miss-
ing portions of a streamed audio signal due to to
packet loss. In the case of distorted audio it is
assumed that the location of the distortions are
known and the actual data in these locations is
then assumed to be missing.

A number of different approaches have been
suggested in tackling the audio inpainting prob-
lem. Adler et al propose a time domain ap-
proach where the signal is split into overlapping
time domain frames, and the missing frames are
then estimated using a dictionary-based Orthogo-
nal Matching Pursuit algorithm [1]. Smaragdis et
al propose a factorisation-based approach which
operates on time-frequency spectrograms of the
audio signal [2], as does Le Roux et al, who use
a convolutive factorisation model in conjunction
with sparsity constraints to estimate the missing
values [3].

The above algorithms have been demonstrated
to give good results in estimating missing values
in audio signals in a wide variety of scenarios, but
not as yet to a class of source separation algo-

rithms which are a natural fit with the audio in-
painting problem. These are the class of separa-
tion algorithms which make use of binary masking
to separate sources, such as the DUET algorithm
[4], or the Adress algorithm [5]. These algorithms
allocate time-frequency bins to individual sources
based on the estimation of various parameters, re-
sulting in source spectrograms with many time-
frequency bins set to zero where the energy related
to the actual source present is missing.

It is proposed to investigate the use of audio
inpainting as a post-processing stage on the out-
put of these algorithms to see if the quality of the
separations obtained can be improved. In partic-
ular, we focus on the Adress algorithm, which is
described in Section II. We then briefly review
non-negative matrix factorisation (NMF) in Sec-
tion III. Following on from this, we describe an
NMF-based audio inpainting method inspired by
that of Le Roux et al [3] in Section IV, as well
as explain its application to the outputs obtained
from the Adress algorithm. In Section V the use of
audio inpainting is illustrated on real-world exam-
ples. Finally in section VI conclusions are drawn
and areas for future work highlighted.

II The Adress Algorithm

Since the advent of multi-channel recording sys-
tems, most popular music recordings are made by



recording the various sources individually. These
sources are then electronically summed and dis-
tributed across 2 channels using a mixing console.
Localisation (or panning) of a source at a given
point in the stereo field is achieved by means of
a panoramic potentiometer, which divides a given
sound source across 2 channels with continuously
variable intensity ratios. Increasing the gain in
one channel against that of the other channel gives
the appearance that the source is localised more in
that channel. It should be noted that in this case
the phase of the source in both channels is iden-
tical and that only the intensity differs. It is this
fact which the Adress algorithm utilises in order
to perform sound source separation.

The Adress algorithm performs sound source
separation on linear instantaneous stereo mixtures
of audio signals. It assumes that each source occu-
pies a unique point in the stereo field and separates
sources based on their pan position [5]. The lin-
ear instantaneous mixing model used in Adress is
given by:

L(t) =

J∑
j=1

PljSj(t) (1)

R(t) =

J∑
j=1

PrjSj(t) (2)

where Sj indicates the jth source, Plj and Prj , the
panning coefficients for the jth source, and L and
R indicate the left and right channel mixtures re-
spectively. Then, an intensity ratio for each source
can be defined as:

Ij =
Plj
Prj

(3)

Due to the linear instantaneous mixing model, it
can be seen that L−IjR will cancel the jth source
from the mixture. However this will not allow re-
covery of the cancelled source and so recovery of
the cancelled source is done using frequency do-
main techniques.

To achieve source recovery, a Short Time Fourier
Transform (STFT) is carried out on each of the
two mixture signals. We define β as the azimuth
resolution, which determines how many equally
spaced gain scaling values are used to create the
frequency-azimuth plane defined across the full
stereo space. As the intensity ratio I is not
bounded, we define a bounded gain scale vector
g. For a given azimuth resolution, the gains g are
defined as:

gi =


i

β
if i ≤ β/2

β − i
β

if i > β/2
(4)

where 0 ≤ i ≤ β and where i and β are integers.
Similarly we define a position index

Pi =

{
gi − 1 if i ≤ β/2
1− gi if i > β/2

(5)

The values of P then range from -1 for sources
panned hard left, to 1 for sources panned hard
right, with 0 indicating a position in the centre.
The values of g then range from 0 for sources hard
left, increasing to 1 for centre positioned sources,
before decreasing to 0 for sources panned hard
right.

The frequency-azimuth plane is then defined as:

Azk,i =

{
|Lfk − giRfk| if i ≤ β/2
|Rfk − giLfk| if i > β/2

(6)

where Rfk and Lfk denote the kth frequency bin
of the current right and left frames of the STFT
respectively.

In order to resynthesise a given source, it is nec-
essary to define a source position d, which is a
value taken from P . When a source occurs at this
source position, the energy in the frequency bins
associated with a given source will be cancelled
out. This results in a minimum at that position in
the azimuth frequency plane. This minimum then
contains the residual energy present due to other
sources in the mixture. However, due to frequency
overlap between different sources, the position of
a given frequency minimum can move away from
that of the actual source position. In order to over-
come this problem, an azimuth subspace width, H
is defined, so that −1 ≤ H ≤ 1. Together with d,
this defines which azimuth positions in P are to be
used for resynthesis. The source spectrogram for
the current frame can then be estimated from

Yk =

{
E if d−H/2 ≤ argmin(Azki) ≤ d+H/2

0 otherwise

(7)

where E is defined as:

E =

{
Lfk −min(Azki) if d ≤ 0

Rfk −min(Azki) if d > 0
(8)

The phase information from the channel in which
the source is dominant can then be applied to this
spectrogram to allow resynthesis in the time do-
main via an inverse STFT once all the frames have
been estimated.

It can be seen from the above that there is a
trade-off involved in choosing the azimuth sub-
space width. Widening the width allows the cap-
ture of greater numbers of bins related to the
source of interest, but at the expense of increasing



the likelihood of capturing bins belonging to other
sources present in the mixture, thereby increasing
the amount of bleed present and the amount of
artefacts present. In any case, for bins in which
another source predominates in terms of energy, it
is likely that these bins will fall outside the chosen
azimuth subspace, resulting in an energy of zero
for that bin even if some energy due to the source
of interest is present. Therefore, it can be seen that
a means of estimating the source energy at those
bins would be advantageous in improving the qual-
ity of the separated source. Audio inpainting is one
such means of estimating this missing information.

III NMF

Non-negative matrix factorisation (NMF) [6] and
extensions of NMF have been widely used to at-
tempt sound source separation [7, 8]. In the case
of audio signals NMF attempts to factorise a non-
negative spectrogram, such as a magnitude spec-
trogram obtained via an STFT, X of size n × m
into matrix factors A and S:

X ≈ X̂ = AS (9)

where A is of size n × r containing a set of fre-
quency basis functions, S is of size r ×m contain-
ing a set of corresponding time basis functions, and
where r is the rank of the factorisation. This yields
a parts-based decomposition where the frequency
basis functions typically contain frequency spectra
corresponding to events such as notes, chords or
drum hits played during the piece of music. The
time basis functions then provide information re-
lating to when these events occurred.

A commonly used cost function for perform-
ing NMF is the generalised Kullback-Liebler di-
vergence:

D(X, X̂) =
∑

X log
X

X̂
−X + X̂ (10)

where summation takes place over all elements of
X and X̂. Multiplicative update equations for A
and S can then be derived from the cost function
yielding:

A = A⊗ (X/X̂)Sᵀ

OSᵀ
(11)

S = S⊗ Aᵀ(X/X̂)

AᵀO
(12)

where O is an all-ones matrix of size n×m and ᵀ

denotes matrix transpose. All divisions are taken
as elementwise and ⊗ denotes elementwise multi-
plications.

IV NMF-based Audio Inpainting

In this paper, we are not interested in using NMF
for the purpose of sound source separation, but in-
stead to estimate missing values in an audio spec-
trogram, in this case obtained as the output of the

Adress algorithm. We intend to take advantage
of properties of the Adress algorithm in conjunc-
tion with the linear parts-based decomposition ob-
tained from NMF to estimate the missing values in
the Adress spectrogram. The position of a given
bin in the frequency-azimuth plane is a function
of the sources that present in that bin, and so the
position of a given frequency will change with time
as sources come in and out. Taking a guitar chord
as an example, each time the chord is played, it
will typically be overlapped at different frequencies
as the vocal melody changes in pitch or different
drum sounds are played against the chord. There-
fore, different parts of the chord spectra will fall
within the azimuth subspace each time the chord
is played. In other words, the separation obtained
via Adress varies locally with time.

In contrast, NMF gives a global linear decom-
position of the entire spectrogram, capturing re-
peating parts across the whole signal. This means
that when the repeating guitar chord occurs, even
if different parts of the chord spectrum are present
at different times, then NMF will attempt to find a
basis function which captures the global character-
istics of the chord, and so parts that are missing at
one instance of the chord will tend to be filled in by
parts that are present at another instance, leading
to a basis function which is closer to the actual fre-
quency characteristics of the chord than any of the
individual occurrences in the Adress spectrogram.

Therefore, simply performing NMF on the spec-
trogram X output by the Adress algorithm ,
should result in an improved estimate of the
source, estimated from X̂ = AS. However, this
can sometimes introduce noise, especially in bins
which had low energy to begin with. To help
eliminate this noise, we replace any bins in the
estimated spectrogram which have energy greater
than that of the mixture spectrogram with the bins
from the mixture spectrogram in which the source
is dominant. Assuming that the bins estimated
originally using Adress are accurate, this spectro-
gram can be further improved by substituting the
original non-zeros values of X back into X̂.

However, this is still not an ideal way of estimat-
ing the missing values. This is because the NMF
basis functions will still try to take into account
the zeros in X̂ and so try to suppress bins where
data should be present. Therefore, we adapt the
approach taken in [3], where they estimated a con-
volutive NMF model from a spectrogram contain-
ing missing columns. After an initial factorisation
on the original spectrogram with the missing data,
the output from the convolutive NMF model was
used to fill in the values missing from the original
spectrogram. A second convolutive NMF factori-
sation was then performed, but at each iteration,
the missing values were then updated using the



values estimated from the previous iteration of the
factorisation. This has the effect of allowing the
missing values to converge over the iterations to
values which are consistent with the factorisation
of the observed data, and so these values are now
more likely to be good estimates of the actual miss-
ing data.

Also included by Le Roux et al was a sparsity
prior on the time basis functions. This was in-
cluded in an attempt to prevent the inpainting al-
gorithm from putting energy into bins where no
energy was actually present. The sparsity prior
pushes the time basis functions to be as sparse as
possible while still giving a good reconstruction of
the original data, and so acts as a brake to pre-
vent the inpainting algorithm from incorporating
energy where none should be present.

When performing inpainting on the outputs
from Adress, we do not use the convolutive NMF
algorithm used by Le Roux et al. The convolu-
tive NMF algorithm used is particularly suited to
modeling solo pitched instruments, but is not ef-
fective at capturing transients associated with per-
cussion sounds, or indeed the transients associated
with the onset of certain pitched instruments such
as piano or guitar. Further, the convolutive NMF
model was tested by eliminating groups of columns
from the audio spectrogram, and so needed the
harder constraints imposed by convolutive NMF
to recover the missing frames. This is as opposed
to the Adress output which contains no missing
columns, and as already noted, due to the nature of
the Adress algorithm, some information related to
the source will always be present, allowing a stan-
dard NMF decomposition to recover the sources.

We incorporate a sparsity prior on S through
the use of the L1 norm. The NMF cost function
then becomes:

D(X, X̂) + λ|S|1 (13)

where λ controls the degree of sparseness of the
solution. The update equation for S is then given
by:

S = S⊗ Aᵀ(X/X̂)

AᵀO + λ
(14)

while the update equation for A remains as previ-
ously defined.

The NMF inpainting algorithm for use with
Adress can then be defined as follows below. Let
J be the non-zero indices in X:

J = arg(X > 0) (15)

Then perform standard NMF on X to yield initial
estimates of X̂, A and S. Letting p indicate the
iteration number, where p = 0 denotes the initial

estimate obtained via standard NMF, then iterate
through the following:

Step 1: Xp+1
n,m =

{
X̂p

n,m if (n,m) /∈ J
Xn,m if (n,m) ∈ J

Step 2: Update A and S using eqns. 11 and 14

This process continues until convergence or for
a fixed number of iterations. The final value of
X is then used as the inpainted estimate of the
source. Despite the presence of the sparsity prior,
there will still be additional noise present in the
inpainted spectrogram. In order to suppress this
to some extent, we search for bins in X which have
energy greater than that in Y where Y is the orig-
inal mixture spectrogram of the channel in which
the source being separated is dominant. These val-
ues from Y are then used to replace those in X as
follows:

Xn,m =

{
Yn,m if Xn,m > Yn,m

Xn,m otherwise
(16)

It should be noted that while the use of inpaint-
ing can improve the separations obtained from
Adress, the use of inpainting still carries with it
limitations from Adress. Firstly, sources panned to
the same position will still be separated together,
and secondly, there is still a trade-off related to
the choice of azimuth width between source recov-
ery and bleed from other instruments. However,
the use of inpainting ameliorates this trade-off to
some extent, allowing a narrower width to be used,
reducing bleed from the other sources while still al-
lowing good recovery of the source. However, too
small a width results in the introduction of extra-
neous noise to the recovered signal, as there is no
longer enough information for the inpainting algo-
rithm to function properly.

V Inpainting Examples

In this section we demonstrate how the use of
inpainting improves the results obtained by the
Adress algorithm. Figure 1 shows the spectro-
gram of a stereo mixture of a song containing gui-
tar, drums, bass, synthesiser, piano and vocals.
The guitar was mixed to be dominant in the left
channel and so the spectrogram of this channel
is shown. The stereo mixture was obtained by
mixing the mono sources with the sources spread
evenly across the stereo space. This means that
there was a distance of 0.4 in the azimuth plane
between the sources. Both standard NMF and the
inpainting NMF algorithm were ran for 500 itera-
tions, while λ was set to 1000 to encourage sparsity
in the output of inpainting NMF.

Figure 2 then shows the spectrogram for the
original unmixed guitar signal, while figure 3 then



shows the spectrogram recovered using Adress,
where the correct source position was provided to
the Adress algorithm. An azimuth width of 0.4
was chosen as this ensured that the azimuth range
covered half the distance to the next source. It can
be seen that the general time-frequency character-
istics of the source have been recovered, though
many harmonics are missing, and gaps in many
harmonics are evident. On listening to the recov-
ered source, it can be clearly identified as a gui-
tar. Figure 4 shows the guitar spectrogram recov-
ered by using NMF-based inpainting on the out-
put from Adress. Here, it can be seen that more
of the harmonics have successfully been recovered,
though some of the low frequency harmonics are
still missing. There is a noticeable improvement
in resynthesis quality when compared to that of
Adress.

Figure 5 then shows the original drum spectro-
gram from the same excerpt, with figure 6 showing
the drum spectrogram recovered via Adress, using
the correct source position and the same azimuth
width as the previous example. Finally, figure 7
shows the drum spectrogram recovered using in-
painting. It can be seen that more of the energy of
the drums has been recovered after inpainting. On
listening to the separated signals, the transients on
the signal recovered via inpainting are noticeably
sharper than those obtained via Adress, and there
is more energy present in the drum sounds.

The inpainting algorithm was also tested on real-
world commercial recordings, where the original
sources were unavailable for comparison. Here,
informal listening tests suggest that the results
obtained via the inpainting algorithm again im-
proved upon those obtained via Adress, highlight-
ing the usefulness of the inpainting algorithm for
use in real-world separation tasks. Examples of
real-world separations can be found at [9].

Fig. 1: Spectrogram of left channel of mixture signal

Fig. 2: Spectrogram of original guitar signal

Fig. 3: Spectrogram of guitar recovered using Adress

VI Conclusions

Having given an overview of the Adress algorithm,
we then highlighted issues associated with the al-
gorithm. In particular, the nature of Adress means
that many bins which should have energy related
to the source to be separated will have zero energy.
An NMF-based inpainting algorithm was then pro-
posed as a means of estimating these missing val-
ues. The improvement in the quality of the sep-
arations obtained when inpainting was used with
Adress was then demonstrated through real world
examples. Future work will concentrate on extend-
ing the NMF model to incorporate additional con-
straints such as temporal continuity with a view
to further improving the separations obtained and
also on investigating the use of inpainting with
other algorithms such as DUET.
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Fig. 4: Spectrogram of guitar estimated using NMF
inpainting after Adress

Fig. 5: Spectrogram of original drums signal
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