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SAMATS - Triangle Grouping and Structure Recovery 
for 3D Building Modeling and Visualization 

Joe Hegarty and James D. Carswell 

Digital Media Centre, Dublin Institute of Technology, Aungier St., Dublin 2, Ireland 
{joe@dmc.dit.ie, jcarswell@dit.ie}

Abstract.  Location based and spatial technologies research for the web has 
endless application for mobile/position content delivery (m-commerce or p-
commerce).  By exploiting the inherent location-based intelligence of the un-
derling spatial component, relevant examples can include geometrically accu-
rate and photo realistic virtual representations for: property assessments; 
land/marine information systems; routing information; on-line shopping; cul-
tural heritage/tourist information/sites; etc.  A major challenge for this technol-
ogy is its reliance on professional developers when creating the virtual worlds 
used for web-based navigation of these services.  This paper describes 
SAMATS, a Semi-Automated Modeling And Texturing System, which has the 
capability of producing geometrically accurate and photorealistic VR building 
models for web-based p-commerce applications from a set of geo-referenced 
terrestrial images.  This paper describes the second of three main components 
that comprise the full functionality of the complete SAMATS implementation.  
It focuses on the triangle grouping and structure recovery steps, while providing 
an overview of SAMATS’ other components. 

1   Introduction 

2D and 3D information visualization using VR modeling is becoming an important 
area of e-commerce research for today’s web-based location based services (LBS) 
applications.  Examples of exploiting VR navigation for both cultural heritage and 
environmental applications can be found in [1,2,5].  However, producing visually 
convincing VR models for these LBS applications requires expert VR knowledge on 
the part of the system developers.  This research investigates building reconstruction 
technology for creating geometrically accurate, photorealistic 3D models from terres-
trial digital photography for use in LBS applications that non-expert VR developers 
can exploit.  It is envisioned that the resulting 3D model output from this work be 
web-enabled and made available to subsequent LBS research endeavors (e.g. for ar-
chaeologists, town planners, tourism, e-Government, etc.).  Being able to produce 3D 
VR building models using terrestrial imagery allows all users to exploit the future 
commercialization potential of web-based LBS. 

In the literature, it can be seen that many previous and contemporary modeling sys-
tems require manual correspondences to be made across the image set in order to 
accurately determine the models 3D structure.  For example, Ullman (1976) was 



among the first to investigate the principle of modeling structure from motion and 
along with Taylor and Kriegman (1995) require manual correspondences to be made. 
[12,13]  Debevec et al (1996) approached the problem differently by creating a mod-
eling and rendering system that allows the user to create models using a set of block 
primitives and by setting constraints on these primitives.   

More automated modeling approaches are seen to involve the modeling of roofs 
from aerial imagery.  However, models produced in this way fail to capture building 
façades accurately.  Countering this, Lee et al [8,9,10] have looked into the merging of 
façade textures from ground based imagery with models produced from aerial im-
agery.  Results closer to our approach can be found in [3] where a large set of 3D 
building models is constructed by using spherical mosaics produced from accurately 
calibrated ground view cameras fitted with a GPS device.  Although highly automated, 
this system was limited to modeling simple shaped buildings by simply identifying the 
rooflines and extruding walls downwards.  [14] Still closer is an example of extracting 
building and window edges which, like SAMATS, determines correspondences auto-
matically, although a rough model of the structure being modeled is required in order 
for this system to work.  This approach differs from SAMATS as we do not require 
such a model to be available a-priori. 

SAMATS uses a novel approach to creating building models without the need for 
manual correspondences to be made.  The ability of SAMATS to remove the manual 
correspondence step found in most modeling approaches is achieved by having all 
images geo-referenced in the same reference frame.  However, the acquisition of geo-
referenced terrestrial images is still a bottleneck that does not have a straightforward 
solution.  It is a process that requires knowing both the X,Y,Z ground coordinates of 
the camera station plus the orientation of its field of view.  SAMATS does not solve 
the difficulties in acquiring geo-referenced imagery - it only investigates the useful-
ness of such imagery in the overall modeling process. 

 

 
Fig. 1. SAMATS system diagram.  The highlighted steps are the focus of this paper. 

 



Modeling and rendering in SAMATA is a 2 stage process.  The first stage is broken 
into 3 steps – namely: building edge highlighting; building edge recovery; and build-
ing reconstruction (i.e. structure recovery).  This paper focuses on the triangle group-
ing and structure recovery steps in the modeling stage of SAMATS, but for complete-
ness gives an overview of the other components.  For a detailed description of the 
edge highlighting component and the intersection rating component refer to [6].  For 
all other components refer to [7].  Figure 1 shows a systems overview of SAMATS. 

2   Modeling 

This section describes the process used to model the geometry of a building from a set 
of geo-referenced images using only simple edge highlighting by the user.  The basic 
concept behind the modeling process is as follows; if one has two images of a scene 
taken from different locations, and the exact position and orientation of the camera is 
known for each image (i.e. the exterior orientation parameters Xo,Yo,Zo,Ω,Φ,Κ) then 
the exact location of any point visible in both images can be determined.  This con-
figuration is illustrated in figure 2.  The modeling process outlined in this section 
extends this idea by using planar triangle intersections to find edges rather than line 
intersections to find points.  The modeling process can be split into three main steps; 
Edge Highlighting, Edge Recovery and Structure Recovery. 

 

 
 

Fig. 2. Line projection used to determine a point in 3-space. 

2.1   Edge Highlighting 

Edge highlighting is the only manual step performed by the user in the SAMATS 
modeling process.  Primary lines and secondary lines are used to highlight edges in the 
images.  Primary lines are used to recover the position of building edges directly, 
determining the core structure of the model.  They are responsible for the creation of 



every vertex in the final model.  A secondary line is used to connect these primary 
lines together and must have each of its endpoints connected to one or more primary 
lines. 

The reason the entire model is not defined by primary lines is because it is difficult 
to recover some edges given the input data.  Primary lines are well suited to recover-
ing the position of vertical edges because it is possible to create arbitrarily large an-
gles of intersection about the vertical edge axis.  However, for horizontal edges near 
camera level it is not possible to create arbitrarily large intersection angles, making it 
difficult to recover the horizontal edges accurately since slight inaccuracies in the 
camera’s interior or exterior orientation parameters results in large errors in estimated 
edge location. 

 

 
 

Fig. 3.  Screenshot of the edge highlighting application.  Note that the vertical edges 
are highlighted using white primary lines while the horizontal roof tops and building 
footprints are highlighted using black secondary lines. 

 
Secondary lines work by connecting primary lines, where the use of a primary line 

would be prohibitive due to insufficient intersection angle between the triangle planes.  
Since primary lines will generally be used to recover the vertical edges of buildings, 
secondary lines should then be used to highlight the horizontal wall bases (building 
footprints) and roof tops, which indicates to the system that these edges should be 
connected without invoking the same recovery technique used for the primary edges. 



Primary edge must be highlighted in at least three images, this is a requirement of 
the automated correspondence algorithm.  It can be advantageous to define a primary 
edge in more than three images when trying to recover edges that are poor primary 
edge candidates.  Secondary edges need only be defined in a single image.  Figure 3 
shows a screenshot of the edge highlighting application. 

2.2   Edge Recovery 

After the primary edges have been manually highlighted, six automated steps are per-
formed to recover the final edges; Line Projection, Triangle Intersection, Correspon-
dence Recovery, Edge Averaging, Vertex Merging, and Secondary Edge Recovery.  
Each of these steps is described next. 

2.2.1   Line Projection 
The first step in determining the positions of the primary edges is to project the 2D 
primary lines to form 3D triangles.  The interior and exterior orientation parameters of 
the camera are used to project the primary lines from the cameras position out to infin-
ity.  This is performed for every primary line in each image. 

2.2.2   Triangle Intersection 
Once every 2D primary line has been transformed to a 3D triangle, the next step is to 
determine the intersections between the triangles.  Every triangle stores a list of the 
triangles it intersects. 

2.2.3   Correspondence Recovery 
Generally each triangle intersects many other triangles even though only a small num-
ber of the triangle intersections have both their primary lines highlighting the same 
edge.  Most 3D modeling systems resolve this problem by performing manual corre-
spondences between the lines so that lines which highlight the same building edge are 
grouped together.  Once the lines are converted to triangles the only valid intersec-
tions are between members of the same group.  This can be a very time consuming 
process.  SAMATS improves on contemporary techniques by performing this corre-
spondence automatically in three steps; Intersection Rating, Triangle Grouping and 
Group Merging. 

2.2.3.1   Intersection Rating 
The process of intersection rating requires every triangle to rate each of the triangles it 
intersects to determine which of the intersecting triangles represent the same primary 
edge as itself.  This automated rating process exploits the condition that there must be 
at least three primary lines, and hence triangles, for each primary edge.  Each inter-
secting triangle is not rated on the coverage of the intersection line it makes, but rather 
on the similarity of its intersection line with others. 

At the end of the intersection rating step, the list of intersecting triangles for each 
triangle will have a rating.  Also, since the rating system is based on comparing inter-



section lines, a reference to the triangle responsible for the rating is also stored.  For 
example, triangles ti tj and tk all intersect each other.  If tj is the best rated intersecting 
triangle of ti, and it was a comparison between the intersection lines lij, lik, and ljk 
which were responsible for this rating, then a reference to tk will be stored along with 
this rating for tj in ti’s intersecting triangles list. 

2.2.3.2   Triangle Grouping 
After the intersection rating step, for every triangle ti, every intersecting triangle tj will 
have a rating assigned to it.  Also, the tk responsible for each tj rating will be stored 
along with the rating.  This information can then be used to group triangles together, 
with each group representing a primary edge. 

Essentially, the grouping process is performed in two steps.  Firstly, the GSS 
(Group Scope Set) of each triangle is determined.  The GSS for a triangle ti is a list of 
triangles which contains the triangle itself (in this case ti), the GSS for tj (the best 
rated tj) and the GSS for tk (the tk for tj).  The GSS can only hold a single instance of 
any triangle.  This ensures that the recursive triangle grouping algorithm terminates.  
Not every triangle will have the same size GSS.  The size of these sets will vary de-
pending on the number of triangles used to represent each primary edge as well as the 
relationship between their intersection lines. 

The simplest case arises when a primary edge is represented by three triangles.  In 
this configuration each triangle ti refers to the other two as either its tj triangle or as its 
tk triangle.  In such a situation all three triangles have identical GSS containing the 
three triangles, see figure 4. 

 
Fig. 4. Three triangles, all with the 

same GSS. 

 
Fig. 5. Four triangles, all with the 

same GSS. 
If there are more than three triangles representing a primary edge there can be three 

broad types of set configuration.  One configuration involves four or more triangles 
that represent the same primary edge with every triangle having identical GSSs, see 
figure 5.  Another configuration involves four or more triangles that represent the 
same primary edge but with only a subset of triangles having identical GSSs, while the 
other triangle(s) have GSSs containing the subset of triangles plus additional triangles.  
This results in the real group consisting of four or more triangles although the GSSs of 
some of the triangles will only have a subset of these triangles, see figure 6.  The final 
configuration involves six or more triangles that represent the same primary edge but 
with each triangle having one of two or more GSSs.  In this configuration each group 
is solved independently and then the groups are merged as a post-process, see figure 
7.  Any combination of the above configurations can also occur together. 

 



 
Fig. 6. Four triangles, three of which 
have the same GSS.  The unreferenced 
triangle has a GSS containing all four 
triangles. 

 
Fig. 7. Six triangles forming two sepa-
rate GSSs.  The black line represents 
the group after merging. 

 
The second step in the grouping process is to use the GSSs to group the triangles 

into groups.  The grouping algorithm runs in two phases.  In phase one only triangles 
that have three triangles in their GSSs are processed.  Each triangle as well as its GSS 
members are assigned a new group.  The first phase solves either fully or partially the 
configurations shown in figures 4, 6, and 7.  At the end of this phase the majority of 
triangles will have been assigned a group.  Only triangles which have a configuration 
similar to that shown in figure 5 or unreferenced triangles like those shown in figure 6 
remain. In phase two these remaining triangles are assigned a group.  If a triangle 
refers to triangles in an existing group (figure 6), it is added to that group provided 
that its rating in this group is within some minimum threshold.  If a triangle’s GSS has 
triangles which have not yet been grouped, a new group will be created for these tri-
angles (figure 5).  It may not be possible to assign a group to every triangle for a num-
ber of reasons.  For example, the user may not have used three primary lines to high-
light a particular primary edge.  Also there may be too great an error to group some 
primary lines together either due to an error in the camera’s interior and/or exterior 
orientation parameters or an error in primary line placement by the user.  In such cases 
these triangles are marked as invalid. 

2.2.3.3   Group Merging 
The final step in the grouping process is group merging.  This is required because 
sometimes a primary edge may be represented by 6 or more triangles, which form 2 or 
more self-contained groups with no inter-group referencing (figure 7).  If the groups 
were left the way they were, there would be 2 primary edges representing the same 
building edge instead of just one.  The merging step simply compares each group to 
each other group by first comparing the highest ranked members of each group to each 
other.  If it is found that the ranking between these triangles is within some threshold, 
the algorithm goes on to test every combination of group members together to guaran-
tee that they; a) all intersect, and b) the lowest ranking observed is within some mini-
mum threshold.  If these two criteria are met, the two groups are merged. 



2.2.4   Edge Averaging 
Once all triangles have been assigned a group the primary edges must be determined 
for each group.  This is simply the weighted average of all the intersection lines be-
tween all group members. 

2.2.5   Vertex Merging 
During the edge averaging step, each primary edge will be created totally independ-
ently from all other primary edges.  In most cases this is acceptable since the majority 
of primary edges are not connected to any other primary edge.  Sometimes however 
primary edges are connected.  This is indicated in the edge highlighting step by having 
two or more primary lines share the same endpoint. 

All primary edges that are connected need to have their connected endpoints coin-
cident.  This is achieved by creating a mapping between every primary line and every 
primary edge, and also between every primary line endpoint and every primary edge 
vertex.  Once the mappings have been made, we can see if any of the primary lines 
share the same endpoints, which maps to primary edges sharing the same vertex.  
Once the vertices are identified they are set to the average of their positions. 

2.2.6   Secondary Edge Recovery 
Secondary edges are determined using the same mapping information obtained during 
the vertex merging step.  First the secondary lines endpoints are determined.  Then the 
corresponding vertices are determined for these endpoints and a new group is created 
for each secondary line using these vertices as the secondary edges endpoints.  The 
outline of the model should be complete.  See figure 8 for a screenshot of the recov-
ered primary and secondary lines of the building shown in figure 3. 

2.3   Structure Recovery 

Even though the outline of the model has been determined there is still no surface data 
associated with the model.  The model is only defined in terms of vertices and lines, 
and not in terms of surfaces and the triangles that make up each surface.  Recovering 
this structural information is broken into three steps; Surface Determination, Surface 
Aligning, and Surface Triangulation. 

 



 
Fig. 8.  Screenshot of the recovered building from figure 3.  Note that the location of the cam-
era from figure 3 is highlighted.  The projection of the 5 primary lines are clearly shown. 

2.3.1   Surface Determination 
Surfaces are determined by treating the model as a graph, with the models vertices 
representing nodes in the graph and the primary and secondary edges representing the 
edges in the graph.  Each surface corresponds to a cycle in the graph, but not every 
cycle in the graph corresponds to a surface, as illustrated in figure 9. 



 
Fig. 9. The black outlines represent cycles in the graph.  One of the cycles represents a 

surface (2-3-8-7), while the other does not. 
 
There are two main assumptions made in order to determine the surfaces from the 

vertices and edges; the model must be closed and the number of surfaces associated 
with each vertex is equal to the number of edges connected to it.  Surfaces are then 
determined by finding the shortest cycles in the graph where all the vertices are co-
planar. 

2.3.2   Surface Aligning 
Once all the models surfaces have been determined, the normal vector for each surface 
must be determined.  The first step is to determine the adjacency of the surfaces, i.e. 
which surfaces are adjacent to each other.  This is performed because surfaces are 
aligned in pairs.  Once the surface adjacencies have been determined one of the sur-
faces is flagged as the master surface, while all other surfaces are flagged as slave 
surfaces.  First all slave surfaces that are adjacent to the master are aligned, becoming 
themselves masters in the process, then all slave surfaces adjacent to these new master 
surfaces are aligned, becoming masters themselves.  The process continues recursively 
until all surfaces have been flagged as masters.  The aligning step uses the fact that 
adjacent surface pairs are attached along one of their edges.  This edge can act like a 
hinge between the two surfaces making it possible to rotate one of the surfaces about 
this hinge so that the two surfaces are co-planar.  If then the surfaces are transformed 
so that they are perpendicular with the z-axis with the hinge between them aligned 
with the x-axis, we notice that the interior of one surface is above the hinge while the 
interior of the other surface is below the hinge. 



 
 

Fig. 10. The surfaces are on opposite side of the edge vector.  Therefore the surfaces 
are correctly aligned. 

 

 
Fig. 11. The surfaces are on the same side of the edge vector.  Therefore the normal of 

the slave surface needs to be inverted. 
 
Using this fact each surface pair is aligned by transforming both the master surface 

and the slave surface so that their surface normals are aligned with the z-axis and the 
edge vector between them is aligned with the x-axis.  Then each surface is checked to 
see if its interior is above or below the hinge edge.  If both surfaces are on the same 
side of the hinge edge they are misaligned so the normal of the slave surface is 
flipped.  If the two surfaces are on opposite sides, the two surfaces are already 
aligned, see figures 10 and 11. 

Even though the models surfaces have been determined at this stage there maybe a 
serious problem with the models normals, they may all be pointing inwards instead of 
outwards.  This is due to the fact that a random surface was chosen as the master sur-
face at the beginning of the surface aligning step but it was not determined whether or 



not this normal points inwards or outwards.  Luckily this is not a serious problem 
since all we have to do to rectify the situation is flip all the surface normals. 

2.3.3   Surface Triangulation 
Once each surface has been determined and aligned, each surface must be decom-
posed into triangles.  The surfaces in the model can be either convex or concave al-
though the surfaces should not contain holes.  There are many factors that can be used 
to determine how a surface should be decomposed; minimize the number of triangles 
created, try to keep all triangles equilateral, try to keep all triangles close to equal 
area.  The algorithm used to triangulate each surface can be found in [11].  This algo-
rithm does not take any of these factors into consideration however.  First each surface 
is orientated so that it is perpendicular with the z-axis.  The z-coordinate is then ig-
nored and the triangulation process treats the surface as if it was a 2D surface. 

3   Texture Extraction 

Coming into this section, we have a geometrically accurate model of the building.  
However, there exists data contained in the image set that has not yet been used to 
increase the models realism, the buildings façades.  The SAMATS texture extraction 
process takes the façades from the images and applies them to the model.  An over-
view of this component is presented next.  For a more detailed explanation of the 
Texture Extraction component refer to [7]. 

3.1   Overview 

The aim of the texture extraction process is to produce a 3D model with photorealistic 
textures.  The texture extraction process can be broken into a number of steps.  Firstly, 
the number of images that will contribute to each triangle is determined using back-
face culling.  There can be any number of contributing images, with each image’s 
contribution first being stored in a temporary texture before they are all blended to-
gether per-pixel based on the camera-surface distance and orientation.  Occlusion 
maps are used to prevent incorrect façade data being stored with each triangle.  All 
triangles are then packed into a single large texture retaining the relative size of each 
triangle, thus creating an authalic texture map.  The texture coordinates for each trian-
gle are then set to sample the correct region of the texture map, with the texture then 
being assigned to the model.  Figure 12 shows the final packed texture for the example 
scene and figure 13 shows a screenshot of the final model created. 



 

Fig. 12.  Final packed texture of the example scene.  Textures packed large to small from top to 
bottom, left to right.  The black gaps in the middle are for the roof and floor triangles which 
have no texture information from the image set.  Also note the color clamping from the border 
of each triangle, most noticeable for the door at bottom row middle column. 

4   Conclusions 

This research shows that given sufficient geo-referenced terrestrial imagery, user input 
to the modeling process can be reduced significantly.  In SAMATS, user input is re-
quired for the edge highlighting step but since no correspondence is required this step 
could potentially be automated using edge detection and a set of heuristics to guide the 
choice between using primary lines or secondary lines. 

 



 
Fig. 13.  Screenshot of the final model 

To date, SAMATS has only been tested on synthetic images where the exact EO 
and IO parameters of the camera are known.  Achieving such precision in the real 
world would prove difficult without specialized equipment.  As such, new techniques 
for the non-expert will be required to facilitate the gathering of the geo-referenced 
images required by SAMATS in order for this system to be utilized effectively in the 
real world.  As the user friendliness and functionality of today’s GPS enabled digital 
imaging technology improves over time this constraint may no longer apply - making 
the acquisition of accurate geo-referenced imagery as easy as regular imagery. 

 
SAMATS has shown the ability to model rectangular and triangular roofed struc-

tures very well; however SAMATS does have trouble modeling certain other struc-
tures.  For example, SAMATS has no special ability to model curved surfaces accu-
rately where cylindrical column must be replaced by rectangular columns.  Another 
difficulty that can arise is SAMATS’ inability to handle partially highlighted edges 
making it difficult to model buildings in tightly confined spaces.  However, in many 
cases SAMATS is proving very effective as a 3D modeling and visualisation tool for 
the non-expert when developing applications of web-based VR LBS. 
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