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Fig. 2: Flow model at the selected intersection in Dublin with
six different traffic flows from A to B, A to C, C’ to A’, C’ to
B, B’ to C and B’ to A

is defined as the number of detected vehicles passing a point
in a period of time. The idea is to use the stochastic traffic
flows at an intersection to predict the trajectory of a vehicle
cluster. As depicted in (Fig. 2), we consider northbound flow
from A to B and A to C, southbound flow from C’ to A’ and
C’ to B, eastbound traffic from B’ to C and B’ to A. We then
employ a multivariate linear regression (MVLR) model to
predict the traffic flow from one segment to the other, for
all the six flows at the intersection. To understand the pre-
dictability of the traffic flows, we use the vehicle flow data,
collected in the interval of 5, 10 and 15 minutes (based on the
estimated travel time between any of the six points at peak
and off-peak traffic time of the day) for a period of 24 hours.
This data is used to model a generalized traffic flow model
for an intersection. We predict the vehicle density at point B
taking into consideration the vehicle density at point A, by
first using a simple linear regression model, then consider
traffic flow from consecutive days to use a MVLR model. To
compare the performance of the MVLR model with compet-
ing schemes we use random forest-based regression model
and an ARIMA model for traffic forecasting. We plot the
actual and predicted incoming vehicle density at point B, for
an interval of 5 minutes (Fig. 3a) and 10 minutes (Fig. 3b).
The R2 score for the Linear Regression model is 0.915 for a
period of 5 minutes and 0.945 for 10 minutes respectively.
This way, vehicles can be clustered in six different driving
profiles for service execution, corresponding to the above-
mentioned six flows. Table 1 depicts the r-value, p-value
and the standard error for all the six flows.

We then use the vehicle flow data for the last 7 consecu-
tive Mondays to predict a single flow, from A to B, using
MVLR for data collected at an interval of 5 (Fig. 3c), 10
(Fig. 3d) and 15 (Fig. 3e) minutes. The same days in the week
were studied to have similar patterns of mobility, within
a range of a month to two, hence data for 7 consecutive
Mondays was used. The predicted and actual vehicle flow
at point B is depicted in Fig. 3c, 3d and 3e. The R2 score
of the prediction was 0.937, 0.948 and 0.992 for 5, 10 and
15 minutes respectively. We also considered the vehicle flow
data during the period of COVID-19 lock-down, from 1st
to 8th April 2020, to analyze the pattern of flow during the
Coronavirus restrictions in Ireland. The restrictions resulted
in much less traffic density at the intersection. Fig. 3g and
Fig. 3f depict predicted vehicle flow using MVLR, consider-
ing seven consecutive days during the lock-down, with an

TABLE 1: r-value, p-value and standard error for pre-
dictability of the six flows at the intersection

Slope Intercept r value p value Standard error
A ->B 0.28 75.14 0.81 4.45 0.02
B’ ->C 2.30 -86.36 0.85 4.00 0.12
C’ ->A’ 1.03 100.14 0.97 2.45 0.02
B’ ->A’ 0.01 64.38 0.75 2.83 0.15
C’ ->B 0.38 85.02 0.87 1.38 0.02
A ->C 1.49 -27.35 0.96 1.01 0.04

TABLE 2: Traffic prediction using three different compara-
tive models using real vehicle density data at the intersec-
tion in Dublin

Technique used RMSE R-squared MAE

Multivariate Linear Regression 11.70 0.97 8.1
Random Forrest 3.80 0.99 2.96
ARIMA time series forecasting 18.57 0.69 18.07

R2 score of 0.98 and 0.987.
We also compare the prediction of MVLR with random

forest regression, as depicted in Fig. 3g and Fig. 3f, which
results in comparable prediction with an R2 score of 0.979
and 0.997. We also compared the MVLR and random forest
regression model to an ARIMA model for time-series fore-
casting. All the models are evaluated using the root mean
squared error (RMSE), R-squared error, and mean absolute
error (MAE) that are summarised for each model in Table 2.
The random forest performs marginally better than MVLR.
MVLR is a simple, linear model that predicts vehicular flows
accurately whereas random forest is an ensemble learning
model, which is more complex but generally a more accu-
rate model. We use MVLR for traffic prediction, however,
both models can be used interchangeably for traffic pre-
diction. The ARIMA model, which is a standard model for
time-series forecasting performs the worst out of the three
schemes and has an R2 score of 0.695. The logic of using the
comparative schemes and other mobility models introduced
in the literature is detailed in the supplemental pages. We
also plot the overall vehicular flow data for four consecutive
Mondays, recorded in an interval of 10 minutes (Fig. 3h) and
30 minutes (Fig. 3i). The figures depict the consistent and
predictable vehicle density data for both northbound and
southbound traffic for all four weeks.

3.2 Aggregate Communications and Computation Ca-
pacity Estimation

Due to the novelty of using moving vehicles as infrastruc-
ture, we estimate the communication capacity of a vehicular
network. Estimating the capacity of a vehicular network is
a challenging problem to solve as it depends on several
factors including the average number of simultaneous trans-
missions, link capacities, the density of vehicles, mobility in
the network, the distance between vehicles, and the trans-
mission range of the vehicles. Our previous analysis shows
that the problem of less vehicular density causing a delay in
communication is not prevalent in urban centers, and even
freeway traffic flow in some cases. We also demonstrated
that most traffic flow prediction can be done effectively.
The estimation of the capacity of the vehicular network has
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(a) LR model for traffic predic-
tion every 5 minutes
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(b) Linear regression model
for traffic prediction every 10
minutes
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(c) Multivariate linear regres-
sion model for traffic predic-
tion every 5 minutes
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(d) Multivariate linear regres-
sion model for traffic predic-
tion every 10 minutes
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(e) Multivariate linear regres-
sion model for traffic predic-
tion every 15 minutes
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(f) Multivariate linear regres-
sion model for traffic predic-
tion every 15 minutes, April
2020
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(g) Comparison of MVLR
with random forest for traffic
prediction every 10 minutes,
April 2020
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(h) Vehicle density recorded
every 10 minutes
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(i) Vehicle density recorded
every 30 minutes

Fig. 3: Traffic Prediction using real vehicle density data;
these data depict the consistent and predictable vehicle den-
sities at the intersection for all of the four weeks analyzed.

been done in great detail via customized theoretical studies
[26]–[28]. We calculate the effective capacity of the vehicular

network obtained using a cooperative scheme from Chen et
al. [28].

Theoretical Capacity: We consider the closed-form ex-
pression of effective available capacity specified by Chen
et al. [28], which uses a cooperative scheme to derive the
communication capacity for a vehicular network. The co-
operative strategy uses both Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication to increase
the capacity of vehicular networks. They built an analytical
framework to model the data dissemination process and
derive a closed form expression of the achievable capacity,
given as:

theoretical cap =
L

d
min{WI(1− exp−2ρrI ),

WI(1− exp−pρ2rI )

+
WV .c2(d− 2rI)

c2.RC + p− p exp−2pro
+ exp−pρ2ro}

(1)

where c2 = (1 − p)pρ(1 − exp−ρ2ro). In this expression
L is the length of the highway segment, d is the distance
between RSUs, WI and WV are the data rate for V2I and
V2V communication respectively, ρ is the density of vehicles
per meter, p is the proportion of vehicles with download
requests in the range [0,1], rI is the range of infrastructure
points and ro is the radio range of vehicles. RC is the sensing
range for the medium access control protocol. We calculate
the available capacity for this case, taking the value for L
as 100 km, d as 5, 10 or 15 km, WI as 20 Mb/s, WV as 2
MB/s, ρ as 0.03, 0.04, or 0.05. We take the radio ranges as
typical values for Dedicated Short-Range Communication
(DSRC) such that rI is 400 m and ro is 200 m. The value of
RC is taken as 300-400 m. For these values, the effective
available capacity lies in the range of 5-20 Mb/s with
different proportions of vehicles participating in the scheme.
The density of vehicles, the use of cooperation schemes and
the number of participating vehicles have a direct impact on
this effective available capacity.

The potential computation capacity of a vehicle cluster
is dependent on how dense the cluster is, in terms of the
number of vehicles that are optimal for placement of a
particular service request. The computation capacity is also
based on how slow the vehicle cluster is, which can be
predicted by the occupancy of a road segment, calculated
as how much time vehicles take to pass over a detector.
This time can also be derived as the sojourn time of vehicles
with the RSU. According to the study conducted by Xiao
et al. [10], predicted computation capacity is higher than
650 Gflops with a probability of 60% when the range of
vehicle clusters is set to be 5m, and throughout the day
the computation capacity is above this value. When the
range is 10m, the predicted capacity is 1800 Gflops. With
the increasing number of smart vehicles, the number of
sensors, video cameras, and computation capacity should
increase significantly in the next decade. This means that
the infrastructure will exist to collect data, process it on the
resource pool of a vehicular cluster and send it to the cloud
for further processing. However, this infrastructure cannot
be exploited unless services can be placed on it in such a
way that the overall service objectives are met.


