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ABSTRACT 

Time-domain approaches to time-scale modification are popular due to their ability to produce high quality results at 
a relatively low computational cost. Within the category of time-domain implementations quite a number of 
alternatives exist, each with their own computational requirements and associated output quality. This paper 
provides a computational and objective output quality assessment of a number of popular time-domain time-scaling 
implementations; thus providing a means for developers to identify a suitable algorithm for their application of 
interest. In addition, the issues that should be considered in developing time-domain algorithms are outlined, purely 
in the context of a waveform editing procedure. 

 

1. INTRODUCTION 

Time-scale modification of audio alters the duration of 
an audio signal while retaining the signals local 
frequency content, resulting in the overall effect of 
speeding up or slowing down the perceived playback 
rate of a recorded audio signal without affecting the 
pitch or timbre of the original signal. In other words, the 
duration of the original signal is increased or decreased 
but the perceptually important features of the original 

signal remain unchanged; for the case of speech, the 
time-scaled signal sounds as if the original speaker has 
spoken at a quicker or slower rate; for the case of music, 
the time-scaled signal sounds as if the musicians have 
played at a different tempo. 

Transforming audio to an alternative time-scale is a 
popular and useful digital audio effect that has become a 
standard tool within many audio multi-processing 
applications. Some particular uses of this effect are:  
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•  Fast browsing of speech material for digital 
libraries and distance learning [1]. 

•  Music and foreign language learning/teaching [2], 
[3], [4].  

•  Fast/slow playback for telephone answering 
machines and dictaphones [5]. 

•  Video-cinema standards conversion [6]. 

•  Audio Watermarking [7]. 

•  Accelerated aural reading for the blind [8]. 

•  Music composition [9]. 

•  Audio-video synchronization [10]. 

•  Audio data compression [11], [12]. 

•  Diagnosis of cardiac disorders [13]. 

•  Editing audio/visual recordings for allocated time-
slots within the radio/television industry [14].  

•  Voice gender conversion [15]. 

•  Text-to-speech synthesis [16], [17].  

•  Lip synchronization and voice dubbing [18]. 

•  Prosody transplantation and karaoke [18]. 

The main considerations in choosing a time-scaling 
algorithm are the quality of output produced and the 
efficiency of the algorithm. Time-scale modification 
techniques can be broadly categorised into time-domain 
and frequency domain approaches, with those operating 
in the time-domain being, in general, more efficient. For 
quasi-periodic signals, such as speech and monophonic 
music, the efficiency provided by time-domain 
algorithms does not result in a lesser quality output, 
making time-domain techniques the algorithms of 
choice within predominantly speech processing 
applications, or when other quasi-periodic signals are 
being processed. Within the category of time-domain 
techniques, a variety of implementations exist; however 
a comparison of these approaches in terms of 
computational requirements and output quality has not 
yet been provided, making it difficult for developers to 
choose the most appropriate algorithm for their 
application of interest.  

Time-domain implementations operate by 
discarding/repeating suitable segments of the input; this 
process requires the use of a synchronization procedure, 
which is generally the most significant drain on 

processing resources. The central contribution of this 
paper is the provision of a computational load and 
output quality comparison of a number of commonly 
used synchronization procedures, thus allowing 
developers readily identify the synchronization 
procedure most suitable for their requirements.  

A previous tutorial article on time-domain time-scaling 
[19] presents the topic within the context of a 
frequency-domain analysis. In a second contribution, 
this paper presents an overview entirely within the 
framework of a less complex waveform editing 
procedure. This approach leads to an intuitively 
appealing discussion on the principal issues involved, 
resulting in an incisive understanding of the effects that 
the various parameters associated with time-domain 
techniques have. 

This paper is organized as follows: section 2 provides a 
brief overview of time-domain implementations and the 
issues arising from their implementation; section 3 takes 
a closer look at the popular synchronized overlap-add 
(SOLA) algorithm [20] and the effect the choice of 
parameters within SOLA based implementations have; 
in section 4 a number of alternative synchronization 
procedures are described together with comprehensive 
analysis of their computational requirements; section 5 
presents a summary of the computational requirements 
of each synchronization procedure within a SOLA 
based implementation; section 6 describes a number of 
objective output quality measures and presents the 
results of these measures as they were applied to each 
synchronization procedure; sections 7 and 8 provide a 
discussion of results and conclusion, respectively.  

2. OVERVIEW 

In the earliest digital implementations, e.g. [21], the 
input is first segmented into non-overlapping frames 
(typically 20-30ms in duration) and appropriate frames 
are then discarded/repeated in order to achieve the 
desired time-scaling. Similar electro-mechanical 
approaches are described in [22] and [23].  This 
approach is commonly referred to as ‘cut and splice’ 
and its concept is illustrated in figure 1, where (a) 
represents the audio input that has been segmented into 
non-overlapping frames; (b) represents a 50% time-
scale compressed version of the input; and (c) represents 
a 133% time-scale expanded version of the input. In 
general, to achieve the desired time-scale 
expansion/compression, frames labelled round(m/|1-α|) 
are repeated/discarded, where m is a set of consecutive 
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integers and α is the desired time-scaling factor e.g. α = 
2 corresponds to a 200% time-scale expansion and  α = 
0.33 corresponds to a 33% time-scale compression. 

1 111098765432 12

1 3

3321

11975

76654 10998 121211

Representation of the original waveform with successive frames
appropriately labelled.

Original waveform time-scale compressed to 50% of the original duration.
Every second frame is discarded.

Original waveform time-scale expanded to 133% of the original duration.
Every third frame is repeated.

(a)

(b)

(c)

  

Figure 1 ‘Cut and splice’ time-scale compression and 
expansion 

While the process described above is efficient and 
relatively straightforward to implement, it does, 
however, introduce artefacts into the time-scaled output. 
These artefacts are the result of discontinuities and pitch 
distortions [21], and their origins can be understood by 
considering the example shown in figure 2. As can be 
seen from the figure, the simple repetition of a frame 
can result in a discontinuity in the synthesized 
waveform together with some distortion of the pitch, 
which results in objectionable artefacts being perceived. 
One method of reducing the effects of the discontinuity 
is to gradually cross-fade segments together rather than 
simply appending synthesis frames in a hard splice 
manner [21], however this technique has a limited 
effect, since pitch distortions remain, suggesting that 
more intelligent methods of frame repetition are 
required. 

Discontinuity

Pitch Distortion

Two consecutive frames
from the input signal

The first frame is repeated
to achieve time-scale
expansion.

  

Figure 2 Artefacts arising from ‘cut and splice’ 
implementations. 

A solution to these problems is proposed in [20], 
whereby the artefacts introduced by 
discarding/repeating frames are significantly reduced by 
overlapping synthesis frames in regions of similarity. As 
an example, consider the case illustrated in figure 3, i.e. 
a re-examination of figure 2; by overlapping the 
repeating frame in a synchronous manner i.e. in a region 
where the frames are similar, the effects of 
discontinuities and pitch distortion are removed. This 
process essentially equates to discarding/repeating 
segments of the input that are integer multiples of local 
pitch periods in length. Publications previous to [20] 
also suggest a pitch synchronous approach [24], [25], 
[26] and [27]; however, the procedure described in [20] 
provides the basis for a robust implementation. 

Overlapping frames

Two consecutive frames
from the input signal

Repeated frames allowed
overlap in a synchronous
manner to remove artefacts

  

Figure 3 Synchronised overlap removes artefacts 
associated with ‘cut and splice’ methods. 

3. AN ANALYSIS OF SOLA BASED 
IMPLEMENTATIONS 

The synchronised overlap-add algorithm segments the 
input signal x into m overlapping frames, of length N 
samples, each segment being Sa samples apart. Sa is the 
analysis step size. The time-scaled output y is 
synthesized by overlapping successive frames with each 
frame a distance of Ss + km – km-1 samples apart. Ss is the 
synthesis step size, and is related to Sa by Ss = αSa, 
where α is the time-scaling factor. km is an offset that 
ensures that successive synthesis frames overlap in a 
synchronous manner. km is chosen such that 
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is a maximum for k = km, where m represents the mth 
input frame and Lk is the length of the overlapping 
region i.e.  
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     Lk = N – Ss + km-1 – k                                              (1b)  
k is in the range kmin ≤  k ≤ kmax.  
Rm(k) is a correlation function which ensures that 
successive synthesis frames overlap at the ‘best’ 
location i.e. that location where the overlapping frames 
are most similar. Having located the ‘best’ position at 
which to overlap, the overlapping regions of the frames 
are weighted prior to combination. This is generally 
achieved using a linear or raised-cosine cross-fading 
function. The output is then given by  
 

y(mSs + km + j) := (1– f(j))y(mSs + km + j) + f(j)x(mSa + 
j),0 ≤  j ≤ Lk – 1                       (2a) 

   y(mSs + km +  j) = x(mSa +  j), Lk  ≤  j ≤ N – 1         (2b) 
 
where := in equation (2a) means ‘becomes equal to’ and 
f(j) is a weighting function such that 0 ≤  f(j) ≤ 1. 
A linear weighting function can be expressed as 
 
     f(j) = 0, j < 0                                                          (3a) 
     f(j) = j / (Lk – 1), 0 ≤ j ≤ Lk – 1                              (3b) 

     f(j) = 1, j > Lk – 1                                                    (3c) 

3.1. Choice of SOLA Parameters 

In early implementations, typically, N is fixed at 30ms 
for speech and 40ms for music, Sa is N/2, kmin is –N/2 
and kmax is N/2. However, the use of fixed parameters 
can lead to inefficiency and in some cases result in a 
poor quality output [5], [28]. Many alternative values 
for SOLA’s parameters are suggested, for example in 
[29], [30] and [10], however the motivation behind the 
choice of these parameters is unclear. An understanding 
of the effects of the various parameters is obtained 
through an examination of some particular situations. 
First consider the case where a perfectly periodic signal, 
of period P, is being time-scaled and two frames of the 
input are being overlapped. In figure 4(a) if the 
synthesis frames overlap is allowed vary from P to 1, 
the correlation function, graphed to the right of the 
overlapping frames, produces a single maximum, 
corresponding to the overlapping region of maximal 
similarity. Allowing frames overlap in the range P to 1 
ensures that a maximum correlation will occur, 
however, consider the case of figure 4(b); if these 
frames are allowed overlap from P to 1 an unsuitable 
overlap may be returned due to ‘ambiguous’ maxima 
being returned by the correlation function, as shown in 
the figure. In general, for perfectly periodic signals, to 
remove the risk of ambiguous results being returned the 
overlap should be allowed vary from 2P to P, as 

demonstrated in figure 4(c). It should be noted, 
however, that k is still in the range 0 ≤  k ≤ P.  

Typically the voiced/quasi-periodic regions of a speech 
signal have a waveform similar to that of figure 4 (a) 
and this constraint can be somewhat relaxed since 
potential ambiguities generally arise in the ‘lower 
amplitude’ section of a period of the waveform. It 
should also be noted that the pitch of an audio signal 
changes frequently and that P should be chosen so as to 
equate to the longest likely pitch period of the signal 
being analysed (typically 10ms). For these reasons, 
allowing the synthesis overlap to vary from 3P/2 to P/2 
will produce adequate results for speech signals.  

In order to allow the synthesis overlaps vary from 2P to 
P (or 3P/2 to P/2) the difference between kmax and kmin 
should be set equal to P i.e.  

   kmax–kmin=P                                                                (4) 

If kmin is set to zero then kmax becomes P.  

The next constraint is to ensure the initial synthesis 
overlap is 2P (or 3P/2 for a more efficient and generally 
adequate implementation). For convenience the initial 
synthesis overlap is labelled Lmax. The length of Lmax is 
also constrained by equation (1b) when k is set to its 
minimum i.e. 0, therefore  

   Lmax=N–Ss+km-1                                                          (5) 

If the output, y, is truncated to mSs + N samples after 
each iteration then Lmax becomes independent of the 
previous synthesis offset and is given by 

   Lmax=N–Ss                                                                                                      (6) 

Truncating the output also has the effect of altering 
equation (1b), which becomes 

    Lk=N–Ss–k                                                                (7) 

Since Ss is constrained to be αSa, there is only one 
‘unknown’ parameter, i.e. Sa, and an analysis similar to 
that given in [31] is now performed in order to 
determine a suitable setting for Sa. 
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k

Rm(k)

0 P

1

k

Rm(k)

0 P

1

P P

P

Ambiguous Maxima

Unambiguous
Maximum

k

Rm(k)

0 P

1

P

Maximum
(a)

(b)

(c)

Frames allowed overlap from P to 1.
Unambiguous maximum returned
from correlation function.

Frames allowed overlap from P to 1.
Ambiguous maximums returned
from correlation function.
Potential for incorrect overlap being
chosen.

Frames allowed overlap from
2P to P.
Ambiguity problem resolved.

  

Figure 4 Scenarios involving overlapping synthesis 
frames 

From the description of SOLA given at the start of 
section 3, the distance between successive synthesis 
frames is given by Ss+km–km-1. The length of the 
segment discarded/repeated during an iteration of the 
algorithm is then given by |Sa – (Ss+km–km-1)|. Consider 
the case where km-1 = kmax = P and km = kmin = 0 i.e. 
maximum overlap; then a segment of length |Sa – (Ss – 
P)| is discarded/repeated during the overlap-add process. 
For high quality time-scale modification the 
discarded/repeated segment should be short enough to 
ensure quasi-stationarity during voiced regions, so 

    |Sa–(Ss–P)|≤Lstat                                                                                       (8) 

where Lstat is the duration over which the input is quasi-
stationary. Since Ss = αSa  

   |(1 – α)Sa+ P| ≤ Lstat                             (9) 

Also, |(1 – α)Sa+ P| is a maximum when α < 1, 
therefore equation (9) should be satisfied when α < 1. 
Since 

    |(1–α)Sa+P|=(1–α)Sa+P when α<1                      (10) 

then 

     α−
−≤

1
PLS stat

a
    

for α < 1                           (11) 

Now consider the case when km-1 = kmin = 0 and km = kmax 
= P i.e. minimum overlap; then a segment of length |(1 
– α)Sa– P| is discarded/repeated. As in the case 
described above, the discarded/repeated segment should 
be short enough to ensure quasi-stationarity during 
voiced regions, so 

|(1–α)Sa–P|≤Lstat                                                                                     (12) 

|(1 – α)Sa– P| is a maximum when α > 1, therefore 
equation (12) should be satisfied when α > 1. Since 

    |(1–α)Sa–P|=P–(1–α)Sa when α>1                       (13) 

then 

    1−
−

≤
α

PL
S stat

a
    

for α >1
 

                         (14)
 

To achieve high quality time-scale modification 
equations (11) and (14) must simply be satisfied, 
however, the number of iterations that are executed is 
inversely proportional to Sa, therefore Sa should be 
maximised for the purpose of computational efficiency 
giving 

      |1| α−
−

=
PL

S stat
a

   
for all α                                  (15)

 

And since N = Lmax + αSa, from (6), 

       









−
−

+=
|1|max α

α
PL

LN stat

 
for all α               (16)

 

A quasi-stationary segment is a segment in which the 
frequency content is approximately constant throughout 
the entire duration of the segment. The duration of 
stationary segments within an audio input is constantly 
changing for most naturally occurring sounds. The 
choice of Lstat within the SOLA based implementation 
described above has a significant effect on both the 
quality of output and the number of computations 
required; choosing too small a value results in possibly 
too many iterations of the synchronization procedure; 
choosing too large a value results in inappropriate 
segments being discarded/repeated. For the general 
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case, where the same parameters are being applied 
along the entire duration of an input signal, the 
maximum segment discarded/repeated is Lstat and the 
minimum is Lstat – P. To ensure the algorithm operates 
as expected Lstat cannot be less than P, since this would 
suggest that a single period of the lowest likely 
dominant frequency component could not be 
discarded/repeated. For typical speech it is found that 
setting Lstat to approximately 25ms results in a high 
quality output, although varying this parameter for a 
specific input can yield an improvement in quality.  

The above analysis has been performed on pitched 
signals, such as voiced regions of speech, leaving the 
question of how unvoiced or noise-like regions are time-
scaled somewhat unanswered. However, the 
unvoiced/noisy regions of speech can also be viewed as 
being ‘quasi-periodic’ in the sense that the perceptually 
important characteristics of noise, i.e. the power within 
bark bands [32], are effectively constant, and therefore 
repetitive, over short time segments of the input. 
Furthermore, the choice of overlap position for noisy 
signal is not as critical as for periodic segments since 
discontinuities introduced through a ‘poor’ choice of 
overlap will not generally be perceived. For the case 
where noise energy does not extend over a sufficient 
duration, i.e. transients, the method described above 
may result in the undesired repeating or discarding of 
these short time energy segments; however this problem 
can be resolved if these segments of audio are detected 
[33].  

3.2. Cross-Fading 

The final important consideration within a time-domain 
implementation is the duration over which a cross-fade 
is applied between overlapping synthesis frames. The 
purpose of the cross-fade is to smooth out 
discontinuities between synthesis frames [21]. 
Typically, a cross-fade is applied along the entire 
duration of the ‘optimal’ synthesis overlap determined 
during the search stage; however a cross-fade of this 
duration may be unnecessary and can result in 
redundant computations. Consider the case of a 
perfectly periodic signal being time-scaled and synthesis 
frames are perfectly synchronised, if no cross-fade is 
applied and synthesis frames are simply appended to 
each other at an appropriate point within the ‘optimal’ 
overlap, then no artefacts will be perceived since 
discontinuities are not introduced and the period of the 
signal remains unaltered. However, audio signals are 
typically not perfectly periodic and some level of cross-

fading is required in order to ensure that a smooth 
transition occurs between synthesis frames. The 
duration of the cross-fade required to ensure that a 
smooth transition occurs is dependent on the level of 
similarity of the synthesis frames and an ‘intelligent’ 
method of determining the cross-fade duration for each 
iteration of the SOLA algorithm could take the value of 
Rm(km) returned by the correlation function into 
consideration. However a method such as this would 
require the introduction of a threshold which can 
introduce problems of its own if the threshold is not 
adequately set (or if an alternative means for 
determining the optimal overlap position is used – see 
section 4). It has been found that fixing the duration of 
the cross-fade to between 2ms-5ms generally provides 
an adequate solution, although longer cross-fades will 
reduce the effects of discontinuities by a greater degree. 
It should also be noted that the choice of cross-fade 
(linear and raised cosine have been suggested in the 
literature) does not have a significant impact on the 
quality of the results obtained [29].  

3.3. Overlap Prediction 

Both [5] and [34] make use of ‘overlap prediction’ in 
order to reduce the number of computational operations 
required to time-scale an input signal. The basis of 
‘overlap prediction’ can be understood by considering 
the situation illustrated in figure 5; for the (m-1)th 
iteration an offset of km-1 was determined in the usual 
manner i.e. through an evaluation of the correlation 
function described by equation (1); however, in the mth 
iteration it can be seen that a common segment (the 
shaded regions) within the synthesis frames exists. 
Maximum correlation will occur for the synthesis 
overlap at which the common segments are aligned; 
therefore the synthesis frames will be overlapped at this 
position. 

Analysis: Successive frames separated
by Sa. Common area between frames
is shaded.

Synthesis: Initially frames separated by Ss-km-1.
Maximum correlation will occur when the offset
is kopt, since common analysis areas are overlapped.

(a)

(b)

P

Sa

Ss-km-1

kopt

Initial synthesis
overlap

Final synthesis
overlap

  

Figure 1 Overlap Prediction 
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It can be shown [34] that this type of situation occurs 
when  

    kmin≤km-1+Sa–Ss≤kmax                                                                         (17) 

If this condition occurs then there is no need to calculate 
the correlation function and the offset, km, can simply be 
set equal to  

    km = Sa – Ss +km-1                                                                                 (18) 

To determine the benefits of ‘predictive skipping’ the 
probability of equation (17) occurring is determined. 
For this purpose, the values derived in section 2 are 
substituted into (17)  

    0 ≤km-1 + (1-α) |1| α−
− PLstat  ≤ P                                      (19) 

For time scale compression the probability is given by: 

Probability (0 ≤ km-1 + Lstat – P) i.e. 1, since km-1 is in the 
range 0 to P and Lstat > P ,and  

Probability (P ≥ km-1 + Lstat – P) i.e. (2P – Lstat)/P if km-1 
is equally likely to be any value in the range 0 to P. 

For time scale expansion the probability is given by: 

Probability (0 ≤ km-1 – Lstat + P) i.e. (2P – Lstat)/P, if km is 
equally likely to be any value in the range 0 to P, and 

Probability (P ≥ km-1 – Lstat + P) i.e. 1, since km is in the 
range 0 to P and Lstat > P. 

From above, the probability of equation (19) being 
satisfied is 2P – Lstat for all time-scale modifications. 
Therefore, the benefit of prediction is dependent on the 
maximum length of segment that can be 
discarded/repeated during a single iteration of the 
algorithm i.e. Lstat; if Lstat is greater than or equal to 2P 
then prediction provides no additional advantage.  

3.4. Alternative Approaches 

There are a number of alternative approaches to a 
SOLA based implementation, such as [35], [36] and [5], 
which are also capable of producing a high quality 
output, however they perform the same basic operation 
of discarding/repeating suitable segments of the input 
and offer no significant advantage over the SOLA based 
implementation described above. 

One other popular time-scaling approach is the pitch 
synchronous overlap-add (PSOLA) [37] algorithm. This 
approach explicitly identifies the local pitch period of 
the input along the entire duration of the input, and then 
discards/repeats pitch periods appropriately, similar to 
SOLA based methods. For time-scaling purposes there 
is generally no benefit in using PSOLA over SOLA; 
although SOLA based implementations tend to be more 
robust and efficient since there is no requirement for 
explicit pitch period detection (although pitch detection 
is implicit within the similarity measure employed, 
since discarded/repeated segments are typically integer 
multiples of the local pitch period during voiced regions 
of speech [38]). The main advantage of PSOLA is in its 
use for pitch-scaling applications. One simplified and 
commonly used approach for pitch-scaling uses a 
process of time-scaling followed by resampling; this 
results in an altering of the formant structure of the 
pitch-scaled output which has the effect of modifying 
the timbre characteristics of the signal. By employing a 
PSOLA method for pitch-scaling, the formant structure 
of the pitch-scaled output is preserved, as explained in 
[39] and [40], resulting in a more natural sounding 
pitch-scaled output. 

4. ALTERNATIVE SYNCHRONIZATION 
PROCEDURES 

In section 3 a SOLA based implementation is outlined 
which makes use of a normalized correlation function to 
identify a suitable synthesis overlap. A number of 
computationally efficient alternatives to normalized 
correlation have been proposed in various publications. 
In this section these alternatives are summarized and a 
computational evaluation of these procedures, including 
normalized correlation, is provided. The evaluation is 
based upon the number of basic arithmetic, shift and 
compare operations each approach requires. A summary 
of this comparison is given in section 5.  

4.1. Basic Unbiased Correlation 

The normalizing denominator of equation (1) has the 
effect of reducing the magnitude of the correlation 
function when a high energy noise burst (transient), or 
any other high energy segment, exists within one of the 
synthesis frames. This normalizing process comes at a 
relatively high computational expense and the less 
complex unbiased correlation function has been used in 
[36], and is given by 
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where Lk is the length of the overlapping region as given 
by equation (7). 

4.1.1. Computational Requirements 

Correlation can be efficiently determined through the 
use of an FFT-based convolution technique [41]. This 
approach requires the following steps to be taken: 

1. Calculate the FFT of the overlapping synthesis 
segments. This involves two Lmax point real 
input FFT’s.  

2. Multiply the resulting FFT’s. This involves 
Lmax complex multiplications i.e. 4. Lmax 
multiplies and 2.Lmax additions. 

3. Calculate the inverse FFT of the result of step 
2. This involves one Lmax complex input 
inverse FFT. 

An N-point radix-2 FFT of a complex input requires 
approximately 2NLog2N real multiplications and 
3NLog2N real additions [41]. It can also be shown that 
two N-point FFT’s of two real inputs can be efficiently 
determined using one N-point complex FFT and 2N – 4 
real additions [41]. An N-point inverse FFT of a 
complex input requires approximately the same number 
of operations as an N-point FFT. In addition, the 
unbiasing denominator term of equation (20) requires 
one division per overlap i.e. P divisions.  

Having determined the correlation function, the 
maximum value of Rm(k) must be found. This requires P 
comparisons.  

4.2. Normalised Correlation 
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4.2.1. Computational Requirements 

The numerator of equation (21) can be determined in 
the same manner as described in subsection 4.1. Within 
the SOLA based implementation described in section 3, 
the correlation function is determined for a minimum 

synthesis overlap of Lmax – P to a maximum of Lmax. If 
the denominator is first determined for the minimum 
synthesis overlap, it can then be computed efficiently 
through an iterative process for successive, increasing, 
synthesis overlaps. Each summation term of the 
denominator initially requires Lmax – P multiplies and 
Lmax – P additions for the minimum overlap. For 
subsequent synthesis overlaps one addition and one 
multiplication per summation term is required, followed 
by one multiplication of the summation terms and the 
application of a square root to the resulting product. 
Also, for each of the P possible synthesis overlap 
positions one division of the denominator into the 
numerator is required. 

There are numerous methods for determining the square 
root. One common approach is the Newton-Raphson 
algorithm [42]. This approach requires one shift (to 
determine a division by 2), one addition and one 
division per iteration with an adequate result, for this 
application, generally being returned after 10 iterations.  

P comparisons are then required to determine the 
maximum of the correlation function.  

4.3. Simplified Normalised Correlation 

The simplified normalized correlation function is 
suggested for use within time-scale modification in [15] 
and is given by 
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(22)  

4.3.1. Computational Requirements 

The simplified normalization function of equation (22) 
is calculated in a similar manner to equation (21), 
however, each summation term of the denominator 
initially requires only Lmax – P additions for the 
minimum overlap. For subsequent synthesis overlaps 
only one addition per summation term is required 
together with one multiplication of the summation 
terms. 

P comparisons are required to determine the maximum.  
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4.4. AMDF 

The average magnitude difference function AMDF is 
suggested for use in [35] and is given by 
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4.4.1. Computational Requirements 

This function requires, on average, Lmax – P/2 
subtractions, Lmax – P/2 additions and 1 division for 
each synthesis overlap/offset.  

P comparisons are required to determine the minimum.  

4.5. Mean Square Difference 

Similar to AMDF, the mean square difference provides 
additional emphasis on large differences in magnitudes 
and is given by 
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4.5.1. Computational Requirements 

The mean square distance measure requires, on average, 
Lmax – P/2 subtractions Lmax – P/2 additions, Lmax – P/2 
multiplications and 1 division for each synthesis 
overlap/offset.  

P comparisons are required to determine the minimum.  

4.6. Mean Square Difference 

The envelope matching time-scale modification 
algorithm [43], [34] transforms the overlapping 
synthesis segments into one-bit functions prior to 
correlation. In [34] the following variables are defined  
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( ) ( )kjxjx k += 2,2                                                           (27) 

( ) ( )kjyjy k += 2,2                                                      (28) 

where k is the offset described in section 2. 

The similarity function given by equation (29) is then 
used to determine a suitable offset 
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where ( ) ( )00 ,2,2, kkkz xy=β  and 

( ) ( ){ }kkkk LjforjxjxjA <<−=−= 0,11: ,2,2 .  

Therefore, Ak is the set of locations of the zero crossing 
points in x2,k. Also, Mk is the cardinality of Ak i.e. the 
number of zero crossings in x2,k. 

( ) ( ){ }kkkk LjforjyjyjB <<−=−= 0,11: ,2,2 .  

Therefore, Bk is the set of locations of the zero crossing 
points in y2,k. Also, Nk is the cardinality of Bk i.e. the 
number of zero crossings in y2,k. 

rk is the number of common zero crossings in x2,k and 
y2,k i.e. the cardinality of Ak ∩ Bk. 

kkk BAC ⊕= , where ⊕  is the Exclusive OR operator 

Equation (29) should be calculated for each offset, k, in 
the range kmin to kmin, which still represents a significant 
number of computations [34]. However, it is shown in 
[34] that equation (29) need only be evaluated for a 
smaller subset of all possible offsets, Ko, where   
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where Ak and Bk are defined above and are also 
represented by 

{ }
kMkkkkk aaaaA ,3,2,1, ......,,,=  

{ }
kNkkkkk bbbbB ,3,2,1, ......,,,=  
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It should be noted that in [34] a value p is also defined, 
however within the implementation described in section 
2 this parameter does not need to be considered.  

Given that Ko = {k1, k2, k3, ….., kQ+1}, it is also shown in 
[34] that Rm(ki+1) can be found iteratively from   
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where ( ) ( )
∑ =

−= k i

i

N

j
jkg

k 1
,1ξ and ( )jkg i , is the location of jki

b , in the 
set jki

C , . 

Equation (31) is significantly simpler than equation (29) 
and equation (29) needs only be evaluated for k1 and all 
other elements of Ko can be found iteratively and 
efficiently from equation (31). 

4.6.1. Computational Requirements 

The steps involved in the implementation of the EM-
TSM algorithm can be summarised as follows: 

1. Determine the envelope function of both of the 
synthesis frames.  

2. Determine the set K0 that is defined in [34] and 
described as being: 

a) ‘any lag k such that there is at least 
one common crossing point between  
x2,k and y2,k’. 

b) ‘any k such that y2,k-1 has a zero-
crossing point which disappears in 
y2,k’. 

c) ‘any k such that x2,k-1 has a zero-
crossing point that disappears in x2,k’. 

d) kmin and kmax. 
3. For the first k in the set K0  i.e. k1, determine 

R(k) using equation (29)  
4. For the remaining k in K0 determine R(k) using 

equation (31). 
5. Find the value of k for which R(k) is a 

maximum. 
 
The computations required for each step is now 
expanded: 
Step 1:  

Lmax comparisons for each frame. Ak and Bk can 
also found in parallel. 
Step2:  

a) Approximately ZCavg(Lmax – P/2) 
comparisons, where ZCavg is the average 

number of zero crossings per sample. Ck and 
g(k,j) can also be determined in parallel. 
b) 1 comparison for each overlap to determine 
if bk-1,1 = 1 i.e.  P comparisons. 
c) 1 comparison for each overlap to see if 

1,1 1 −− =
− kMk La

k
 

d) No operations are required to find kmin and 
kmax. 

Step 3:  
Equation (29) requires the following 

operations: 
1 addition and 1 subtraction to determine 
Mk+Nk and Mk+Nk – 2rk.. 

1 comparison to determine each ( ) kk NM +−1 . 

Mk+Nk – 2rk comparisons to determine ( ) 11 +− j . 
Each comparison is followed by an addition or 
subtraction. 
1 addition of the terms within brackets. 
1 shift to calculate the multiply by 2. 
1 comparison to determine βz,k = x2,k[0]y2,k[0].  
1 subtraction to determine Lk, since Lk is given 
by Lmax – k. 
1 division by Lk. 

Step 4:  
Equation (31) requires the following operations 

to be performed: 
1 multiplication to determine LkiR(ki). 
1 comparison to determine 

ikz ,β . 
1 shift is required for the multiply by 2.  

2 additions to determine 1++
ikik

NM . 
1 compare is required to determine 

1)1( ++− ikik NM
. 

2 subtractions to determine ( )iik kkL
i

−− +1 . 
1 multiplication to determine 

( )( )1
,,1 )1(2 ++

+ −+− ikik

iii

NM
kzkkzii kk βξβ . 

1 addition to sum LHS and RHS. 
1 division by ( )iik kkL

i
−− +1 . 

g(k,j) can be calculated during step 2 (a) since 
the location of bk,j in the set Ck can be 
determined at that time.  
One iteration in the calculation of 

ikξ  requires 
one comparison to determine whether an 
addition or subtraction is required, followed by 
an addition or subtraction. On average ZCavg 
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(Lmax –P/2) iterations are required to determine 
each 

ikξ . 
Step 5:  

Requires Q+1 comparisons, where Q+1 is the 
cardinality of Ko. 
 
On average Mk and Nk are approximately ZCavg(Lmax – 
P/2) and rk is approximately ZCcommon,avg(Lmax – P/2), 
where ZCcommon,avg is the average number of common 
zero crossings per sample. 

4.7. MEM-TSM 

In [43] a number of refinements to the EM-TSM 
synchronization procedure are proposed. Having 
obtained the envelope matching function, the offsets 
that correspond to the M largest magnitudes of the EMF, 
given by {kc,1, kc,2, kc,3,...., kc,M}, are re-evaluated using 
the following decimated normalized correlation function 
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The offset km is chosen such that Rm,2(k) is a maximum 
for k =  km where k is an element of {kc,1, kc,2, kc,3,...., 
kc,M}. By using the multiple candidate re-examination 
procedure described above, the quality of the output is 
improved upon over the EM-TSM implementation [43]. 

The efficiency of the EM-TSM approach is governed by 
the number of zero-crossings in the overlapping regions 
of the synthesis frames. In [43] it is noted that high 
frequency components and noise introduce many zero-
crossings, thus increasing the computational 
requirements of the approach, yet it is the low frequency 
components that are most important in obtaining a 
‘good’ synthesis overlap. One method used in [43] of 
reducing the number of computations within an EM-
TSM implementation is to apply the following rule prior 
to determining Rm(k); if the distance between two 
adjacent zero-crossing points in Ak or Bk is less than a 
pre-defined threshold, T1, the pair is removed from Ak or 
Bk, respectively. 

4.7.1. Computational Requirements 

The function of equation (32) is a ‘decimated’ version 
of the normalized correlation function. Since the 

decimated correlation function is only determined for a 
relatively small number of synthesis overlaps, it is no 
longer computationally efficient to employ an FFT in 
determining the numerator. Calculating the numerator, 
on average, requires (Lmax – P/2)/q multiplies and (Lmax 
– P/2)/q additions for each candidate offset that is being 
re-examined.  

The denominator of the decimated function is found in a 
similar manner to that described in subsection 4.3, 
however the number of operations required to determine 
each summation term is proportional to the maximum 
overlap associated with each of the candidate offsets i.e. 
the overlap associated with the minimum candidate 
offset. An estimate of the number of operations required 
to determine the summation terms for all candidate 
offsets is then Lc,max/q multiplies and Lc,max/q additions, 
where Lc,max is the overlap associated with the smallest 
candidate offset. Assuming that the occurrence of a 
candidate offset is equally likely to occur anywhere in 
the range 0 to P, and assuming M << Lmax, where M is 
the number of candidates being re-examined, it can be 
statistically shown that Lc,max is approximately given by 
P(M/(M+1))+ Lmax – P. Having determined both 
summation terms for each candidate offset, the 
summation terms are multiplied and the square root of 
their product is determined. The square root can be 
determined as in subsection 4.3. Finally the 
denominator is divided into the numerator. M 
comparisons are then required to determine the 
maximum.  

In order to reduce the number of zero-crossings the 
distance between consecutive pairs is first determined 
and then compared with the defined threshold. This 
operation requires one subtraction and one comparison 
for each pair being evaluated in each frame.  

4.8. GLS-TSM 

The global and local search approach (GLS-TSM) [44] 
consists of two stages. The first stage is a preliminary 
global search, and the second is a refined local search. 
The global search consists of a search for an offset, 
kglobalmin, where kglobalmin is chosen such that the 
difference in the number of zero-crossing points 
between synthesis frames, in their common overlapping 
region, is minimized. kglobalmin lies between kmin and kmax. 

Having found kglobalmin the next step is to locate the zero 
crossing with the maximum slope in the ‘output’ 
synthesis frame within the overlapping region identified 
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during the global search i.e. y(mSs + kglobalmin + j) for 0 ≤ 
j ≤ kmax - kglobalmin. The zero crossing with the maximum 
slope, labeled Zmax slope, occurs at y(mSs + kmax slope) and is 
chosen since ‘It is observed that a wrong match at a zero 
cross point with a greater slope has a more pronounced 
effect than a zero cross point with a smaller slope’, [44].  

In [44], an eleven dimensional feature vector, f, is 
defined which is used to represent local information in 
the region of a zero crossing. If a zero crossing occurs 
between x(i) and x(i+1), the eleven feature vector 
components are given by:  

 f1 = x(i) – x(i+1)  f7 = |x(i+3)|  

 f2 = |x(i)|   f8=(x(i-1)– x(i+1))/2 

 f3 = |x(i+1)|  f9 = |x(i-1)|  

 f4 = (x(i) – x(i+2))/2 f10=(x(i-2)– (i+1))/3  

 f5 = |x(i+2)|  f11 = |x(i-1)|  

 f6 = (x(i) – x(i+3))/3   

The feature vector of Zmax_slope is compared to the feature 
vectors of zero crossings in the corresponding locality 
of Zmax_slope on the ‘input’ synthesis frame i.e. x(mSa + j) 
for kmax_slope - k1 ≤ j ≤ kmax_slope + k2. It is found that 
choosing k1 and k2 such that approximately 10 zero 
crossings candidates exist results in a good quality 
output. The feature vectors are compared using the 
following distance measure 

( ) ( )∑ =
−= 11

1 ,11
1

j iyxi jfjfd
                                       

(33)
 

where, fx(j) is the jth feature vector component of 
Zmax_slope, fy,i(j) is the jth feature vector component of the 
ith candidate zero crossing. 

The candidate zero crossing that produces the smallest 
distance measure is then chosen so as to align with 
Zmax_slope i.e. given that the zero crossing that produces 
the smallest distance measure occurs at x(mSa + 
kbest_candidate) then  

km=kmax_slope–kbest_candidate                                                                      (34) 

where km is the ‘optimum’ offset described in section 2.  

4.8.1. Computational Requirements 

The steps involved within the GLS-TSM algorithm can 
be summarized as follows: 
 
Step 1: For each overlap position determine the number 

of zero-crossings in each of the synthesis 
frames. 
The most efficient way to determine this is to 
first find the zero-crossings in the minimum 
overlap region and iteratively determine the 
zero-crossings for the remaining overlap 
positions. This initially requires Lmax – P 
compares and one addition for each zero 
crossing in the minimum overlap region. Then 
for each of the remaining P possible overlaps a 
comparison is required with an addition 
required if a zero-crossing is detected.  

Step 2: Determine the overlap position that provides the 
minimum difference between the number of 
zero crossings in the analysis frame and the 
number of zero crossings in the synthesis 
frames. This provides the global search 
overlap. 
Using the data determined in Step 1, this 
procedure then requires P comparisons.  

Step 3: Find the slope at each zero crossing of the 
analysis frame within the global search 
overlap. 
For each zero crossing a subtraction is required 
followed by a division, to determine the slope. 
Assuming that the average global search 
overlap is P/2, then (P/2).ZCavg subtractions 
and (P/2). ZCavg divisions are required. 

Step 4: Find the zero crossing that corresponds to the 
maximum of all the slopes calculated. This zero 
crossing then becomes the reference zero 
crossing point. 
Finding the maximum slope requires 
(P/2).ZCavg comparisons. 

Step 5: Compute the feature vector for the reference 
zero crossing. 

Calculating an 11 point feature vector requires: 
5 subtractions, 2 shifts (for two divide by 2 
operations) and 2 divisions. 

Step 6: Compute the synthesis zero-crossings in the 
neighbourhood of the reference zero crossings. 
Use the U  nearest neighbours. 
This requires U x step 5 operations. 
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Step 7: Find the ‘distance measure’ between the 
reference feature vector and the candidate 
synthesis feature vectors. 
Calculating one distance measure requires: 
11 subtractions, 11 additions, 1 division. 

Step 8: Find the minimum ‘distance measure’ and use 
the corresponding synthesis zero crossing 
point and reference to determine the final 
overlap position. 
This requires U comparisons. 

4.9. Peak Alignment 

A peak alignment approach has been described in [31] 
and [15]. Here a method is briefly outlined that allows a 
peak alignment approach be applied to the overlap-add 
procedure described in section 2.  

The first step is to determine the maximum, i.e a peak, 
in x(mSa + j) for 1 ≤ j≤ P. Given that a maximum occurs 
at j = jmax,x, the next step is to determine the maximum in 
y(mSs – km-1 + jmax,x +j) for 1 ≤ j≤ P. Given that a 
maximum occurs at j = jmax,y 

    km = jmax,y – jmax,x                                                     (35) 

It should be noted that Lmax must be 2P for the peak 
alignment process to operate as expected.  

4.9.1. Computational Requirements 

This approach requires P comparisons to determine the 
peak/maximum in each frame. Calculating mSs – km-1 + 
jmax,x  and km requires one addition and two subtractions. 

5. COMPUATIONAL COMPARISON 
SUMMARY 

 Compares Additions 
/Subtracts Shifts Mults 

/divides Total 

Peak 
Alignment 2.P 3 0 0 1.00 

GLS-TSM 

2.Lmax + 
ZCavg.( 
P/2) + 
U+P 

2.Lmax.ZCavg + 
(P/2). ZCavg + 

U.27 + 5 

(1+ 
U).2 

(1+ U).3 + 
(P/2). 
ZCavg 

4.04 

EM-TSM 

3.Q + 2.P 
+ 3 + 

2.Lmax  + 
2.(ZCavg – 
ZCcommon,avg

)(Lmax – 
P/2)  + 
ZCavg.( 
Lmax – 

P/2)(Q+1) 

4 + 5.Q + 
Q.ZCavg.(Lmax 

– P/2)+ 
2.(ZCavg – 

ZCcommon,avg)(
Lmax – P/2)   

Q+1 3.Q+1 43.58 

MEM-TSM 
Reduced zero 

crossings 
ZCavg.Lmax ZCavg.Lmax 0 0 18.12 

MEM-TSM 
Candidate re-
examination

M 

(P(M/(M+1))
+ Lmax – P)/q 
+ M(Lmax – 
P/2)/q + 

10.M 

10.M 

11.M + 
(P(M/(M+
1))+ Lmax –

P)/q + 
M.(Lmax – 

P/2)/q 

21.67 

Unbiased 
Correlation P 

2.Lmax 
(3.Log2(2.Lma

x) –1) – 4 
0 

4.Lmax.Log
2(2.Lmax) 

+P 
91.63 

Simplified 
Normalized 
Correlation 

P 
2.Lmax(3.Log2

(2.Lmax) –1) – 
4+ 2.Lmax 

0 
4.Lmax.Log
2 (2.Lmax) 

+2.P 
94.11 

Normalised 
Correlation P 

2.Lmax(3.Log2
(2.Lmax) –1) –
4+ 2.Lmax + 

10.P 

10.P 

4.Lmax.Log
2 (2.Lmax) 

+12.P+2.L
max 

111.01

AMDF P 2.P. (Lmax – 
P/2) 0 P 239.50

Mean Square 
Difference P 2.P. (Lmax – 

P/2) 0 P.( Lmax – 
P/2) + P 358.75

Table 1 A Comparison of Synchronization 
Procedures 

The column furthermost to the right of the table above 
shows a normalized comparison of the number of 
operations each approach requires. The comparison 
assumes that each operation requires the same duration 
to process and uses the parameter values given below. 
The totals are normalized by dividing the total by the 
number of operations required by a peak alignment 
approach. The totals for the two MEM-TSM rows 
(shown shaded) also take the number of operations 
required by EM-TSM, after the zero crossing reduction 
has been applied, into consideration. 

For a sampling rate of 16kHz the following values 
typically apply: 

Maximum period, P = 160 samples; corresponding to 
10ms. 

The initial (and maximum) synthesis overlap, Lmax = 
320; corresponding to 20ms.  

Average zero crossings per sample, ZCavg = 0.19. 

Average common zero crossings, between synthesis 
frames, per sample, ZCcommon,avg = 0.068. 

The number of re-examined candidates in GLS-TSM, U 
= 10. 

The number of re-examined candidates in EM-TSM, M 
= 8. 

Average number of elements in K0, Q = 128. 
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The MEM-TSM correlation decimation factor, q = 5. 

The figures shown for the two MEM-TSM rows were 
obtained when the T1 parameter is set to 6 samples, for 
the application of the zero crossing reduction procedure. 
After the zero crossing reduction procedure is applied 
ZCavg becomes 0.072, ZCcommon,avg  becomes 0.0066 and 
Q becomes 99.2. The parameters Q, ZCavg and 
ZCcommon,avg  were determined from the examination of 
250 test signals obtained from the TIMIT speech corpus 
[45]. 

It should be noted that a further reduction in the 
computational complexity of synchronization 
procedures which employ the FFT could also be 
achieved through the use of techniques such as FFT 
pruning [46] or the Goertzel technique [47]. In addition, 
as noted in [34], synchronizing high frequency content 
of a signal is not as important as the low frequency data, 
therefore all of the synchronization procedures are 
likely to produce high quality results when applied to 
down sampled data. Such an approach is also suggested 
in [36] whereby the input (sampled at 48 kHz) was first 
down sampled by a factor of 6, thus providing 
significant computational reduction. 

6. OBJECTIVE OUTPUT EVALUATION 

The output quality of a time-domain time-scale 
modification algorithm is primarily dependent on how 
similar the overlapping segments of the synthesis 
frames are; hence the reason for making use of 
similarity measures in finding the optimum overlap. The 
same similarity measures can be (and have been in [34]) 
used to provide an objective evaluation of the quality of 
each synchronization procedure; however some 
difficulty lies in determining which similarity measure 
is perceptually ‘best’. For the purpose of the evaluation 
presented here, it is assumed that the similarity 
measures are equally valid and are therefore used to 
assess the quality of each approach; however, in an 
attempt to determine which synchronization procedure 
is ‘best’, the results obtained from each output quality 
assessment measure are statistically normalized and the 
‘best’ synchronization procedure is deemed to be that 
procedure that is associated with the maximum of the 
sum of the normalized measures. 

In addition to the time-domain similarity measures 
presented earlier (unbiased correlation, normalized 
correlation, AMDF and mean-square difference) a 
frequency-domain based similarity measure is also used, 

which is essentially the mean square difference of the 
magnitude spectra of the overlapping segments. A 
similar measure is used in [48], which was derived from 
[49]. It should be noted that in [49] a time-scale 
modification approach is presented that iteratively 
attempts to minimize a similar measure though 
manipulation of the input signal’s short-time Fourier 
transform. It is also worth noting that the motivation 
behind the development of SOLA [20] was to reduce 
the number of iterations required to implement the 
iterative procedure of [49]. 

Over 250 test signals obtained from the TIMIT speech 
corpus were used during the objective evaluation. Each 
test signal is time-scaled by a factor of 2 using each of 
the synchronization procedures described in section 3. It 
should be noted that any time-scale factor could be 
used; however a time-scale factor close to one requires a 
relatively small number of iterations, on the other hand 
a very large time-scale factor would return very similar 
results from successive iterations of the algorithm. For 
each iteration of each algorithm, the similarity measures 
given by equations (36-39) are applied. 
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Having accumulated the measures for each 
synchronization procedure (and a random offset), the 
measures are then normalized using a standard score 
approach [50] e.g. given that the accumulation of 
measure1 is given by the set measure1,acc = {m1, m2, …, 
m9}, where mw is the accumulation of measure1 when 
applied to synchronization procedure number w, then 
the normalized set is given by  
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where stdDev is the standard deviation. 

In addition, the sign of the normalized data set is 
inverted for measure3 and measure4 to take account of 
the fact that a minimization of these functions is desired. 

Table 2 shows the results of the objective output quality 
assessment, with the furthermost right column showing 
the sum of the normalized measures for each of the 
synchronization procedures.  

 
 Measure1 Measure2 Measure3 Measure4 Total 

Mean 
Square 

Difference 
0.83 0.57 0.55 0.59 2.55 

AMDF 0.55 0.52 0.73 0.70 2.50 
Normalized 
Correlation 0.44 0.47 0.80 0.63 2.35 

Unbiased 
Correlation 0.71 0.42 0.35 0.45 1.93 

Simplified 
Normalized 
Correlation 

0.36 0.79 0.25 0.35 1.76 

MEM-TSM 
(M=20, q = 

5) 
0.45 0.36 0.39 0.37 1.58 

EM-TSM 0.26 0.22 0.29 0.20 0.98 
Peak 

alignment -0.33 -0.32 -0.27 -0.20 -1.12 

GLS-TSM -0.83 -0.42 -0.50 -0.46 -2.22 
Random 

Offset -2.46 -2.62 -2.60 -2.64 -10.33

Table 2 An Objective Output Quality Comparison 

In two separate tests the objective measures were 
applied to the test signals with additional noise injected 
into the test signals and only those frames considered 
voiced (since appropriate overlapping of voiced regions 
of speech is, in general, perceptually more important 
than that of unvoiced or silent regions). The results of 
both additional tests are closely approximated by those 
presented in table 2.  

7. DISCUSSION 

The objective output quality assessment given in section 
6 is useful in that it provides a quantifiable comparison 
of the various approaches, but it is important to view 
these results with some knowledge of a subjective 
evaluation. It should be noted that in general each of the 

approaches outlined in section 3 produce a reasonably 
high quality output and when ‘inexperienced’ subjects 
are presented with a comparison between any of the 
approaches they find it difficult to differentiate between 
them. It is only when ‘experienced’ subjects, i.e. 
subjects who are working in the audio processing realm, 
evaluate the various approaches that the differences 
become more apparent. For a small number of tests and 
‘experienced’ subjects (in a quite office environment), it 
was found that the results of the objective comparison 
relate to that of a subjective comparison quite closely; 
however, extensive listening tests would be required in 
order to validate the objective assessment presented 
here with subjective tests with any statistical accuracy. 

The synchronization procedures presented in section 4 
can be classified into two groups i.e. similarity measures 
(correlation, AMDF, MSD, EM-TSM, MEM-TSM) and 
feature matching processes (GLS-TSM and peak 
alignment). Similarity measure processes could be 
viewed as multiple feature matching processes. From 
the results of the objective output quality assessment, 
there is a clear divide in the quality achieved between 
these groups, which can be attributed to the fact that 
only one feature is used in the synchronization process 
for GLS-TSM and peak alignment implementations, 
resulting in a higher probability of choosing incorrect or 
ambiguous features to align (for example, consider the 
ambiguous situation that would occur in figure 4 (b) or 
(c) if either feature matching process was used). There 
is also a significant difference in the results obtained for 
GLS-TSM and peak alignment, with results suggesting 
that the peak alignment process is superior to the zero-
crossing feature used in GLS-TSM. Intuitively this 
makes sense when it is considered that there are, in 
general, many more candidate zero-crossings in a 
segment of a speech signal than ‘maximum’ peaks, 
therefore the probability of an ‘incorrect’ match is 
increased when a zero-crossing feature is used.  

The time-domain approaches described in this paper 
time-scale all regions of the input signal by same 
amount; this can result in artefacts being introduced into 
the time-scaled output, e.g. transient skipping or 
repetition [33] and a ‘slurred’/‘drunken’ sounding 
output [51], which tends to be most problematic for 
large time-scale factors. The problem of transient 
preservation has been addressed in [33], while [52] and 
[3] have taken steps in producing a more natural 
sounding time-scaled output by applying different levels 
of time-scaling to different regions of the input signal 
e.g. in [52] it is suggested that consonants be time-



Dorran et al. Comparison of Time-Scaling Algorithms
 

AES 120th Convention, Paris, France, 2006 May 20–23 
Page 16 of 18 

scaled compressed more than vowels. In [53] and [54] 
the entire input is first segmented into ‘auditory scenes’ 
and each scene is then time-scaled individually by an 
appropriate amount, resulting in a further improvement 
in the quality of output [53]. 

Finally, it should be noted that the underlying 
requirement for high quality time-scale modification 
when time-domain approaches are applied, is the 
existence of a quasi-periodic element within the signal 
being time-scaled. This requirement is generally 
fulfilled in simple monophonic audio signals such as 
speech and monophonic music, but for more complex 
audio, such as polyphonic music, periodicity is largely 
lost and time-domain approaches prove inadequate. 
However, for small time-scaling +-15% high quality 
results can be obtained [53], [36]. This is due to the fact 
that some level of periodicity will generally exist in 
complex audio and also because small amounts of 
distortion introduced by poor synchronization of frames 
will generally not be perceived. For time-scaling 
complex audio by an amount greater than +-15%, phase 
vocoder [48], sinusoidal modeling [55] or time-
domain/subband [56], [57] approaches should be 
employed.  

8. CONCLUSION 

This paper develops a set of guidelines for the choice of 
parameters used within time-domain time-scale 
modification algorithms within the context of a 
waveform editing procedure. Both computational load 
and output quality comparisons of a number of 
commonly used synchronization procedures are 
presented. A brief outline of each synchronization 
procedure is first given in section 4, followed by a 
thorough computational load analysis that considers the 
number of basic arithmetic, shift and compare 
operations each procedure requires. An objective 
assessment of the quality produced, when each 
synchronization procedure is employed, is given in 
section 6 and a brief discussion of the comparative 
results is presented in section 7. Results of the objective 
assessment indicate that the use of a mean square 
distance function produces the highest quality output; 
however more efficient implementations are capable of 
producing a similar quality of output with a significant 
reduction in computational load. The peak alignment 
synchronization procedure is the most efficient, 
requiring approximately 1% of the operations required 
by the commonly used normalized correlation function; 

however its efficiency comes at the expense of some 
degradation in the quality of the output. 
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