
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers Audio Research Group

2006-01-01

A Comparison of Time-domain Time-scale Modification A Comparison of Time-domain Time-scale Modification

Algorithms Algorithms

David Dorran
Technological University Dublin, david.dorran@tudublin.ie

Robert Lawlor
National University of Ireland, Maynooth

Eugene Coyle
Technological University Dublin, Eugene.Coyle@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/argcon

 Part of the Other Engineering Commons

Recommended Citation Recommended Citation
Dorran, D., Lawlor, R. & Coyle E. (2006) A comparison of time-domain time-scale modification algorithms.
120th. Audio Engineering Society, Paris, France, May 20-23, 2006.

This Conference Paper is brought to you for free and open access by the Audio Research Group at ARROW@TU
Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/argcon
https://arrow.tudublin.ie/arg
https://arrow.tudublin.ie/argcon?utm_source=arrow.tudublin.ie%2Fargcon%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/315?utm_source=arrow.tudublin.ie%2Fargcon%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Audio Research Group

Articles

Dublin Institute of Technology Year

A Comparison of Time-domain

Time-scale Modification Algorithms

David Dorran∗ Robert Lawlor†

Eugene Coyle‡

∗Dublin Institute of Technology, david.dorran@dit.ie
†National University of Ireland, Maynooth
‡Dublin Institute of Technology, Eugene.Coyle@dit.ie

This paper is posted at ARROW@DIT.

http://arrow.dit.ie/argart/3

— Use Licence —

Attribution-NonCommercial-ShareAlike 1.0

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution.
You must give the original author credit.

• Non-Commercial.
You may not use this work for commercial purposes.

• Share Alike.
If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms
of this work. Any of these conditions can be waived if you get permission from
the author.

Your fair use and other rights are in no way affected by the above.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike License. To view a copy of this license, visit:

• URL (human-readable summary):
http://creativecommons.org/licenses/by-nc-sa/1.0/

• URL (legal code):
http://creativecommons.org/worldwide/uk/translated-license

Audio Engineering Society

Convention Paper
Presented at the 120th Convention

2006 May 20–23 Paris, France

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

A Comparison of Time-Domain Time-Scale
Modification Algorithms

David Dorran1, Robert Lawlor2, and Eugene Coyle3

1 Digital Audio Research Group, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
david.dorran@dit.ie

2 Department of Electronic Engineering, Nation University of Ireland, Maynooth, Co. Kildare, Ireland.
rlawlor@eeng.may.ie

3 Digital Audio Research Group, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
eugene.coyle@dit.ie

ABSTRACT

Time-domain approaches to time-scale modification are popular due to their ability to produce high quality results at
a relatively low computational cost. Within the category of time-domain implementations quite a number of
alternatives exist, each with their own computational requirements and associated output quality. This paper
provides a computational and objective output quality assessment of a number of popular time-domain time-scaling
implementations; thus providing a means for developers to identify a suitable algorithm for their application of
interest. In addition, the issues that should be considered in developing time-domain algorithms are outlined, purely
in the context of a waveform editing procedure.

1. INTRODUCTION

Time-scale modification of audio alters the duration of
an audio signal while retaining the signals local
frequency content, resulting in the overall effect of
speeding up or slowing down the perceived playback
rate of a recorded audio signal without affecting the
pitch or timbre of the original signal. In other words, the
duration of the original signal is increased or decreased
but the perceptually important features of the original

signal remain unchanged; for the case of speech, the
time-scaled signal sounds as if the original speaker has
spoken at a quicker or slower rate; for the case of music,
the time-scaled signal sounds as if the musicians have
played at a different tempo.

Transforming audio to an alternative time-scale is a
popular and useful digital audio effect that has become a
standard tool within many audio multi-processing
applications. Some particular uses of this effect are:

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 2 of 18

• Fast browsing of speech material for digital
libraries and distance learning [1].

• Music and foreign language learning/teaching [2],
[3], [4].

• Fast/slow playback for telephone answering
machines and dictaphones [5].

• Video-cinema standards conversion [6].

• Audio Watermarking [7].

• Accelerated aural reading for the blind [8].

• Music composition [9].

• Audio-video synchronization [10].

• Audio data compression [11], [12].

• Diagnosis of cardiac disorders [13].

• Editing audio/visual recordings for allocated time-
slots within the radio/television industry [14].

• Voice gender conversion [15].

• Text-to-speech synthesis [16], [17].

• Lip synchronization and voice dubbing [18].

• Prosody transplantation and karaoke [18].

The main considerations in choosing a time-scaling
algorithm are the quality of output produced and the
efficiency of the algorithm. Time-scale modification
techniques can be broadly categorised into time-domain
and frequency domain approaches, with those operating
in the time-domain being, in general, more efficient. For
quasi-periodic signals, such as speech and monophonic
music, the efficiency provided by time-domain
algorithms does not result in a lesser quality output,
making time-domain techniques the algorithms of
choice within predominantly speech processing
applications, or when other quasi-periodic signals are
being processed. Within the category of time-domain
techniques, a variety of implementations exist; however
a comparison of these approaches in terms of
computational requirements and output quality has not
yet been provided, making it difficult for developers to
choose the most appropriate algorithm for their
application of interest.

Time-domain implementations operate by
discarding/repeating suitable segments of the input; this
process requires the use of a synchronization procedure,
which is generally the most significant drain on

processing resources. The central contribution of this
paper is the provision of a computational load and
output quality comparison of a number of commonly
used synchronization procedures, thus allowing
developers readily identify the synchronization
procedure most suitable for their requirements.

A previous tutorial article on time-domain time-scaling
[19] presents the topic within the context of a
frequency-domain analysis. In a second contribution,
this paper presents an overview entirely within the
framework of a less complex waveform editing
procedure. This approach leads to an intuitively
appealing discussion on the principal issues involved,
resulting in an incisive understanding of the effects that
the various parameters associated with time-domain
techniques have.

This paper is organized as follows: section 2 provides a
brief overview of time-domain implementations and the
issues arising from their implementation; section 3 takes
a closer look at the popular synchronized overlap-add
(SOLA) algorithm [20] and the effect the choice of
parameters within SOLA based implementations have;
in section 4 a number of alternative synchronization
procedures are described together with comprehensive
analysis of their computational requirements; section 5
presents a summary of the computational requirements
of each synchronization procedure within a SOLA
based implementation; section 6 describes a number of
objective output quality measures and presents the
results of these measures as they were applied to each
synchronization procedure; sections 7 and 8 provide a
discussion of results and conclusion, respectively.

2. OVERVIEW

In the earliest digital implementations, e.g. [21], the
input is first segmented into non-overlapping frames
(typically 20-30ms in duration) and appropriate frames
are then discarded/repeated in order to achieve the
desired time-scaling. Similar electro-mechanical
approaches are described in [22] and [23]. This
approach is commonly referred to as ‘cut and splice’
and its concept is illustrated in figure 1, where (a)
represents the audio input that has been segmented into
non-overlapping frames; (b) represents a 50% time-
scale compressed version of the input; and (c) represents
a 133% time-scale expanded version of the input. In
general, to achieve the desired time-scale
expansion/compression, frames labelled round(m/|1-α|)
are repeated/discarded, where m is a set of consecutive

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 3 of 18

integers and α is the desired time-scaling factor e.g. α =
2 corresponds to a 200% time-scale expansion and α =
0.33 corresponds to a 33% time-scale compression.

1 111098765432 12

1 3

3321

11975

76654 10998 121211

Representation of the original waveform with successive frames
appropriately labelled.

Original waveform time-scale compressed to 50% of the original duration.
Every second frame is discarded.

Original waveform time-scale expanded to 133% of the original duration.
Every third frame is repeated.

(a)

(b)

(c)

Figure 1 ‘Cut and splice’ time-scale compression and
expansion

While the process described above is efficient and
relatively straightforward to implement, it does,
however, introduce artefacts into the time-scaled output.
These artefacts are the result of discontinuities and pitch
distortions [21], and their origins can be understood by
considering the example shown in figure 2. As can be
seen from the figure, the simple repetition of a frame
can result in a discontinuity in the synthesized
waveform together with some distortion of the pitch,
which results in objectionable artefacts being perceived.
One method of reducing the effects of the discontinuity
is to gradually cross-fade segments together rather than
simply appending synthesis frames in a hard splice
manner [21], however this technique has a limited
effect, since pitch distortions remain, suggesting that
more intelligent methods of frame repetition are
required.

Discontinuity

Pitch Distortion

Two consecutive frames
from the input signal

The first frame is repeated
to achieve time-scale
expansion.

Figure 2 Artefacts arising from ‘cut and splice’
implementations.

A solution to these problems is proposed in [20],
whereby the artefacts introduced by
discarding/repeating frames are significantly reduced by
overlapping synthesis frames in regions of similarity. As
an example, consider the case illustrated in figure 3, i.e.
a re-examination of figure 2; by overlapping the
repeating frame in a synchronous manner i.e. in a region
where the frames are similar, the effects of
discontinuities and pitch distortion are removed. This
process essentially equates to discarding/repeating
segments of the input that are integer multiples of local
pitch periods in length. Publications previous to [20]
also suggest a pitch synchronous approach [24], [25],
[26] and [27]; however, the procedure described in [20]
provides the basis for a robust implementation.

Overlapping frames

Two consecutive frames
from the input signal

Repeated frames allowed
overlap in a synchronous
manner to remove artefacts

Figure 3 Synchronised overlap removes artefacts
associated with ‘cut and splice’ methods.

3. AN ANALYSIS OF SOLA BASED
IMPLEMENTATIONS

The synchronised overlap-add algorithm segments the
input signal x into m overlapping frames, of length N
samples, each segment being Sa samples apart. Sa is the
analysis step size. The time-scaled output y is
synthesized by overlapping successive frames with each
frame a distance of Ss + km – km-1 samples apart. Ss is the
synthesis step size, and is related to Sa by Ss = αSa,
where α is the time-scaling factor. km is an offset that
ensures that successive synthesis frames overlap in a
synchronous manner. km is chosen such that

()
∑∑

∑

−

=

−

=

−

=

+++

+++
=

1

0

2
1

0

2

1

0

)()(

)()(

kk

k

L

j
s

L

j
a

L

j
as

m

jkmSyjmSx

jmSxjkmSy
kR

(1a)

is a maximum for k = km, where m represents the mth
input frame and Lk is the length of the overlapping
region i.e.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 4 of 18

 Lk = N – Ss + km-1 – k (1b)
k is in the range kmin ≤ k ≤ kmax.
Rm(k) is a correlation function which ensures that
successive synthesis frames overlap at the ‘best’
location i.e. that location where the overlapping frames
are most similar. Having located the ‘best’ position at
which to overlap, the overlapping regions of the frames
are weighted prior to combination. This is generally
achieved using a linear or raised-cosine cross-fading
function. The output is then given by

y(mSs + km + j) := (1– f(j))y(mSs + km + j) + f(j)x(mSa +
j),0 ≤ j ≤ Lk – 1 (2a)

 y(mSs + km + j) = x(mSa + j), Lk ≤ j ≤ N – 1 (2b)

where := in equation (2a) means ‘becomes equal to’ and
f(j) is a weighting function such that 0 ≤ f(j) ≤ 1.
A linear weighting function can be expressed as

 f(j) = 0, j < 0 (3a)
 f(j) = j / (Lk – 1), 0 ≤ j ≤ Lk – 1 (3b)

 f(j) = 1, j > Lk – 1 (3c)

3.1. Choice of SOLA Parameters

In early implementations, typically, N is fixed at 30ms
for speech and 40ms for music, Sa is N/2, kmin is –N/2
and kmax is N/2. However, the use of fixed parameters
can lead to inefficiency and in some cases result in a
poor quality output [5], [28]. Many alternative values
for SOLA’s parameters are suggested, for example in
[29], [30] and [10], however the motivation behind the
choice of these parameters is unclear. An understanding
of the effects of the various parameters is obtained
through an examination of some particular situations.
First consider the case where a perfectly periodic signal,
of period P, is being time-scaled and two frames of the
input are being overlapped. In figure 4(a) if the
synthesis frames overlap is allowed vary from P to 1,
the correlation function, graphed to the right of the
overlapping frames, produces a single maximum,
corresponding to the overlapping region of maximal
similarity. Allowing frames overlap in the range P to 1
ensures that a maximum correlation will occur,
however, consider the case of figure 4(b); if these
frames are allowed overlap from P to 1 an unsuitable
overlap may be returned due to ‘ambiguous’ maxima
being returned by the correlation function, as shown in
the figure. In general, for perfectly periodic signals, to
remove the risk of ambiguous results being returned the
overlap should be allowed vary from 2P to P, as

demonstrated in figure 4(c). It should be noted,
however, that k is still in the range 0 ≤ k ≤ P.

Typically the voiced/quasi-periodic regions of a speech
signal have a waveform similar to that of figure 4 (a)
and this constraint can be somewhat relaxed since
potential ambiguities generally arise in the ‘lower
amplitude’ section of a period of the waveform. It
should also be noted that the pitch of an audio signal
changes frequently and that P should be chosen so as to
equate to the longest likely pitch period of the signal
being analysed (typically 10ms). For these reasons,
allowing the synthesis overlap to vary from 3P/2 to P/2
will produce adequate results for speech signals.

In order to allow the synthesis overlaps vary from 2P to
P (or 3P/2 to P/2) the difference between kmax and kmin
should be set equal to P i.e.

 kmax–kmin=P (4)

If kmin is set to zero then kmax becomes P.

The next constraint is to ensure the initial synthesis
overlap is 2P (or 3P/2 for a more efficient and generally
adequate implementation). For convenience the initial
synthesis overlap is labelled Lmax. The length of Lmax is
also constrained by equation (1b) when k is set to its
minimum i.e. 0, therefore

 Lmax=N–Ss+km-1 (5)

If the output, y, is truncated to mSs + N samples after
each iteration then Lmax becomes independent of the
previous synthesis offset and is given by

 Lmax=N–Ss (6)

Truncating the output also has the effect of altering
equation (1b), which becomes

 Lk=N–Ss–k (7)

Since Ss is constrained to be αSa, there is only one
‘unknown’ parameter, i.e. Sa, and an analysis similar to
that given in [31] is now performed in order to
determine a suitable setting for Sa.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 5 of 18

k

Rm(k)

0 P

1

k

Rm(k)

0 P

1

P P

P

Ambiguous Maxima

Unambiguous
Maximum

k

Rm(k)

0 P

1

P

Maximum
(a)

(b)

(c)

Frames allowed overlap from P to 1.
Unambiguous maximum returned
from correlation function.

Frames allowed overlap from P to 1.
Ambiguous maximums returned
from correlation function.
Potential for incorrect overlap being
chosen.

Frames allowed overlap from
2P to P.
Ambiguity problem resolved.

Figure 4 Scenarios involving overlapping synthesis
frames

From the description of SOLA given at the start of
section 3, the distance between successive synthesis
frames is given by Ss+km–km-1. The length of the
segment discarded/repeated during an iteration of the
algorithm is then given by |Sa – (Ss+km–km-1)|. Consider
the case where km-1 = kmax = P and km = kmin = 0 i.e.
maximum overlap; then a segment of length |Sa – (Ss –
P)| is discarded/repeated during the overlap-add process.
For high quality time-scale modification the
discarded/repeated segment should be short enough to
ensure quasi-stationarity during voiced regions, so

 |Sa–(Ss–P)|≤Lstat (8)

where Lstat is the duration over which the input is quasi-
stationary. Since Ss = αSa

 |(1 – α)Sa+ P| ≤ Lstat (9)

Also, |(1 – α)Sa+ P| is a maximum when α < 1,
therefore equation (9) should be satisfied when α < 1.
Since

 |(1–α)Sa+P|=(1–α)Sa+P when α<1 (10)

then

 α−
−≤

1
PLS stat

a

for α < 1 (11)

Now consider the case when km-1 = kmin = 0 and km = kmax
= P i.e. minimum overlap; then a segment of length |(1
– α)Sa– P| is discarded/repeated. As in the case
described above, the discarded/repeated segment should
be short enough to ensure quasi-stationarity during
voiced regions, so

|(1–α)Sa–P|≤Lstat (12)

|(1 – α)Sa– P| is a maximum when α > 1, therefore
equation (12) should be satisfied when α > 1. Since

 |(1–α)Sa–P|=P–(1–α)Sa when α>1 (13)

then

 1−
−

≤
α

PL
S stat

a

for α >1

 (14)

To achieve high quality time-scale modification
equations (11) and (14) must simply be satisfied,
however, the number of iterations that are executed is
inversely proportional to Sa, therefore Sa should be
maximised for the purpose of computational efficiency
giving

 |1| α−
−

=
PL

S stat
a

for all α (15)

And since N = Lmax + αSa, from (6),

−
−

+=
|1|max α

α
PL

LN stat

for all α (16)

A quasi-stationary segment is a segment in which the
frequency content is approximately constant throughout
the entire duration of the segment. The duration of
stationary segments within an audio input is constantly
changing for most naturally occurring sounds. The
choice of Lstat within the SOLA based implementation
described above has a significant effect on both the
quality of output and the number of computations
required; choosing too small a value results in possibly
too many iterations of the synchronization procedure;
choosing too large a value results in inappropriate
segments being discarded/repeated. For the general

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 6 of 18

case, where the same parameters are being applied
along the entire duration of an input signal, the
maximum segment discarded/repeated is Lstat and the
minimum is Lstat – P. To ensure the algorithm operates
as expected Lstat cannot be less than P, since this would
suggest that a single period of the lowest likely
dominant frequency component could not be
discarded/repeated. For typical speech it is found that
setting Lstat to approximately 25ms results in a high
quality output, although varying this parameter for a
specific input can yield an improvement in quality.

The above analysis has been performed on pitched
signals, such as voiced regions of speech, leaving the
question of how unvoiced or noise-like regions are time-
scaled somewhat unanswered. However, the
unvoiced/noisy regions of speech can also be viewed as
being ‘quasi-periodic’ in the sense that the perceptually
important characteristics of noise, i.e. the power within
bark bands [32], are effectively constant, and therefore
repetitive, over short time segments of the input.
Furthermore, the choice of overlap position for noisy
signal is not as critical as for periodic segments since
discontinuities introduced through a ‘poor’ choice of
overlap will not generally be perceived. For the case
where noise energy does not extend over a sufficient
duration, i.e. transients, the method described above
may result in the undesired repeating or discarding of
these short time energy segments; however this problem
can be resolved if these segments of audio are detected
[33].

3.2. Cross-Fading

The final important consideration within a time-domain
implementation is the duration over which a cross-fade
is applied between overlapping synthesis frames. The
purpose of the cross-fade is to smooth out
discontinuities between synthesis frames [21].
Typically, a cross-fade is applied along the entire
duration of the ‘optimal’ synthesis overlap determined
during the search stage; however a cross-fade of this
duration may be unnecessary and can result in
redundant computations. Consider the case of a
perfectly periodic signal being time-scaled and synthesis
frames are perfectly synchronised, if no cross-fade is
applied and synthesis frames are simply appended to
each other at an appropriate point within the ‘optimal’
overlap, then no artefacts will be perceived since
discontinuities are not introduced and the period of the
signal remains unaltered. However, audio signals are
typically not perfectly periodic and some level of cross-

fading is required in order to ensure that a smooth
transition occurs between synthesis frames. The
duration of the cross-fade required to ensure that a
smooth transition occurs is dependent on the level of
similarity of the synthesis frames and an ‘intelligent’
method of determining the cross-fade duration for each
iteration of the SOLA algorithm could take the value of
Rm(km) returned by the correlation function into
consideration. However a method such as this would
require the introduction of a threshold which can
introduce problems of its own if the threshold is not
adequately set (or if an alternative means for
determining the optimal overlap position is used – see
section 4). It has been found that fixing the duration of
the cross-fade to between 2ms-5ms generally provides
an adequate solution, although longer cross-fades will
reduce the effects of discontinuities by a greater degree.
It should also be noted that the choice of cross-fade
(linear and raised cosine have been suggested in the
literature) does not have a significant impact on the
quality of the results obtained [29].

3.3. Overlap Prediction

Both [5] and [34] make use of ‘overlap prediction’ in
order to reduce the number of computational operations
required to time-scale an input signal. The basis of
‘overlap prediction’ can be understood by considering
the situation illustrated in figure 5; for the (m-1)th
iteration an offset of km-1 was determined in the usual
manner i.e. through an evaluation of the correlation
function described by equation (1); however, in the mth
iteration it can be seen that a common segment (the
shaded regions) within the synthesis frames exists.
Maximum correlation will occur for the synthesis
overlap at which the common segments are aligned;
therefore the synthesis frames will be overlapped at this
position.

Analysis: Successive frames separated
by Sa. Common area between frames
is shaded.

Synthesis: Initially frames separated by Ss-km-1.
Maximum correlation will occur when the offset
is kopt, since common analysis areas are overlapped.

(a)

(b)

P

Sa

Ss-km-1

kopt

Initial synthesis
overlap

Final synthesis
overlap

Figure 1 Overlap Prediction

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 7 of 18

It can be shown [34] that this type of situation occurs
when

 kmin≤km-1+Sa–Ss≤kmax (17)

If this condition occurs then there is no need to calculate
the correlation function and the offset, km, can simply be
set equal to

 km = Sa – Ss +km-1 (18)

To determine the benefits of ‘predictive skipping’ the
probability of equation (17) occurring is determined.
For this purpose, the values derived in section 2 are
substituted into (17)

 0 ≤km-1 + (1-α) |1| α−
− PLstat ≤ P (19)

For time scale compression the probability is given by:

Probability (0 ≤ km-1 + Lstat – P) i.e. 1, since km-1 is in the
range 0 to P and Lstat > P ,and

Probability (P ≥ km-1 + Lstat – P) i.e. (2P – Lstat)/P if km-1
is equally likely to be any value in the range 0 to P.

For time scale expansion the probability is given by:

Probability (0 ≤ km-1 – Lstat + P) i.e. (2P – Lstat)/P, if km is
equally likely to be any value in the range 0 to P, and

Probability (P ≥ km-1 – Lstat + P) i.e. 1, since km is in the
range 0 to P and Lstat > P.

From above, the probability of equation (19) being
satisfied is 2P – Lstat for all time-scale modifications.
Therefore, the benefit of prediction is dependent on the
maximum length of segment that can be
discarded/repeated during a single iteration of the
algorithm i.e. Lstat; if Lstat is greater than or equal to 2P
then prediction provides no additional advantage.

3.4. Alternative Approaches

There are a number of alternative approaches to a
SOLA based implementation, such as [35], [36] and [5],
which are also capable of producing a high quality
output, however they perform the same basic operation
of discarding/repeating suitable segments of the input
and offer no significant advantage over the SOLA based
implementation described above.

One other popular time-scaling approach is the pitch
synchronous overlap-add (PSOLA) [37] algorithm. This
approach explicitly identifies the local pitch period of
the input along the entire duration of the input, and then
discards/repeats pitch periods appropriately, similar to
SOLA based methods. For time-scaling purposes there
is generally no benefit in using PSOLA over SOLA;
although SOLA based implementations tend to be more
robust and efficient since there is no requirement for
explicit pitch period detection (although pitch detection
is implicit within the similarity measure employed,
since discarded/repeated segments are typically integer
multiples of the local pitch period during voiced regions
of speech [38]). The main advantage of PSOLA is in its
use for pitch-scaling applications. One simplified and
commonly used approach for pitch-scaling uses a
process of time-scaling followed by resampling; this
results in an altering of the formant structure of the
pitch-scaled output which has the effect of modifying
the timbre characteristics of the signal. By employing a
PSOLA method for pitch-scaling, the formant structure
of the pitch-scaled output is preserved, as explained in
[39] and [40], resulting in a more natural sounding
pitch-scaled output.

4. ALTERNATIVE SYNCHRONIZATION
PROCEDURES

In section 3 a SOLA based implementation is outlined
which makes use of a normalized correlation function to
identify a suitable synthesis overlap. A number of
computationally efficient alternatives to normalized
correlation have been proposed in various publications.
In this section these alternatives are summarized and a
computational evaluation of these procedures, including
normalized correlation, is provided. The evaluation is
based upon the number of basic arithmetic, shift and
compare operations each approach requires. A summary
of this comparison is given in section 5.

4.1. Basic Unbiased Correlation

The normalizing denominator of equation (1) has the
effect of reducing the magnitude of the correlation
function when a high energy noise burst (transient), or
any other high energy segment, exists within one of the
synthesis frames. This normalizing process comes at a
relatively high computational expense and the less
complex unbiased correlation function has been used in
[36], and is given by

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 8 of 18

()

k

L

j
as

m L

jmSxjkmSy
kR

k

∑
−

=

+++
=

1

0
)()(

(20)

where Lk is the length of the overlapping region as given
by equation (7).

4.1.1. Computational Requirements

Correlation can be efficiently determined through the
use of an FFT-based convolution technique [41]. This
approach requires the following steps to be taken:

1. Calculate the FFT of the overlapping synthesis
segments. This involves two Lmax point real
input FFT’s.

2. Multiply the resulting FFT’s. This involves
Lmax complex multiplications i.e. 4. Lmax
multiplies and 2.Lmax additions.

3. Calculate the inverse FFT of the result of step
2. This involves one Lmax complex input
inverse FFT.

An N-point radix-2 FFT of a complex input requires
approximately 2NLog2N real multiplications and
3NLog2N real additions [41]. It can also be shown that
two N-point FFT’s of two real inputs can be efficiently
determined using one N-point complex FFT and 2N – 4
real additions [41]. An N-point inverse FFT of a
complex input requires approximately the same number
of operations as an N-point FFT. In addition, the
unbiasing denominator term of equation (20) requires
one division per overlap i.e. P divisions.

Having determined the correlation function, the
maximum value of Rm(k) must be found. This requires P
comparisons.

4.2. Normalised Correlation

()
∑∑

∑

−

=

−

=

−

=

+++

+++
=

1

0

2
1

0

2

1

0

)()(

)()(

kk

k

L

j
s

L

j
a

L

j
as

m

jkmSyjmSx

jmSxjkmSy
kR

(21)

4.2.1. Computational Requirements

The numerator of equation (21) can be determined in
the same manner as described in subsection 4.1. Within
the SOLA based implementation described in section 3,
the correlation function is determined for a minimum

synthesis overlap of Lmax – P to a maximum of Lmax. If
the denominator is first determined for the minimum
synthesis overlap, it can then be computed efficiently
through an iterative process for successive, increasing,
synthesis overlaps. Each summation term of the
denominator initially requires Lmax – P multiplies and
Lmax – P additions for the minimum overlap. For
subsequent synthesis overlaps one addition and one
multiplication per summation term is required, followed
by one multiplication of the summation terms and the
application of a square root to the resulting product.
Also, for each of the P possible synthesis overlap
positions one division of the denominator into the
numerator is required.

There are numerous methods for determining the square
root. One common approach is the Newton-Raphson
algorithm [42]. This approach requires one shift (to
determine a division by 2), one addition and one
division per iteration with an adequate result, for this
application, generally being returned after 10 iterations.

P comparisons are then required to determine the
maximum of the correlation function.

4.3. Simplified Normalised Correlation

The simplified normalized correlation function is
suggested for use within time-scale modification in [15]
and is given by

()
∑∑

∑

−

=

−

=

−

=

+++

+++
= 1

0

1

0

1

0

)()(

)()(

kk

k

L

j
s

L

j
a

L

j
as

m

jkmSyjmSx

jmSxjkmSy
kR

(22)

4.3.1. Computational Requirements

The simplified normalization function of equation (22)
is calculated in a similar manner to equation (21),
however, each summation term of the denominator
initially requires only Lmax – P additions for the
minimum overlap. For subsequent synthesis overlaps
only one addition per summation term is required
together with one multiplication of the summation
terms.

P comparisons are required to determine the maximum.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 9 of 18

4.4. AMDF

The average magnitude difference function AMDF is
suggested for use in [35] and is given by

()

k

L

j
as

m L

jmSxjkmSy
kR

k

∑
−

=
+−++

=

1

0
)()(

(23)

4.4.1. Computational Requirements

This function requires, on average, Lmax – P/2
subtractions, Lmax – P/2 additions and 1 division for
each synthesis overlap/offset.

P comparisons are required to determine the minimum.

4.5. Mean Square Difference

Similar to AMDF, the mean square difference provides
additional emphasis on large differences in magnitudes
and is given by

 ()
()

k

L

j
as

m L

jmSxjkmSy
kR

k

∑
−

=
+−++

=

1

0

2)()((23)

4.5.1. Computational Requirements

The mean square distance measure requires, on average,
Lmax – P/2 subtractions Lmax – P/2 additions, Lmax – P/2
multiplications and 1 division for each synthesis
overlap/offset.

P comparisons are required to determine the minimum.

4.6. Mean Square Difference

The envelope matching time-scale modification
algorithm [43], [34] transforms the overlapping
synthesis segments into one-bit functions prior to
correlation. In [34] the following variables are defined

() ()() ()
()

<+−
≥+

=+=
01

01
2 jmSxif

jmSxif
jmSxsignjx

a

a
a

(25)

() ()() ()
()

<+−
≥+

=+=
01

01
2 jmSyif

jmSyif
jmSysignjy

s

s
s

(26)

() ()kjxjx k += 2,2 (27)

() ()kjyjy k += 2,2 (28)

where k is the offset described in section 2.

The similarity function given by equation (29) is then
used to determine a suitable offset

()
() ()

()

() () () ()

−+−== ∑

∑ −+

=

++

−

=
kkk

kk

m

rNM

j
k

NM
k

j

k

kz

m

kL

j
kk

m LjC
LkL

jxjy
kR

2

1

1,

1

0
,2,2

112
β

 (29)

where () ()00 ,2,2, kkkz xy=β and

() (){ }kkkk LjforjxjxjA <<−=−= 0,11: ,2,2 .

Therefore, Ak is the set of locations of the zero crossing
points in x2,k. Also, Mk is the cardinality of Ak i.e. the
number of zero crossings in x2,k.

() (){ }kkkk LjforjyjyjB <<−=−= 0,11: ,2,2 .

Therefore, Bk is the set of locations of the zero crossing
points in y2,k. Also, Nk is the cardinality of Bk i.e. the
number of zero crossings in y2,k.

rk is the number of common zero crossings in x2,k and
y2,k i.e. the cardinality of Ak ∩ Bk.

kkk BAC ⊕= , where ⊕ is the Exclusive OR operator

Equation (29) should be calculated for each offset, k, in
the range kmin to kmin, which still represents a significant
number of computations [34]. However, it is shown in
[34] that equation (29) need only be evaluated for a
smaller subset of all possible offsets, Ko, where

{ } { }
{ } { }maxmin1,1

,11,1

,1:

11::

kkNLLak

NbbkBAkK

kkMk

Nkkkko

k

k

∪<∩−=

∪−=∪=∪≠∩=

−−

+−φ

(30)

where Ak and Bk are defined above and are also
represented by

{ }
kMkkkkk aaaaA ,3,2,1,,,,=

{ }
kNkkkkk bbbbB ,3,2,1,,,,=

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 10 of 18

It should be noted that in [34] a value p is also defined,
however within the implementation described in section
2 this parameter does not need to be considered.

Given that Ko = {k1, k2, k3, ….., kQ+1}, it is also shown in
[34] that Rm(ki+1) can be found iteratively from

() () ()iik

NM
kzkkz

iiim
iik

k
im kkL

kkkR
kkL

L
kR

i

ikik

iii

i

i

−−
−+

−+
−−

=
+

++

+
+

+
1

1
,,

1
1

1

)1(2
)()(

βξβ

 (31)

where () ()
∑ =

−= k i

i

N

j
jkg

k 1
,1ξ and ()jkg i , is the location of jki

b , in the
set jki

C , .

Equation (31) is significantly simpler than equation (29)
and equation (29) needs only be evaluated for k1 and all
other elements of Ko can be found iteratively and
efficiently from equation (31).

4.6.1. Computational Requirements

The steps involved in the implementation of the EM-
TSM algorithm can be summarised as follows:

1. Determine the envelope function of both of the
synthesis frames.

2. Determine the set K0 that is defined in [34] and
described as being:

a) ‘any lag k such that there is at least
one common crossing point between
x2,k and y2,k’.

b) ‘any k such that y2,k-1 has a zero-
crossing point which disappears in
y2,k’.

c) ‘any k such that x2,k-1 has a zero-
crossing point that disappears in x2,k’.

d) kmin and kmax.
3. For the first k in the set K0 i.e. k1, determine

R(k) using equation (29)
4. For the remaining k in K0 determine R(k) using

equation (31).
5. Find the value of k for which R(k) is a

maximum.

The computations required for each step is now
expanded:
Step 1:

Lmax comparisons for each frame. Ak and Bk can
also found in parallel.
Step2:

a) Approximately ZCavg(Lmax – P/2)
comparisons, where ZCavg is the average

number of zero crossings per sample. Ck and
g(k,j) can also be determined in parallel.
b) 1 comparison for each overlap to determine
if bk-1,1 = 1 i.e. P comparisons.
c) 1 comparison for each overlap to see if

1,1 1 −− =
− kMk La

k

d) No operations are required to find kmin and
kmax.

Step 3:
Equation (29) requires the following

operations:
1 addition and 1 subtraction to determine
Mk+Nk and Mk+Nk – 2rk..

1 comparison to determine each () kk NM +−1 .

Mk+Nk – 2rk comparisons to determine () 11 +− j .
Each comparison is followed by an addition or
subtraction.
1 addition of the terms within brackets.
1 shift to calculate the multiply by 2.
1 comparison to determine βz,k = x2,k[0]y2,k[0].
1 subtraction to determine Lk, since Lk is given
by Lmax – k.
1 division by Lk.

Step 4:
Equation (31) requires the following operations

to be performed:
1 multiplication to determine LkiR(ki).
1 comparison to determine

ikz ,β .
1 shift is required for the multiply by 2.

2 additions to determine 1++
ikik

NM .
1 compare is required to determine

1)1(++− ikik NM
.

2 subtractions to determine ()iik kkL
i

−− +1 .
1 multiplication to determine

()()1
,,1)1(2 ++

+ −+− ikik

iii

NM
kzkkzii kk βξβ .

1 addition to sum LHS and RHS.
1 division by ()iik kkL

i
−− +1 .

g(k,j) can be calculated during step 2 (a) since
the location of bk,j in the set Ck can be
determined at that time.
One iteration in the calculation of

ikξ requires
one comparison to determine whether an
addition or subtraction is required, followed by
an addition or subtraction. On average ZCavg

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 11 of 18

(Lmax –P/2) iterations are required to determine
each

ikξ .
Step 5:

Requires Q+1 comparisons, where Q+1 is the
cardinality of Ko.

On average Mk and Nk are approximately ZCavg(Lmax –
P/2) and rk is approximately ZCcommon,avg(Lmax – P/2),
where ZCcommon,avg is the average number of common
zero crossings per sample.

4.7. MEM-TSM

In [43] a number of refinements to the EM-TSM
synchronization procedure are proposed. Having
obtained the envelope matching function, the offsets
that correspond to the M largest magnitudes of the EMF,
given by {kc,1, kc,2, kc,3,...., kc,M}, are re-evaluated using
the following decimated normalized correlation function

()
() ()

∑∑

∑

−

=

−

=

−

=

+++

+++
=

1

0

2

1

0

2

1

0
2,

).().(

..

q
L

j
s

q
L

j
a

q
L

j
as

m
kk

k

jqkmSyjqmSx

jqmSxjqkmSy
kR

 (32)

The offset km is chosen such that Rm,2(k) is a maximum
for k = km where k is an element of {kc,1, kc,2, kc,3,....,
kc,M}. By using the multiple candidate re-examination
procedure described above, the quality of the output is
improved upon over the EM-TSM implementation [43].

The efficiency of the EM-TSM approach is governed by
the number of zero-crossings in the overlapping regions
of the synthesis frames. In [43] it is noted that high
frequency components and noise introduce many zero-
crossings, thus increasing the computational
requirements of the approach, yet it is the low frequency
components that are most important in obtaining a
‘good’ synthesis overlap. One method used in [43] of
reducing the number of computations within an EM-
TSM implementation is to apply the following rule prior
to determining Rm(k); if the distance between two
adjacent zero-crossing points in Ak or Bk is less than a
pre-defined threshold, T1, the pair is removed from Ak or
Bk, respectively.

4.7.1. Computational Requirements

The function of equation (32) is a ‘decimated’ version
of the normalized correlation function. Since the

decimated correlation function is only determined for a
relatively small number of synthesis overlaps, it is no
longer computationally efficient to employ an FFT in
determining the numerator. Calculating the numerator,
on average, requires (Lmax – P/2)/q multiplies and (Lmax
– P/2)/q additions for each candidate offset that is being
re-examined.

The denominator of the decimated function is found in a
similar manner to that described in subsection 4.3,
however the number of operations required to determine
each summation term is proportional to the maximum
overlap associated with each of the candidate offsets i.e.
the overlap associated with the minimum candidate
offset. An estimate of the number of operations required
to determine the summation terms for all candidate
offsets is then Lc,max/q multiplies and Lc,max/q additions,
where Lc,max is the overlap associated with the smallest
candidate offset. Assuming that the occurrence of a
candidate offset is equally likely to occur anywhere in
the range 0 to P, and assuming M << Lmax, where M is
the number of candidates being re-examined, it can be
statistically shown that Lc,max is approximately given by
P(M/(M+1))+ Lmax – P. Having determined both
summation terms for each candidate offset, the
summation terms are multiplied and the square root of
their product is determined. The square root can be
determined as in subsection 4.3. Finally the
denominator is divided into the numerator. M
comparisons are then required to determine the
maximum.

In order to reduce the number of zero-crossings the
distance between consecutive pairs is first determined
and then compared with the defined threshold. This
operation requires one subtraction and one comparison
for each pair being evaluated in each frame.

4.8. GLS-TSM

The global and local search approach (GLS-TSM) [44]
consists of two stages. The first stage is a preliminary
global search, and the second is a refined local search.
The global search consists of a search for an offset,
kglobalmin, where kglobalmin is chosen such that the
difference in the number of zero-crossing points
between synthesis frames, in their common overlapping
region, is minimized. kglobalmin lies between kmin and kmax.

Having found kglobalmin the next step is to locate the zero
crossing with the maximum slope in the ‘output’
synthesis frame within the overlapping region identified

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 12 of 18

during the global search i.e. y(mSs + kglobalmin + j) for 0 ≤
j ≤ kmax - kglobalmin. The zero crossing with the maximum
slope, labeled Zmax slope, occurs at y(mSs + kmax slope) and is
chosen since ‘It is observed that a wrong match at a zero
cross point with a greater slope has a more pronounced
effect than a zero cross point with a smaller slope’, [44].

In [44], an eleven dimensional feature vector, f, is
defined which is used to represent local information in
the region of a zero crossing. If a zero crossing occurs
between x(i) and x(i+1), the eleven feature vector
components are given by:

 f1 = x(i) – x(i+1) f7 = |x(i+3)|

 f2 = |x(i)| f8=(x(i-1)– x(i+1))/2

 f3 = |x(i+1)| f9 = |x(i-1)|

 f4 = (x(i) – x(i+2))/2 f10=(x(i-2)– (i+1))/3

 f5 = |x(i+2)| f11 = |x(i-1)|

 f6 = (x(i) – x(i+3))/3

The feature vector of Zmax_slope is compared to the feature
vectors of zero crossings in the corresponding locality
of Zmax_slope on the ‘input’ synthesis frame i.e. x(mSa + j)
for kmax_slope - k1 ≤ j ≤ kmax_slope + k2. It is found that
choosing k1 and k2 such that approximately 10 zero
crossings candidates exist results in a good quality
output. The feature vectors are compared using the
following distance measure

() ()∑ =
−= 11

1 ,11
1

j iyxi jfjfd

(33)

where, fx(j) is the jth feature vector component of
Zmax_slope, fy,i(j) is the jth feature vector component of the
ith candidate zero crossing.

The candidate zero crossing that produces the smallest
distance measure is then chosen so as to align with
Zmax_slope i.e. given that the zero crossing that produces
the smallest distance measure occurs at x(mSa +
kbest_candidate) then

km=kmax_slope–kbest_candidate (34)

where km is the ‘optimum’ offset described in section 2.

4.8.1. Computational Requirements

The steps involved within the GLS-TSM algorithm can
be summarized as follows:

Step 1: For each overlap position determine the number

of zero-crossings in each of the synthesis
frames.
The most efficient way to determine this is to
first find the zero-crossings in the minimum
overlap region and iteratively determine the
zero-crossings for the remaining overlap
positions. This initially requires Lmax – P
compares and one addition for each zero
crossing in the minimum overlap region. Then
for each of the remaining P possible overlaps a
comparison is required with an addition
required if a zero-crossing is detected.

Step 2: Determine the overlap position that provides the
minimum difference between the number of
zero crossings in the analysis frame and the
number of zero crossings in the synthesis
frames. This provides the global search
overlap.
Using the data determined in Step 1, this
procedure then requires P comparisons.

Step 3: Find the slope at each zero crossing of the
analysis frame within the global search
overlap.
For each zero crossing a subtraction is required
followed by a division, to determine the slope.
Assuming that the average global search
overlap is P/2, then (P/2).ZCavg subtractions
and (P/2). ZCavg divisions are required.

Step 4: Find the zero crossing that corresponds to the
maximum of all the slopes calculated. This zero
crossing then becomes the reference zero
crossing point.
Finding the maximum slope requires
(P/2).ZCavg comparisons.

Step 5: Compute the feature vector for the reference
zero crossing.

Calculating an 11 point feature vector requires:
5 subtractions, 2 shifts (for two divide by 2
operations) and 2 divisions.

Step 6: Compute the synthesis zero-crossings in the
neighbourhood of the reference zero crossings.
Use the U nearest neighbours.
This requires U x step 5 operations.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 13 of 18

Step 7: Find the ‘distance measure’ between the
reference feature vector and the candidate
synthesis feature vectors.
Calculating one distance measure requires:
11 subtractions, 11 additions, 1 division.

Step 8: Find the minimum ‘distance measure’ and use
the corresponding synthesis zero crossing
point and reference to determine the final
overlap position.
This requires U comparisons.

4.9. Peak Alignment

A peak alignment approach has been described in [31]
and [15]. Here a method is briefly outlined that allows a
peak alignment approach be applied to the overlap-add
procedure described in section 2.

The first step is to determine the maximum, i.e a peak,
in x(mSa + j) for 1 ≤ j≤ P. Given that a maximum occurs
at j = jmax,x, the next step is to determine the maximum in
y(mSs – km-1 + jmax,x +j) for 1 ≤ j≤ P. Given that a
maximum occurs at j = jmax,y

 km = jmax,y – jmax,x (35)

It should be noted that Lmax must be 2P for the peak
alignment process to operate as expected.

4.9.1. Computational Requirements

This approach requires P comparisons to determine the
peak/maximum in each frame. Calculating mSs – km-1 +
jmax,x and km requires one addition and two subtractions.

5. COMPUATIONAL COMPARISON
SUMMARY

 Compares Additions
/Subtracts Shifts Mults

/divides Total

Peak
Alignment 2.P 3 0 0 1.00

GLS-TSM

2.Lmax +
ZCavg.(
P/2) +
U+P

2.Lmax.ZCavg +
(P/2). ZCavg +

U.27 + 5

(1+
U).2

(1+ U).3 +
(P/2).
ZCavg

4.04

EM-TSM

3.Q + 2.P
+ 3 +

2.Lmax +
2.(ZCavg –
ZCcommon,avg

)(Lmax –
P/2) +
ZCavg.(
Lmax –

P/2)(Q+1)

4 + 5.Q +
Q.ZCavg.(Lmax

– P/2)+
2.(ZCavg –

ZCcommon,avg)(
Lmax – P/2)

Q+1 3.Q+1 43.58

MEM-TSM
Reduced zero

crossings
ZCavg.Lmax ZCavg.Lmax 0 0 18.12

MEM-TSM
Candidate re-
examination

M

(P(M/(M+1))
+ Lmax – P)/q
+ M(Lmax –
P/2)/q +

10.M

10.M

11.M +
(P(M/(M+
1))+ Lmax –

P)/q +
M.(Lmax –

P/2)/q

21.67

Unbiased
Correlation P

2.Lmax
(3.Log2(2.Lma

x) –1) – 4
0

4.Lmax.Log
2(2.Lmax)

+P
91.63

Simplified
Normalized
Correlation

P
2.Lmax(3.Log2

(2.Lmax) –1) –
4+ 2.Lmax

0
4.Lmax.Log
2 (2.Lmax)

+2.P
94.11

Normalised
Correlation P

2.Lmax(3.Log2
(2.Lmax) –1) –
4+ 2.Lmax +

10.P

10.P

4.Lmax.Log
2 (2.Lmax)

+12.P+2.L
max

111.01

AMDF P 2.P. (Lmax –
P/2) 0 P 239.50

Mean Square
Difference P 2.P. (Lmax –

P/2) 0 P.(Lmax –
P/2) + P 358.75

Table 1 A Comparison of Synchronization
Procedures

The column furthermost to the right of the table above
shows a normalized comparison of the number of
operations each approach requires. The comparison
assumes that each operation requires the same duration
to process and uses the parameter values given below.
The totals are normalized by dividing the total by the
number of operations required by a peak alignment
approach. The totals for the two MEM-TSM rows
(shown shaded) also take the number of operations
required by EM-TSM, after the zero crossing reduction
has been applied, into consideration.

For a sampling rate of 16kHz the following values
typically apply:

Maximum period, P = 160 samples; corresponding to
10ms.

The initial (and maximum) synthesis overlap, Lmax =
320; corresponding to 20ms.

Average zero crossings per sample, ZCavg = 0.19.

Average common zero crossings, between synthesis
frames, per sample, ZCcommon,avg = 0.068.

The number of re-examined candidates in GLS-TSM, U
= 10.

The number of re-examined candidates in EM-TSM, M
= 8.

Average number of elements in K0, Q = 128.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 14 of 18

The MEM-TSM correlation decimation factor, q = 5.

The figures shown for the two MEM-TSM rows were
obtained when the T1 parameter is set to 6 samples, for
the application of the zero crossing reduction procedure.
After the zero crossing reduction procedure is applied
ZCavg becomes 0.072, ZCcommon,avg becomes 0.0066 and
Q becomes 99.2. The parameters Q, ZCavg and
ZCcommon,avg were determined from the examination of
250 test signals obtained from the TIMIT speech corpus
[45].

It should be noted that a further reduction in the
computational complexity of synchronization
procedures which employ the FFT could also be
achieved through the use of techniques such as FFT
pruning [46] or the Goertzel technique [47]. In addition,
as noted in [34], synchronizing high frequency content
of a signal is not as important as the low frequency data,
therefore all of the synchronization procedures are
likely to produce high quality results when applied to
down sampled data. Such an approach is also suggested
in [36] whereby the input (sampled at 48 kHz) was first
down sampled by a factor of 6, thus providing
significant computational reduction.

6. OBJECTIVE OUTPUT EVALUATION

The output quality of a time-domain time-scale
modification algorithm is primarily dependent on how
similar the overlapping segments of the synthesis
frames are; hence the reason for making use of
similarity measures in finding the optimum overlap. The
same similarity measures can be (and have been in [34])
used to provide an objective evaluation of the quality of
each synchronization procedure; however some
difficulty lies in determining which similarity measure
is perceptually ‘best’. For the purpose of the evaluation
presented here, it is assumed that the similarity
measures are equally valid and are therefore used to
assess the quality of each approach; however, in an
attempt to determine which synchronization procedure
is ‘best’, the results obtained from each output quality
assessment measure are statistically normalized and the
‘best’ synchronization procedure is deemed to be that
procedure that is associated with the maximum of the
sum of the normalized measures.

In addition to the time-domain similarity measures
presented earlier (unbiased correlation, normalized
correlation, AMDF and mean-square difference) a
frequency-domain based similarity measure is also used,

which is essentially the mean square difference of the
magnitude spectra of the overlapping segments. A
similar measure is used in [48], which was derived from
[49]. It should be noted that in [49] a time-scale
modification approach is presented that iteratively
attempts to minimize a similar measure though
manipulation of the input signal’s short-time Fourier
transform. It is also worth noting that the motivation
behind the development of SOLA [20] was to reduce
the number of iterations required to implement the
iterative procedure of [49].

Over 250 test signals obtained from the TIMIT speech
corpus were used during the objective evaluation. Each
test signal is time-scaled by a factor of 2 using each of
the synchronization procedures described in section 3. It
should be noted that any time-scale factor could be
used; however a time-scale factor close to one requires a
relatively small number of iterations, on the other hand
a very large time-scale factor would return very similar
results from successive iterations of the algorithm. For
each iteration of each algorithm, the similarity measures
given by equations (36-39) are applied.

∑∑

∑

−

=

−

=

−

=

+++

+++
=

1

0

2
1

0

2

1

0
1

)()(

)()(

mkmk

mk

L

j
ms

L

j
a

L

j
ams

jkmSyjmSx

jmSxjkmSy
measure

(36)

m

mk

k

L

j
ams

L

jmSxjkmSy
measure

∑
−

=

+++
=

1

0
2

)()(

(37)

mk

L

j
ams

L

jmSxjkmSy
measure

mk

∑
−

=

+−++
=

1

0
3

)()(

(38)

()

m

mk

k

L

j
ams

L

jmSxjkmSy
measure

∑
−

=

+−++
=

1

0

2

4

)()(

(39)

Having accumulated the measures for each
synchronization procedure (and a random offset), the
measures are then normalized using a standard score
approach [50] e.g. given that the accumulation of
measure1 is given by the set measure1,acc = {m1, m2, …,
m9}, where mw is the accumulation of measure1 when
applied to synchronization procedure number w, then
the normalized set is given by

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 15 of 18

()
()

()
()

()
()

 −−−

acc

acc

acc

acc

acc

acc

measurestdDev
measuremeanm

measurestdDev
measuremeanm

measurestdDev
measuremeanm

,1

,19

,1

,12

,1

,11 ,....,,

 (41)

where stdDev is the standard deviation.

In addition, the sign of the normalized data set is
inverted for measure3 and measure4 to take account of
the fact that a minimization of these functions is desired.

Table 2 shows the results of the objective output quality
assessment, with the furthermost right column showing
the sum of the normalized measures for each of the
synchronization procedures.

 Measure1 Measure2 Measure3 Measure4 Total

Mean
Square

Difference
0.83 0.57 0.55 0.59 2.55

AMDF 0.55 0.52 0.73 0.70 2.50
Normalized
Correlation 0.44 0.47 0.80 0.63 2.35

Unbiased
Correlation 0.71 0.42 0.35 0.45 1.93

Simplified
Normalized
Correlation

0.36 0.79 0.25 0.35 1.76

MEM-TSM
(M=20, q =

5)
0.45 0.36 0.39 0.37 1.58

EM-TSM 0.26 0.22 0.29 0.20 0.98
Peak

alignment -0.33 -0.32 -0.27 -0.20 -1.12

GLS-TSM -0.83 -0.42 -0.50 -0.46 -2.22
Random

Offset -2.46 -2.62 -2.60 -2.64 -10.33

Table 2 An Objective Output Quality Comparison

In two separate tests the objective measures were
applied to the test signals with additional noise injected
into the test signals and only those frames considered
voiced (since appropriate overlapping of voiced regions
of speech is, in general, perceptually more important
than that of unvoiced or silent regions). The results of
both additional tests are closely approximated by those
presented in table 2.

7. DISCUSSION

The objective output quality assessment given in section
6 is useful in that it provides a quantifiable comparison
of the various approaches, but it is important to view
these results with some knowledge of a subjective
evaluation. It should be noted that in general each of the

approaches outlined in section 3 produce a reasonably
high quality output and when ‘inexperienced’ subjects
are presented with a comparison between any of the
approaches they find it difficult to differentiate between
them. It is only when ‘experienced’ subjects, i.e.
subjects who are working in the audio processing realm,
evaluate the various approaches that the differences
become more apparent. For a small number of tests and
‘experienced’ subjects (in a quite office environment), it
was found that the results of the objective comparison
relate to that of a subjective comparison quite closely;
however, extensive listening tests would be required in
order to validate the objective assessment presented
here with subjective tests with any statistical accuracy.

The synchronization procedures presented in section 4
can be classified into two groups i.e. similarity measures
(correlation, AMDF, MSD, EM-TSM, MEM-TSM) and
feature matching processes (GLS-TSM and peak
alignment). Similarity measure processes could be
viewed as multiple feature matching processes. From
the results of the objective output quality assessment,
there is a clear divide in the quality achieved between
these groups, which can be attributed to the fact that
only one feature is used in the synchronization process
for GLS-TSM and peak alignment implementations,
resulting in a higher probability of choosing incorrect or
ambiguous features to align (for example, consider the
ambiguous situation that would occur in figure 4 (b) or
(c) if either feature matching process was used). There
is also a significant difference in the results obtained for
GLS-TSM and peak alignment, with results suggesting
that the peak alignment process is superior to the zero-
crossing feature used in GLS-TSM. Intuitively this
makes sense when it is considered that there are, in
general, many more candidate zero-crossings in a
segment of a speech signal than ‘maximum’ peaks,
therefore the probability of an ‘incorrect’ match is
increased when a zero-crossing feature is used.

The time-domain approaches described in this paper
time-scale all regions of the input signal by same
amount; this can result in artefacts being introduced into
the time-scaled output, e.g. transient skipping or
repetition [33] and a ‘slurred’/‘drunken’ sounding
output [51], which tends to be most problematic for
large time-scale factors. The problem of transient
preservation has been addressed in [33], while [52] and
[3] have taken steps in producing a more natural
sounding time-scaled output by applying different levels
of time-scaling to different regions of the input signal
e.g. in [52] it is suggested that consonants be time-

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 16 of 18

scaled compressed more than vowels. In [53] and [54]
the entire input is first segmented into ‘auditory scenes’
and each scene is then time-scaled individually by an
appropriate amount, resulting in a further improvement
in the quality of output [53].

Finally, it should be noted that the underlying
requirement for high quality time-scale modification
when time-domain approaches are applied, is the
existence of a quasi-periodic element within the signal
being time-scaled. This requirement is generally
fulfilled in simple monophonic audio signals such as
speech and monophonic music, but for more complex
audio, such as polyphonic music, periodicity is largely
lost and time-domain approaches prove inadequate.
However, for small time-scaling +-15% high quality
results can be obtained [53], [36]. This is due to the fact
that some level of periodicity will generally exist in
complex audio and also because small amounts of
distortion introduced by poor synchronization of frames
will generally not be perceived. For time-scaling
complex audio by an amount greater than +-15%, phase
vocoder [48], sinusoidal modeling [55] or time-
domain/subband [56], [57] approaches should be
employed.

8. CONCLUSION

This paper develops a set of guidelines for the choice of
parameters used within time-domain time-scale
modification algorithms within the context of a
waveform editing procedure. Both computational load
and output quality comparisons of a number of
commonly used synchronization procedures are
presented. A brief outline of each synchronization
procedure is first given in section 4, followed by a
thorough computational load analysis that considers the
number of basic arithmetic, shift and compare
operations each procedure requires. An objective
assessment of the quality produced, when each
synchronization procedure is employed, is given in
section 6 and a brief discussion of the comparative
results is presented in section 7. Results of the objective
assessment indicate that the use of a mean square
distance function produces the highest quality output;
however more efficient implementations are capable of
producing a similar quality of output with a significant
reduction in computational load. The peak alignment
synchronization procedure is the most efficient,
requiring approximately 1% of the operations required
by the commonly used normalized correlation function;

however its efficiency comes at the expense of some
degradation in the quality of the output.

9. REFERENCES

[1] Amir, A.; Cohen, G.; Ponceleon, D.; Blanchard, B.;
Petkovic, D.; Srinivasan, S., "Using audio time
scale modification for video browsing," Proc. 33rd
Annual Hawaii Int. Conf. on System Sciences,
pp.1117 – 1126, 2000.

[2] Erogul, O.; Karagoz, I., “Time-scale modification
of speech signals for language-learning impaired
children”, Proc. 2nd Int. Conf. Biomedical
Engineering Days, pp.33 – 35,1998.

[3] Donnellan, O.; Elmar Jung; Coyle, E , “Speech-
adaptive time-scale modification for computer
assisted language-learning”, IEEE Int. Conf. on
Advanced Learning Technologies, pp.165–169,
2003.

[4] Demol M., Struyve K., Verhelst W., Paulussen H.,
Desmet P.; Verhoeve P., "Efficient non-uniform
time-scaling of speech with WSOLA for CALL
applications", In Proc. of InSTIL/ICALL
Symposium, paper 007, 2004.

[5] Hejna D. J., “Real-time time-scale modification of
speech via the synchronized overlap-add
algorithm”, M.I.T. Masters Thesis, Department of
Electrical Eng. and Computer Science, 1990.

[6] Pallone G., Boussard P., Daudet L., Guillemain P.,
Kronland-Martinet R., "A wavelet based method
for audio-video synchronization in broadcasting
applications". In proc of the DAFX, 1999.

[7] Mansour, M.F.; Tewfik, A.H., “Audio
watermarking by time-scale modification”, IEEE
International Conference on Acoustics, Speech, and
Signal Processing, Vol. 3, pp. 1353-1356, 2001.

[8] Arons, B. “Techniques, Perception, and
Applications of Time-Compressed Speech”, In
Proceedings of 1992 Conference, American Voice
I/O Society, pp. 169-177, 1992.

[9] Bonada, J., “Automatic Technique in Frequency
Domain for Near-Lossless Time-Scale
Modification of Audio”, 'Proceedings of
International Computer Music Conference, 2000.

[10] Tan, R.K.C.; Lin, A.H.J, “A Time-Scale
Modification Algorithm Based on the Subband
Time-Domain Technique for Broad-Band Signal
Applications”, Journal of the Audio Engineering
Society, vol. 48, no. 5, pp. 437-449, 2000.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 17 of 18

[11] Malah D., Crochiere R.E., Cox R.V., “Performance
of Transform and Sub- band Coding Systems
Combined with Harmonic Scaling of Speech”,
IEEE Trans. Acoust. Speech, Signal Processing,
Vol. ASSP-29, No. 2, , pp. 273-283, April 1981.

[12] Wayman J.L., Wilson D.L., “Some improvements
on the synchronized-overlap-add method of time
scale modification for use in real-time speech
compression and noise filtering”, IEEE
Transactions on Acoustics, Speech, and Signal
Processing, Vol. 36 , Issue: 1, pp. 139 - 140 ,1988.

[13] Teletar, Z., Erogul, O. , “Heart sounds modification
for the diagnosis of cardiac disorders”, IJCI
Proceedings of International Conference on Signal
Processing, Vol.1, No.2, pages 101-105, 2003

[14] Rodriguez-Hernandez, M., Casajus-Quiros. F.,
“Improving time-scale modification of audio
signals using wavelets”, IC-SPAT, Vol. 2, pages
1573–1577, 1994.

[15] Lawlor, B. and Fagan, A.D., “A Novel High
Quality Efficient Algorithm for Time-Scale
Modification of Speech”, 6th Conference on Speech
Communication and Technology, 1999.

[16] Moulines, E., Charpentier, F., “Pitch-Synchronous
Waveform Processing Techniques for Text-to-
Speech Synthesis Using Diphones”, Speech
Communication, Vol. 9 (5/6), pp. 453-467, 1990.

[17] Macon, M.W.; Clements, M.A., “Speech
concatenation and synthesis using an overlap-add
sinusoidal model”, 1996 IEEE International
Conference on Acoustics, Speech, and Signal
Processing, Volume: 1, Pages:361 – 364, 1996.

[18] Verhelst W., Brouckxon H., “Rejection phenomena
in inter signal voice transplantations”, IEEE
Workshop on Applications of Signal Processing to
Audio and Acoustics, pages 165-168, 2003.

[19] Verhelst W., Van Compernolle D., Wambacq P.,
"A Unified View on Synchronized Overlap-Add
Methods for Prosodic Modification of Speech." In
Proc. International Conference on Spoken
Language Processing, vol. II, pages 63-66, 2000.

[20] Roucos S. and Wilgus A.M., “High Quality Time-
Scale Modification for Speech”, IEEE International
Conference on Acoustics, Speech and Signal
Processing, pp. 493-496, March 1985.

[21] Lee, F., “Time compression and expansion of
speech by the sampling method” Journal of the
audio engineering society, pp. 738 –742, May 1972.

[22] Fairbanks, G; Everitt, W. L. and Jaeger, R. P.,
“Method for time or frequency compression-

expansion of speech”, Trans of the Inst. of Radio
Eng professional group on audio,pp.7–12, 1954.

[23] Gabor, D., “Theory of Communication”, Journal
IEE, Vol. 93, pp. 429-457, 1946.

[24] Dudley, H., “Remaking speech”, Journal of the
Acoustic Society of America, Vol. 11, No. 2, pp.
169-175, 1939.

[25] Scott, R.J., “Time adjustment in speech synthesis”,
Journal of the Acoustical Society of America, Vol.
41, No.1, pp. 60-65, 1967

[26] Neuberg E. P., “Simple pitch-dependent algorithm
for high quality speech rate changing”, Jour. of the
Acoustical Society of America, Vol. 63, No.2,
pp.624-625, 1978.

[27] Malah, D., “Time-domain algorithms for harmonic
bandwidth reduction and time scaling of speech
signals”, IEEE trans on acoustics, speech and signal
processing, vol. ASSP-27,No.2,pp. 121–133,1979.

[28] Dorran D., Lawlor, R. and Coyle E., “Time-Scale
Modification of Speech using a Synchronised and
Adaptive Overlap-Add (SAOLA) Algorithm”,
AES 114th Convention, preprint no. 5834, 2003.

[29] Makhoul, J.; El-Jaroudi, A. “Time-scale
modification in medium to low rate speech coding”,
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing., Vol. 11 , pp:1705 – 1708, 1986.

[30] Hardam, E., “High quality time scale modification
of speech signals using fast synchronised-overlap-
add algorithms”, Proc. of the IEEE International
conference on acoustics, speech and signal
processing, pp. 409 -412, 1990.

[31] Dorran D., Lawlor, R. and Coyle E., “High Quality
Time-Scale Modification of Speech using a Peak
Alignment Overlap-Add Algorithm (PAOLA)”,
IEEE International Conf. on Acoustics, Speech and
Signal Processing, Vol. 1, pp. I-700 – I-703, 2003.

[32] Goodwin, M.; Vetterli, M., “Time-frequency signal
models for music analysis, transformation, and
synthesis”, IEEE Int. Sym. on Time-Frequency and
Time-Scale Analysis, Pages:133 – 136, 1996.

[33] Lee, S., “Variable Time-Scale Modification of
Speech using Transient Information”, IEEE Int.
Conf. on Acoustics, Speech, and Signal
Processing, pp. 1319 -1322 vol.2., 1997

[34] Wong P.H.W., Au O.C., "Fast SOLA-based Time
Scale Modification using Envelope Matching,"
KAP Journal of VLSI Signal Processing-Systems
for Signal, Image, and Video Technology, vol. 35,
no. 1, pp. 75-90, 2003.

Dorran et al. Comparison of Time-Scaling Algorithms

AES 120th Convention, Paris, France, 2006 May 20–23
Page 18 of 18

[35] Verhelst, W.; Roelands, M., “An overlap-add
technique based on waveform similarity (WSOLA)
for high quality time-scale modification of speech”,
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, pp. 554 -557 vol.2, 1993

[36] Laroche, J., “Autocorrelation method for high-
quality time/pitch-scaling”, IEEE Workshop on
App’s of Signal Processing to Audio and Acoustics,
pp.131-134, 1993.

[37] Charpentier F. and Moulines E., “Pitch-
synchronous waveform processing techniques for
text-to-speech synthesis using diphones”, Speech
rcommunication, vol. 9, No.s 5/6, pp 13-19, 1990.

[38] Moulines, E. and Laroche, J., “Non-parametric
techniques for pitch-scale and time-scale
modification of speech”, speech communication 16,
pp. 175-205, 1995.

[39] Moulines, E. and Verhelst W., “Time-Domain and
Frequency-Domain Techniques for Prosodic
Modification of Speech”, Speech coding and
synthesis, 1995.

[40] Bristow-Johnson, R., “A Detailed Analysis of a
Time-Domain Formant-Corrected Pitch-Shifting
Algorithm”, Journal of the Audio Engineering
Society, Volume 43, Number 5, pp. 340-352, 1995.

[41] Mitra S.K., Kaiser J.F., “Handbook for digital
signal processing”, Wiley interscience, 1993.

[42] Patterson D.A., Hennessey, J.L., Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 2nd ed., 1996.

[43] Wong, P.H.W.; Au, O.C., “Fast SOLA-based time
scale modification using modified envelope
matching”, IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, vol. 3, pp:III-3188 - III-
3191, 2002

[44] Yim, S.; Pawate, B.I, “Computationally efficient
algorithm for time scale modification (GLS-TSM)”,
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing , Vol: 2. pp. 1009 -1012, 1996.

[45] http://wave.ldc.upenn.edu/Catalog/docs/TIMIT.htm
l

[46] Markel, J., “FFT pruning”, IEEE Trans on Audio
and Electroacoustics, vol: 19/4, pp:305 – 311, 1971

[47] Oppenheim A.V., Shafer R.W., “Digital Signal
Processing”, Eaglewood Cliffs,Prentice-Hall, 1975.

[48] Laroche, J.; Dolson, M., “Improved Phase
Vocoder”, Speech and Audio Processing, IEEE
Transactions on speech and audio processing,
Volume: 7 Issue: 3 , Page(s): 323 –332, May 1999.

[49] Griffen, D, W. and Lim, J. S., “Signal Estimation
from modified short-time Fourier Transform”,
IEEE trans on acoustics, speech and signal
processing, Vol. ASSP-32, No.2, pp.236-243, 1984.

[50] Coolidge F.L., “Statistics: A Gentle Introduction”,
Sage Publications, 2000.

[51] Di Martino, J.; Laprie, Y., “Suppression of
phasiness for time-scale modifications of speech
signals based on a shape invariance property”,
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, vol: 2 , pp:853 – 856, 2001.

[52] Covell, M.; Withgott, M.; Slaney, M., “MACH1:
nonuniform time-scale modification of speech”,
IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Vo: 1, pp. 349 - 352 , 1998.

[53] Crokett B.G., “High Quality Multi-channel Time-
Scaling and Pitch-Shifting using Auditory Scene
Analysis”, Audio Engineering Society Convention,
preprint no. 5948, 2003.

[54] Duxbury C., Davies M., Sandler M., “Temporal
Segmentation and Pre-analysis for Non-linear
Time-scaling of Audio”, 114th Convention of the
AES, Preprint no. 5812, 2003.

[55] Smith, J. O. and Serra, X., “PARSHL: An Analysis
/Synthesis Program for Non-Harmonic Sounds
based on a Sinusoidal Representation”, Proceedings
of the International Computer Music Conference,
pp. 290 – 297, 1987.

[56] Dorran D., Lawlor, R., “Time-scale modification of
music using a subband approach based on the bark
scale”, IEEE Workshop on the Applications of
Signal Processing to Audio and Acoustics, pages
173-176, 2003.

[57] Dorran D., Lawlor R., “Time-scale modification of
music using a synchronized subband/time-domain
approach,” IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. IV
225 – IV 228, 2004.

	A Comparison of Time-domain Time-scale Modification Algorithms
	Recommended Citation

	A Comparison of Time-domain Time-scale Modification Algorithms

