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ABSTRACT 

 

While active learning for classification problems has received considerable attention in 

recent years, studies on problems of regression are rare. This paper provides a systematic 

review of the most commonly used selection strategies for active learning within the 

context of linear regression. The recently developed Exploration Guided Active 

Learning (EGAL) algorithm, previously deployed within a classification context, is 

explored as a selection strategy for regression problems. Active learning is demonstrated 

to significantly improve the learning rate of linear regression models. Experimental 

results show that a purely diversity-based approach to active learning outperforms more 

traditional algorithms such as Query-By-Committee. 
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1 INTRODUCTION 

1.1 Background 

Machine learning is a branch of artificial intelligence which aims to allow computers to 

“optimize a performance criterion using example data or past experience” (Alpaydin, 

2014). Within the domain of data analytics, this performance criterion is usually the 

ability to predict an outcome given a set of input data. Machine learning has been applied 

to a wide range of problems, such as understanding natural language (Zhu et al., 2008), 

document classification (Lewis and Gale, 1994), and sentiment analysis (Blitzer et al., 

2007), among others. Machine learning algorithms are typically trained using data which 

has been labelled by an oracle, usually a human expert. 

Early approaches to developing and training these algorithms were rooted in the 

framework of supervised learning. Supervised learning is a two-step process, whereby 

data is first gathered and labelled by an oracle (usually a human expert); after this has 

been done the labelled data is then used to train a model to make predictions about 

similar, but as-yet unseen data. Labelled data is not always easy to collect, and there are 

many cases in which it is “very difficult, time-consuming, or expensive to obtain” 

(Settles, 2010).  

In recent years, there has been more focus on the cost involved in labelling data, (Settles 

et al., 2008a, Margineantu, 2005), which has coincided with the increasing popularity of 

active learning. Active Learning rests on the assumption that a machine learning 

algorithm “can perform better with less training if it is allowed to choose the data from 

which it learns.” (Settles, 2012). Active learning helps avoid unnecessary time, money 

and effort being spent on labelling data which will not improve the resulting model. 

Machine learning problems can be categorised as either classification or regression 

problems, depending on the output type of the data on which they operate. Classification 

problems assign a class label to input data, separating it into one of a number of distinct 

groups. Many classification problems are binary, for example “spam” or “not spam” in 

the case of emails, “customer likely to leave” or “customer not likely to leave” in the 

domain of churn prediction, etc. Classification problems need not be binary, however, 
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and may have multiple potential labels, or “class values”, as with problems of 

categorizing text documents based on content, or word-sense disambiguation in natural 

language processing. 

Regression problems, on the other hand, have continuous-valued outputs. Unlike 

classification problems, for which there are a set finite number of answers from which 

to choose, regression problems, being continuous, have an infinite number of potential 

answers. Regression problems occur when the output is numeric, as in the case of house 

prices, for example, or scale-based, as when predicting the level of suspicion of a credit-

card transaction. 

The output of a classification model is always either right or wrong. If the predicted class 

value matches the actual class value the prediction is correct, otherwise it is incorrect. 

Where there are multiple potential class values, all incorrect class values are generally 

considered to be “equally incorrect”. This is not the case with regression problems. The 

“error” of a regression model is measured as the difference between the predicted class 

value and the actual class values; thus a prediction which is “close” to the actual value 

is “more correct” than a prediction which significantly misses the mark. This difference 

is fundamental for active learning algorithms; its ramifications will be explored more 

fully in Section 2.4. 

Most of the existing research in Active Learning has been on problems of classification, 

a 2013 study in active learning for regression points out that while active learning has 

been “extensively studied for classification problems … there is still very limited work 

on active learning for regression” (Cai et al., 2013). As active learning for regression has 

yet to gain wider popularity, the choice of suitable active learning algorithms lacks a 

solid statistical underpinning (see Section 2.5). 

1.2 Research Project 

While a number of active learning algorithms have been proposed for use in regression 

problems, and demonstrated to outperform a baseline measurement, this project aims to 

provide a comparison between the current state-of-the-art approaches; and identify the 

most effective general-purpose selection strategies. 
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In addition to comparing the current state-of-the-art, this project investigates the 

applicability of the newly proposed Exploration Guided Active Learning (EGAL) 

selection strategy – previously studied in the context of classification – to active learning 

with linear regression.  

The research question this project aims to answer is 

“Can active learning selection strategies based on integral dataset properties combined 

with an analysis of prediction model output be used successfully for linear regression 

models?” 

1.3 Research Objectives 

The objective of this project is to establish the effectiveness of the current state-of-the-

art active learning algorithms in the context of regression problems. In order to achieve 

this objective, the following goals have been defined 

1. To explore the current state-of-the-art in active learning for regression 

2. To establish optimal parameters for applying EGAL to regression problems 

3. To identify suitable performance measures for evaluating active learning 

algorithms for regression. 

4. To compare all algorithms on multiple datasets, and establish the statistical 

significance of differences in performance 

1.4 Research Methodologies 

In order to accomplish the research goals defined in Section 1.3, this project uses both 

secondary research, in the form of a literature review, and empirical research, consisting 

of the implementation and evaluation of multiple active learning selection strategies 

across a range of real-world datasets. The approach this dissertation takes can be broken 

down into the following intermediary goals. 

1 A literature review is conducted to explore the current state-of-the-art in active 

learning for regression (objective 1) 
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2 A review of the most commonly used statistical tests and performance 

measures for verifying algorithm effectiveness is carried out identifying those 

most appropriate for the problem at hand (objective 3) 

3 The EGAL selection strategy is implemented in Java and tested on an artificial 

dataset to establish the optimal parameters for use in regression problems 

(objective 2) 

4 The selection strategies identified in objective 1 and 2 are implemented in Java, 

and evaluated across ten real-world datasets; these evaluations are statistically 

validated using the findings from objective 3  (objective 4) 

1.5 Scope and Limitations 

 This project discusses the application of active learning selection strategies to 

linear regression models. While a number of alternatives to linear regression 

have been developed, a full treatment of these approaches, though merited, is 

beyond the scope of the current work. 

 Due to the computational intensity of training a linear regression on extremely 

large datasets, data reduction was performed on a number of datasets in the form 

of feature selection and observation filtering. 

 Although a potential improvement to the EGAL algorithm when used in the 

context of regression is suggested; the time required to fully develop and test a 

new derived algorithm makes a concrete implementation infeasible under the 

scope of the current project. 

1.6 Document Outline 

This dissertation is organized into the following sections 

 Chapter 2 provides an overview and background of the current state-of-the-art 

approaches to active learning; both in the context of classification and regression. 

The most prominent selection strategies applicable to continuous-valued outputs 

are discussed; and EGAL, a recent innovation, is introduced. This chapter also 

examines the recommended approaches to hypothesis verification, focussing 

particularly on the work of Demšar (2006). 
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 Chapter 3 discusses the experiment design and research methods employed, 

outlining the datasets used, the steps taken in preparing the data and the choice 

of global parameters used in the experiment. This chapter also gives an overview 

of the selection strategies used, and the perfomance measures chosen on which 

the algorithms are evaluated. 

 Chapter 4 reports the findings of the experiments conducted, both in determining 

optimal parameters for the EGAL selection strategy and in comparing the active 

learning selection strategies under review. 

 Chapter 5 builds on the preceeding chapter, discussing the findings in detail and 

suggesting an optimal algorithm for active learning for regression. 

 Chapter 6 provides a summary of the dissertation and outlining its contributions 

to the current body of knowledge. Future research is recommended. 
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2 STATE-OF-THE-ART 

2.1 Introduction 

A major application of machine learning is the development of algorithms which use 

known examples to make predictions about previously unseen data. Very often, these 

algorithms are interested in a single output, or response, variable; also known as a label. 

Machine learning models are usually trained on samples of previously labelled data 

which allow it to make inferences about the population as a whole. These inferences can 

then be used to deduce likely labels for unseen data.  

The quality and quantity of the data used to train a model has a significant impact on the 

resulting algorithm’s accuracy in labelling unseen data. Provided samples are drawn 

from the population without bias, increasing the number of samples, will increase the 

approximation to the overall population. Figure 1 below demonstrates this by plotting x 

against sin(x). The sine wave pattern becomes more apparent as the number of 

observations plotted increases. 

 

Figure 1 In the example above, values of x were drawn i.i.d from N(10,2) and corrupted using noise levels of N(0, 

0.5). The sine wave becomes more apparent as the number of observations increases 
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There are many situations in which labelling data for use in training a model is 

expensive; for example, recognition of parts of speech, or extracting entity-related 

features from documents (Settles, 2010). In these cases; it is not always possible to 

simply increase the number of labelled examples to improve an algorithm’s efficiency. 

However, judicious selection of which observations to label and add to the training set 

can vastly improve the predictive power of even a small number of observations; as 

shown in Figure 2. 

 

Figure 2 The sine wave function is apparent even with a small number of observations when these observations are 

carefully chosen. The figure on the left selects only observations with no noise, evenly distributed across the x axis. 

The figure on the right relies on random sampling from a normal distribution,  

Exploring approaches to determining which observations will be of maximum utility in 

training a model, otherwise known as active learning, constitutes an entire sub-field of 

machine learning. This chapter will examine the state-of-the-art practices in active 

learning research, particularly as it applies to problems of regression. Section 2.2 gives 

an overview of the main subdivisions within the field of active learning. Section 2.3 

reviews the most commonly employed selection strategies in active learning problems. 

Section 2.4 discusses the challenges in developing selection strategies particular to 

problems of regression. Finally, Section 2.5 explores statistical methods for comparing 
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the performance of Active Learning algorithms, both in problems of classification and 

regression. 

2.2 Active Learning 

Active learning is a subfield of semi-supervised learning. Unlike supervised learning, 

which requires data to be labelled (or annotated) with its outcome, or target value; semi-

supervised learning aims to harness the power of both labelled and unlabelled data in 

generating models. Although not as prominent as supervised learning, interest in semi-

supervised learning has grown in recent years, stemming from the growing recognition 

of data labelling as an “additional, error-prone preparation process” (Schwenker and 

Trentin, 2014). Active learning aims to minimize labelling costs by ensuring that only 

the most useful observations are labelled. There are three major approaches to active 

learning, defined by the manner in which the algorithm gains access to the data to be 

labelled; membership query synthesis, pool-based active learning, and stream-based 

active learning. 

2.2.1 Membership Query Synthesis 

One of the earliest approaches to active learning, membership query synthesis, was 

introduced by Angluin (1988). Within a framework of Membership Query Synthesis, 

the model is allowed to ‘invent’ the data, often referred to as generating a query de novo. 

While this method allows the model to learn intelligently by optimizing the input data 

for rapid improvement; studies have shown (Baum and Lang, 1992) that humans tend to 

have difficulty accurately labelling such artificial data. Recent research, however, by 

King et al. (2009) and King et al. (2004) has demonstrated that this approach may be 

effective when in the context of automated scientific experiments, where the label does 

not depend on human interpretation. 

2.2.2 Stream-based Active Learning 

Stream-based active learning is employed when models select existing queries for 

labelling, rather than generating them de novo. In a stream-based active learning context, 

the algorithm must consider each query in isolation from all others. In some cases (Loy 

et al., 2012), the incoming query is checked against the existing classifier to measure 
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uncertainty; those about which a classifier is uncertain are more likely to be sampled, as 

they are expected to add to the predictive power – or confidence – of the current 

classifier. In other cases, the incoming queries are labelled if they appear to shed light 

on underlying unobservable patterns, as in the Hidden Markov Model (Anderson and 

Moore, 2005). The main limitation of stream-based learning on the selection strategy is 

that the pool of unlabelled data is not available to the model when the next suitable query 

is being selected, meaning the usefulness of each observation must be considered in 

isolation. In situations where this is not the case, a pool-based active learning approach 

is popular.  

2.2.3 Pool-based Active Learning 

Pool-based active learning is perhaps the most prominent subfield of active learning, 

and has received increased attention in recent years as unlabelled data has become easier 

to collect (Settles, 2010). Pool-based active learning assumes that the model has access 

to the entire set of unlabelled data at selection time. As with transductive learning 

(Vapnik, 2013), a related branch of semi-supervised learning, pool-based active learning 

leverages information gleaned from examining the distribution and features of the as-

yet unlabelled data to rank all instances in the unlabelled pool (or some subset thereof), 

according to some chosen informativeness measure. 

Some of the most common informativeness measures for pool-based active learning are 

uncertainty sampling (Lewis and Gale, 1994), query-by-committee (Seung et al., 1992) 

and expected model change (Settles and Craven, 2008). These strategies, along with 

some less popular but equally important alternatives will be discussed in greater detail 

in Section 2.3. 

2.3 Active Learning Selection Strategies 

This section describes the most prominent selection strategies used in active learning. 

Section 2.3.4, however, describes EGAL, a recently introduced approach (Hu, 2011), 

which has yet to gain widespread adoption. 
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2.3.1 Uncertainty Sampling 

Uncertainty sampling seeks to label the observations for which the current classifier is 

least confident. This approach is visualized in Figure 3. The reasoning behind this is that 

labelling observations close to the decision boundary will enable the model to fine tune 

its knowledge of the spatial limits of each group. Labelling a query which is not close to 

the decision boundary will add little extra knowledge to the current model. 

 

Figure 3 Uncertainty Sampling in a clustering problem. The model is more likely to select unlabelled queries (shown 

in black) which are close to the decision boundary, depicted as a red line 

In the context of regression problems, uncertainty sampling is a common approach for 

neural networks (MacKay, 1992) or support vector machines (Tong and Koller, 2002). 

Uncertainty sampling has been criticised on the basis that it sometimes queries outliers 

which add little or no value to the model (Roy and McCallum, 2001). Its utility when 

used in conjunction with linear regressions is limited; as these models do not readily 

offer localized measures of confidence; and any changes to the model’s parameters are 

global. This means that the accuracy of all observations is affected; as opposed to 

classification problems, where a small change in the decision boundary will affect only 

observations in the immediate proximity. 
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These problems can be overcome by using regression models with localized variances, 

such as kernel ridge regression, which through the use of localized weights, can adapt 

the predictive function depending on the ‘position’ of the observation in the general 

feature space. Recent work (Douak et al., 2013) has begun to explore applications of 

uncertainty sampling to kernel ridge regression. Douak’s study, predicting wind speeds 

in Algeria showed that uncertainty sampling consistently outperforms a random 

baseline. This direction of research could prove to be an exciting and innovative field in 

the coming years; and increased attention appears to be merited. 

2.3.2 Query-by-committee 

Query-by-committee (QBC) is an ensemble-based selection strategy. The use of 

ensembles – or combining predictions from multiple sources – has a long history, 

predating the field of machine learning. Clemen, in his review of the practice of 

combining forecasts, quotes Laplace, a 19th century mathematician as observing that “In 

combining the results of these two methods, one can obtain a result whose probability 

law of error will be more rapidly decreasing” (Clemen, 1989). In the field of machine 

learning, ensemble models combine the output of various individual classifiers, which, 

ideally, are all accurate and tend to “make their errors on different parts of the input 

space” (Opitz and Maclin, 1999). 

In the context of active learning, query by committee selection strategies train K different 

classifiers in such a way that each classifier has a slightly different view of the data. 

Technically speaking, each classifier represents a competing hypothesis consistent with 

labelled dataset (Settles and Craven, 2008). By definition, the most informative instance 

in the case of QBC, is the one on which the individual members of the committee 

disagree most. 

One of the most common methods of generating a committee of classifiers, and that used 

by Burbidge et al. in their study of active learning for regression (Burbidge et al., 2007) 

is to train multiple classifiers (or regressors) on different subsets of the labelled data. 

This can be done either through bootstrap aggregating (bagging) the labelled dataset; i.e. 

generating subsamples of the data by sampling uniformly and with replacement, as 

described by Breiman (1996), or using a leave-one-out method, where the data is divided 
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into k equal subsamples, where k is the number of classifiers in the committee, and each 

classifier is trained on (k – 1) subsamples of the data. The latter is the approach used by 

Burbidge. 

QBC rests on a number of assumptions which are unlikely to be met in many real-world 

scenarios. These assumptions include that the data is noise-free, a perfect deterministic 

classifier exists, and that it is possible to draw classifiers randomly from the version 

space (Lewis and Gale, 1994). Although from this perspective, QBC is usually employed 

for ‘unsuitable’ problems, empirical findings from Burbidge et al. (2007) employing 

QBC for linear regression models, on both artificial and real-world data, numerous 

studies by Cohn et al. (1994), and Cohn (1996) using QBC with neural networks, and 

research by McCallum and Nigam (1998) in text classification using Bayesian classifiers 

have all shown that QBC is a powerful Active Learning selection strategy; which, for 

the purposes of this paper is considered the established state-of-the-art. 

2.3.3 Expected Model Change 

The Expected Model Change algorithm is derived from the earlier Expected Gradient 

Length, (EGL) introduced by Settles et al. (2008b). The idea behind Expected Gradient 

Length is to favour instances which “would impart the greatest change to the current 

model if we knew its label”. (Settles, 2010). The intuition behind this approach is that “it 

prefers instances that are likely to influence the model” (Settles, 2010). It does not 

explicitly seek to guarantee that this influence results in increased accuracy, instead 

relying on the fact that after repeated applications of the process, the maximal model 

change, and hence accuracy over a given training set will quickly converge as more 

labels are added. Cai et al. summarize this, saying that “if the model is changed due to 

an outlier, this sampling strategy will certainly choose a good example that can 

maximize change again in the next data round, so that the negative effect of the outlier 

will be relieved” (Cai et al., 2013). 

The Expected Gradient Length algorithm introduced in Multiple Instance Active 

Learning (Settles et al., 2008b) uses the learner’s “current belief” to approximate an 

instance’s actual class label. In the context of a classification problem, this current belief 

can be inferred from the posterior probabilities for each potential class label. The 
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algorithm can be generalized however, to adopt any feasible approach to determining a 

probable label for a given instance. Cai et al. (2013), in their implementation of EGL for 

regression, referred to in their paper as Expected Model Change (EMC), use an approach 

similar to QBC described in 2.3.2. A committee of regression learners is generated using 

bootstrap sampling (Efron, 1979); i.e. repeatedly sampling from the training set with 

replacement, to generate a number of datasets which, while representative of, differ 

slightly from the initial training data. The “current belief” of the current learner is 

approximated as the average value obtained from the committee of learners. Whereas 

QBC scores an instance based on the level of disagreement within the committee, EMC 

scores an instance based on the level of disagreement between the committee and the 

actual learner. 

2.3.4 Exploration Guided Active Learning 

Exploration Guided Active Learning (EGAL) was introduced by Hu, (2011) who 

explored its application to problems of text classification. Whereas QBC and EMC 

approaches to active learning are diversity based strategies, which aim to quickly 

‘explore’ the data; basing their prediction of the usefulness of an unlabelled instance on 

the perceived difference between that instance and the labelled dataset; EGAL is an 

example of a density-weighted approach, which also takes into account the 

representativeness of each instance of the dataset as a whole.  

Zhu et al. (2008) have demonstrated that combining density-related information can help 

learners avoid querying outliers, which could otherwise end up reducing the accuracy of 

the model. By calculating the similarity between an instance and its K-nearest 

neighbours; outliers i.e. those instances which have very little similarity to their nearest 

neighbours, can be avoided as being unrepresentative of the data. The advantage of this 

approach is illustrated in Figure 4. 
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Figure 4 Negative Impact of outliers on learner effectiveness - Querying an outlier (red) can sometimes reduce the 

accuracy of the overall model. In this case, the most representative example, (cyan) provides a greater overall accuracy 

to the model 

It is important to note that diversity of some form is still important in density-weighted 

approaches. Zhu et al. (2008), combine density with an uncertainty sampling metric to 

select the most uncertain samples while disregarding outliers. The discussion of EMC 

(see Section 2.3.3), demonstrates that some level of diversity is required in order to 

change the output of the leaner. Density weighted approaches seek to balance this 

requirement with a level of robustness against unhelpful, or even harmful outliers, as 

demonstrated above. 

2.3.4.1 Density in EGAL 

The EGAL approach to active learning calculates the density of each observation within 

the entire dataset, both labelled and unlabelled using any suitable similarity measure. 

The density of a given example, x is calculated as the sum of similarities between that 

example and all examples falling within a certain predefined neighbourhood. Formally 

speaking, density is defined by the equation 
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∑ 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑟)

𝑥𝑟 ∈𝑁𝑖

 

where 

𝑁𝑖 = (𝑥𝑟 𝜖 𝒟|𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑟) ≥ 𝛼) 

Equation 1 Density function in EGAL 

 

In the equations above, α is a parameter which controls the minimum similarity required 

between two examples for them to be considered neighbours. Thus, the similarity 

between examples which are less similar than the α parameter are ignored when 

calculating density. 

2.3.4.2 Diversity in EGAL 

While density is calculated between all examples, regardless of whether they are labelled 

or unlabelled, the diversity measure used in EGAL is the inverse similarity between an 

unlabelled example, x, and its nearest labelled example. Candidates for labelling are 

drawn from a subset of the unlabelled data, where the diversity measure exceeds a given 

threshold, β. Once all candidates have been labelled, the β threshold is dynamically 

decreased, to allow previously excluded examples to be considered. 

The β threshold is determined is determined by a parameter ω, which controls the 

proportion of the unlabelled dataset which are added to the candidate set when β is 

updated. 

2.3.4.3 Density and Diversity Combined 

When selecting an example for labelling, the EGAL algorithm first produces a candidate 

set of examples sufficiently diverse from the currently labelled examples to be 

considered. These examples are then labelled in order of density, with the densest 

examples considered to be the most useful, and therefore labelled first.  

The choice of ω parameter was shown to play an important role in the effectiveness of 

the EGAL selection strategy. The ω parameter controls the size of the candidate set, and 

therefore the level of bias of the EGAL algorithm towards density. An ω parameter of 
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0.5 would result in 50% of the remaining unlabelled data being added to the candidate 

set after each update. A parameter value of 1 results in a density-only approach, as all 

unlabelled examples are added to the candidate set, regardless of their diversity score. A 

parameter value of 0 results in purely diversity-based sampling, as only the most diverse 

example is added to the candidate set; and so will be selected regardless of density. When 

an ω parameter of 0.25 was used, the EGAL algorithm was shown to consistently 

outperform random-sampling, diversity-only and density-only approaches to active 

learning for text-classification. The results of Hu’s study (Hu, 2011), show that EGAL 

is a promising approach to active learning; but further research is needed to establish 

EGAL as an effective general-purpose algorithm, across a broad range of problem 

contexts. 

2.4 Active Learning for Regression 

The approaches outlined above have been applied primarily to problems of 

classification. Classification models map each input, or observation, to a real-valued 

vector space, χ, and to each of these vector spaces assign a single class label ϒ, drawn 

from a finite set of potential labels, “representing the ground truth of the classification 

problem at hand” (Schwenker and Trentin, 2014). Regression models, on the other hand 

map each input, x to a real-valued output. Accuracy cannot be measured in binary terms 

of correct answers vs. incorrect answers as with classification, leading to differences in 

the way models are evaluated. 

A common evaluation metric for Linear Regression models is the Root Mean Squared 

Error (RMSE); which approximates the average numeric difference between a model’s 

predictions and actual class values. As error is measured continuously, any change in 

the model will affect the error of all labelled examples. Uncertainty sampling, discussed 

in Section 2.3.1 aims to adjust the model’s decision boundaries; a small change to the 

decision boundary between classes can increase the accuracy of the model in the 

immediate locality, and leave the accuracy of the rest of the input space unchanged. This 

approach, however, is not possible for regression problems. 

Much of the recent literature in Active Learning for regression has applied approaches 

which have been tried and tested in a classification setting to regression problems. 
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Burbidge et al. (2007) apply QBC to linear regression problems, while Cai et al. (2013) 

carry out a similar experiment using EMC. 

2.5 Statistical Tests for Algorithm Performance 

The use of statistical tests for comparing machine learning algorithms has increased in 

recent years, which is attributed by Demšar (2006) both to the maturity of machine 

learning as an academic discipline, and to the publication of a study on the use of 

statistical tests for comparing classification algorithms by Dietterich (1998). In recent 

years, systematic hypothesis testing has come to be seen as not just a desirable, but a 

necessary step in confirming whether a new proposed method offers a significant 

improvement over the existing alternatives (Derrac et al., 2011). Growing awareness of 

the importance of choosing an appropriate statistical test to the problem at hand has led 

to a number of studies evaluating the strengths and weaknesses of different methods of 

hypothesis verification. (Derrac et al., 2011, Luengo et al., 2009, Trawiński et al., 2012) 

2.5.1 Evaluating Hypothesis Tests 

When a machine learning paper introduces a new algorithm or enhancement to an 

existing algorithm, “an implicit hypothesis is made that such an enhancement yields an 

improved performance over the existing algorithm(s)” (Demšar, 2006). In order to verify 

this hypothesis, the common statistical approach of rejecting the null hypothesis is taken. 

The researcher hypothesises that there is no statistically significant improvement offered 

by the new approach. Statistical tests are then used to assess the likelihood of the null 

hypothesis being the case. If the probability of the null hypothesis being true is 

sufficiently small, it can be rejected, implying that the new approach does, in fact, offer 

a statistically significant improvement over the alternatives. This probability is usually 

represented in statistical tests as a p value, which is the probability of the null hypothesis 

being true. If a statistical test yields a p value lower than a pre-selected threshold – 

usually 0.05 (5%) and 0.01 (1%) (James et al., 2014) - the researcher can then reject the 

null hypothesis. 

Tests for statistical significance can yield two types of errors. Firstly, the null hypothesis 

may be rejected in error. This is known as a Type I error, and leads to a false positive 
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i.e. an algorithm is found to be significantly better than the alternatives when in fact it is 

not. Alternatively, a statistical test may fail to reject the null hypothesis when it should, 

in fact, be rejected. This is known as a Type II error, and leads to false negatives i.e. an 

algorithm is not found to be significantly better than the alternatives when in fact it is. 

Using hypothesis tests which are not suited to the data can increase the probability of a 

Type II, or more worryingly, a Type I error, as Dietterich has shown (1998). 

2.5.2 Testing Multiple Classifiers over Multiple Datasets 

When comparing two classifiers on a single dataset, the McNemar test (Salzberg, 1997), 

or more recently, T or F tests after cross validation (Alpaydin, 1999, Dietterich, 1998) 

are commonly used. Demšar (2006), however, has warned that these tests are prone to 

Type I errors when applied repeatedly to multiple classifiers. An example will help to 

illustrate why this is the case. 

A researcher is comparing 5 algorithms on a single dataset. The accuracy of each 

classifier is then computed, and the results of each algorithm are compared to all others, 

and tested for statistical significance. For each test, the null hypothesis is formulated as 

there is no significant difference between the performance of Algorithm A and Algorithm 

B on the given dataset. The researcher decides to reject the null hypothesis if tests 

indicate that there is at most a 5% chance of a Type I error. If the null hypothesis is 

rejected the researcher can then say with 95% confidence that there is a significant 

difference between the performances of the algorithms under scrutiny. The researcher 

repeats this test on each pair of algorithms, leading to a total of (5
2
) or 10 tests. The 

probability of making a Type I error on any single test is 0.05. However, the probability 

of making a Type I error on at least one test is now (1 – 0.05)10 or roughly 60%. 

Although pairwise testing when comparing multiple algorithms across many datasets 

can significantly increase the chance of Type I errors, as shown above, it is still used in 

the literature. (Cai et al., 2013, Zhou et al., 2002). Tests across multiple domains, such 

as the Analysis of Variance (ANOVA) test, and the related Friedman test for statistical 

significance, are potential alternatives to pairwise T-testing. Instead of testing each 

algorithm separately against all others, the null hypothesis of tests across multiple 
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domains is that all classifiers perform equally well and that any observed difference are 

due to randomness (Demšar, 2006). If the null hypothesis is rejected, post-hoc tests can 

be used to ascertain which algorithms stand out. 

2.5.3 Parametric and Non-Parametric Tests 

Parametric statistical tests make assumptions about the underlying population from 

which the data has been drawn. When these assumptions are met, parametric tests can 

be more accurate than their assumption-free, non-parametric equivalents. However, 

Demšar (2006) stresses that using parametric tests inappropriately can lead to “elevated 

Type I errors”. It is therefore important to understand the assumptions underpinning 

parametric tests before utilising them in research. The ANOVA test is a parametric test 

which has been recommended for multiple comparisons across datasets (Vázquez et al., 

2001), provided its assumptions are met. 

The ANOVA test seeks to divide the variance found in the results between “variability 

between the classifiers, variability between the data sets and the residual (error) 

variability” (Demšar, 2006). The researcher is generally interested in the variability 

between the classifiers, as when this is high enough, he or she is then in a position to 

conclude that there is a significant difference in classifier performance. The ANOVA 

test assumes independence between performances on each dataset, making it unsuitable 

where datasets have been resampled. It also assumes that scores across each dataset are 

normally distributed. Demšar, however, points out, that in practice this is rarely a 

problem and most statisticians “would not object to using ANOVA unless the 

distributions were […] clearly bi-modal” (Demšar, 2006). More importantly, ANOVA 

assumes sphericity; i.e. that the variances in scores between all groups are equal. This is 

a particular problem for regression analysis, where root mean squared error (RMSE) is 

used as a performance measure. The scale of the output variable has a large impact on 

absolute RMSE values. The RMSE when calculating house prices in dollars will 

naturally be higher than the RMSE when calculating subjective ratings given on a scale 

of 1 – 10. Because of this, there is no commensurability between results across different 

datasets, and the ANOVA test is not usually suitable for determining statistical 

significance. 
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The Friedman test (Sheskin, 2003), is a popular alternative to the ANOVA test when the 

assumptions of ANOVA are not met. The Friedman test replaces absolute score values 

with ranks. Assuming an experiment is conducted over K datasets, a rank of 1 will be 

assigned to the best performing algorithm on each dataset, 2 to the second-best up to a 

rank of K for the worst-performing algorithm. This approach eliminates the problem of 

incommensurability of results between datasets; as absolute measures are discarded and 

only the relative performance of each algorithm to all others is retained. 

One potential shortcoming of the Friedman test is that ranks are applied only within 

datasets, so it does not differentiate between decisive and marginal ‘wins’. Trawiński et 

al. (2012) have demonstrated that the Friedman aligned rank tests is a more powerful 

test, which assigns ranks across all datasets. In order to compare across datasets, the 

scores within each dataset are first ‘aligned’; using distance from the average score for 

each classifier on that dataset. This ensures commensurability of results between 

datasets; which in turn allows us to assign ranks across, rather than within datasets. 
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3 DESIGN / RESEARCH METHODS 

3.1 Experimental Methods 

The following section outlines the datasets used when comparing active learning 

algorithms, outlining the features of each dataset, the preparatory work carried out on 

the data prior to conducting the experiment, as well as the global experimental 

parameters used. 

3.1.1 Datasets Used 

Each of the selection strategies under consideration were tested on ten separate datasets, 

taken, mainly from the UCI machine learning repository. 

Dataset # Attributes Size Provenance 

House Prices 14 506 UCI Machine Learning Repository 

Bike Sharing 

Demand 

9 2000 UCI Machine Learning Repository 

Scale Dataset 

(Dennis Schwartz) 

500 1027 Association for Computational 

Learning 

Online News 

Popularity 

60 2000 UCI Machine Learning Repository 

Auto MPG 8 392 UCI Machine Learning Repository 

Concrete 9 1030 UCI Machine Learning Repository 

Red Wine 12 1599 UCI Machine Learning Repository 

White Wine 12 2000 UCI Machine Learning Repository 

Treasury 16 1049 UCI Machine Learning Repository 

Yacht 7 309 UCI Machine Learning Repository 

Table 1 Overview of datasets used 

3.1.2 Data Preparation 

Three nominal attributes were removed from the bike sharing demand dataset as these 

are not useful in a regression model. Furthermore, two derived attributes which could be 

used to directly calculate the output value (number of registered bike users and number 
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of casual users) were omitted. The number of observations in each dataset was limited 

to the first 2000 encountered in the original dataset to facilitate computation. The table 

above outlines the features of the datasets after these treatments. Datasets were chosen 

to have real-valued, rather than class-valued outputs; to facilitate the use of a linear, 

rather than logistic, regression model. All attributes were normalized using feature 

rescaling as shown in Equation 2, for use both in the linear regression model and when 

computing distances between observations. 

 

Equation 2 Feature Scaling Function 

The subjectivity dataset was converted to a unigram bag of words; each word was 

included as a feature, with the number of occurrences in a particular review as the 

feature-value. This resulted in an extremely large dataset, presenting onerous 

computational requirements. In order to facilitate computational performance, and 

following the approach of Blitzer et al. (2007); extensive feature selection was 

performed, selecting only the most ‘informative’ features. In the case of the subjectivity 

dataset, the top 500 features (from a total set of roughly 20,000) were selected, with 

occurrence count used as a rough heuristic to determining the informativeness of a 

particular feature. Before selecting the most commonly occurring words, commonly 

occurring stop words were removed from the feature-set. The list of stop words used 

was a combination of those collated by the Natural Language Toolkit Python project; 

and a small number of domain-specific stop words (e.g. film) identified manually. While 

feature selection on this scale runs the risk of generating underspecified models; we are 

interested only in the relevant performance of multiple regressors on the same dataset, 

and not their absolute values. No normalization was performed during data preparation, 

as normalization occurs when generating the linear regression models. 
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3.1.3 Resampling 

When establishing reliable estimates of an algorithm’s performance on a given dataset, 

it is usual to employ cross validation or resampling techniques (Demšar, 2006). Cross 

validation and resampling make it possible to run multiple tests on a single dataset; the 

mean square error and variance between tests can then be used to determine significant 

differences between model performances. However, care must be taken when evaluating 

the output of experiments conducted using the above techniques, as functions for 

computing statistical significance make the assumption of independence between tests. 

Cross validation aims to approximately simulate multiple independent test sets; and 

provide a guideline to the expected generalization error of a given model. Dietterich’s 

(1998) improved 5x2 cross validation, and Alpaydin’s 5x2 cv F test (Alpaydin, 1999); 

go some way towards compensating for the inherent dependence and overlap found 

between test sets generated randomly from a given sample. These approaches are not 

suited to the current experiment, however, as the datasets are not split into training and 

test sets as is customary in model evaluation. The motivation behind this decision is 

discussed in Section 3.2. 

Demšar demonstrates that when comparing model performances across multiple 

domains, the sources of the variance are the differences in performance over 

(independent) data sets and not on (usually dependent) samples, (Demšar, 2006). The 

datasets used for this experiment have thus been resampled using disjoint sampling into 

five separate subsamples; each consisting of 20% of the total data. Five new samples of 

the data are created by combining four of these five subsamples, so that each consists of 

80% of the data. It is expected that computing the mean error over each of the five 

subsets will improve the reliability of model performance. The dependency between the 

subsamples is not an issue as we are not interested in the variance over samples. This is 

in line with Demšar’s suggestions (2006). 

3.1.4 Experimental Framework 

The role of an Active Learning selection strategy is to choose observations for labelling 

from a pool of unlabelled data. As is standard in active learning contexts, selection is 
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performed in batches. A batch size b is chosen which determines the number of 

observations labelled in each iteration of the Active Learning process. During each 

iteration, the selection strategy is allowed to choose b observations from the unlabelled 

dataset U which are labelled and added to the labelled dataset, L. The labelled dataset is 

then used to train a Linear Regression, which is assessed on its ability to accurately 

predict the outputs of the remaining unlabelled dataset. A batch size of 2% of the total 

number of observations was chosen for each dataset. This was done to ensure that the 

selection strategies have an equal number of iterations across all datasets. Where a 

constant batch size is used across all datasets, datasets with fewer observations will have 

fewer iterations, and consequently the effect of the selection strategy will be less 

pronounced. The first batch of labelled data (seed data) was chosen randomly from the 

unlabelled dataset, and consisted of 2% of the total observations. Each selection strategy 

was seeded with the same initial data. 

3.2 Selection Strategies Used 

This section gives a brief overview of the parameters used in implementing the selection 

strategies under examination. 

3.2.1 Random Baseline 

10 models are induced using random selection strategies initialized with differing 

random seeds. The final value is the mean of these results. The graphs in Section 4.3 

show error bars of 1 standard deviation above and below the mean. 

3.2.2 QBC Implementation 

Settles  reports that there is “no general agreement in the literature on the appropriate 

committee size to use”, but that “even small committee sizes (two or three) have been 

shown to work well in practice” (Settles, 2010). Committees of 2, 3, 4, and 5 linear 

regression models were considered during preliminary testing, and a committee size of 

5 was determined to be optimal. Committee sizes greater than 5 were not considered due 

to the additional computation involved in maintaining large committees. 
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3.2.3 Expected Model Change 

As with QBC, committee sizes of 2, 3, 4 and 5 were considered for the Expected Model 

Change algorithm. A committee size of 5 was determined to be optimal, while remaining 

computationally feasible. 

3.2.4 EGAL Implementation 

A number of values for the α and ω parameters of the EGAL selection strategy were 

considered, as outlined in Section 4.2. Parameter values of 0.75 and 0.25, respectively, 

were determined to be optimal and used in the EGAL implementation on real-world 

datasets. 

3.2.5 Diversity (EGAL) 

By creating an EGAL selection strategy with an ω parameter of 0, we ensure that only 

the most “diverse” observation in the current unlabelled dataset is selected for labelling. 

This is a purely diversity-based approach; as the algorithm will not have to choose 

between observations in the candidate set, so the density measure will not be used. 

3.2.6 Density (EGAL) 

By creating an EGAL selection strategy with an ω parameter of 1, we ensure that no 

observation is excluded from the candidate set. This eliminates diversity from the 

selection strategy, as instances will be queried in order of density alone.  

 

3.3 Performance Measures 

3.3.1 Raw Model Performance Measures 

A performance measure for that iteration will be calculated using the following formula, 

closely modelled on the standard Root Mean Squared Error formula. 
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Equation 3 Performance measure used to calculate regressor accuracy 

Where U is the unlabelled dataset, |U| its cardinality, |L| is the cardinality of the labelled 

dataset, �̂�𝑈𝑖
 represents the predicted output value for the ith observation of U, and 𝑦𝑈𝑖

 

represents its actual value. The use of this equation as opposed to the standard root mean 

square error formula effectively assigns a score of 0 to all labelled examples; and ensures 

the performance of each algorithm tends towards 0 as more examples are labelled. The 

justification for this is that, as with RayChaudhuri and Hamey (1995), we are interested 

only in labelling the current dataset; rather than training a model robust to generalization, 

and so would not attempt to predict an output value which has already been supplied to 

us. 

For each algorithm over each subsample of each dataset, the performance measure of 

each iteration is reduced to a measurement of the area under the curve, where the x axis 

represents the number of labelled observations, and the y axis our performance measure 

defined in Equation 3. An algorithm’s performance on the dataset is defined as the 

average performance measure across all subsamples of the data. In this context, a more 

accurate model will result in a lower performance score. 
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4 EXPERIMENTAL ANALYSIS 

4.1 Introduction 

The following chapter consists of two sections. There is as yet no literature on the 

application of EGAL to regression problems; Section 4.2, therefore, explores 

configurations of the α and ω parameters for the EGAL selection strategy, using datasets 

with varying degrees of noise. A combination of a high α, and low ω is determined 

optimal and used as the parameter for the EGAL selection strategy explored in 4.3. 

Section 4.3 compares the performance of five active-learning algorithms (EGAL, 

Query-by-Committee, Expected Model Change, Density and Diversity) across ten real-

world datasets; finding that all but density outperform a random baseline. The difference 

is shown to be statistically significant in the case of the Query-By-Committee, Expected 

Model Change and Diversity-based approaches. Finally, the diversity-based approach is 

recommended as the most effective selection strategy for linear regression. 

4.2 EGAL Exploration 

In order to explore the impact of the α parameter on the learning rate of a linear 

regression model a simple artificial dataset was used. The dataset consists of two features 

x and y. Noise was generated by drawing randomly from a normal distribution N(0, δ). 

The δ parameter, representing the standard deviation of the noise distribution is adjusted 

to increase or decrease the level of noise in the data. The x variable is drawn from 

uniform distribution between 0 and 100. Three datasets were generated using δ 2, 10 and 

27 for low, moderate and high noise. The resulting distribution of the data is visualized 

in Figure 5. Nine EGAL selection strategies were created, using pairwise combinations 

of ω and α parameters of 0.25, 0.5 and 0.75. Five samples of 400 observations each were 

created for each dataset, and the performance of each algorithm was averaged over each 

sample. The performance was measured according to the framework laid out in 3.2. 
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Figure 5 Distribution of x and y in uniform artificial datasets showing 100 observations from each 

4.2.1 Impact of the Alpha Parameter 

The impact of the α parameter, which controls the size of the neighbourhood for the 

purposes of measuring density had very little effect on the resulting model performance. 

This is immediately apparent from the performance graphs in Figure 6. However, for 

completeness, the results have been tabulated in Table 2.  
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Figure 6 Linear Regression error rates for alpha parameters at varying levels of noise and omega values. This graph 

is reproduced and enlarged in Appendix A. 

Low Noise α = 0.25 α = 0.5 α = 0.75 

ω = 0.25 493.8541 491.2902 504.4977 

ω = 0.5 525.412 531.2243 529.3337 

ω = 0.75 603.8843 600.1709 591.0677 

    

Moderate Noise α = 0.25 α = 0.5 α = 0.75 

ω = 0.25 2439.089 2439.864 2452.423 

ω = 0.5 2565.946 2559.582 2565.52 

ω = 0.75 2827.304 2800.801 2796.037 

    

High Noise α = 0.25 α = 0.5 α = 0.75 

ω = 0.25 6600.094 6530.479 6525.273 

ω = 0.5 6863.346 6804.748 6786.643 

ω = 0.75 7462.606 7440.471 7359.806 
Table 2 Comparison of Area under the curve for EGAL selection strategies by Alpha Parameter, the best 

performing algorithm on each evaluation is highlighted in bold. 

While results are mixed across all evaluations, an α parameter of 0.75 appears to 

outperform consistently on highly noisy data. The Friedman Test for statistical 

significance fails to reliably establish a difference between the three parameter settings, 

so no particular parameter value can be claimed to outperform all others. The results, 

however, tentatively suggest that a value of 0.75 for alpha may be desirable. Section 5 



 

 

30 

 

 

will discuss potential reasons for the apparent lack of significance of the α parameter in 

this experiment.  

4.2.2 Impact of the Omega Parameter 

The impact of the ω parameter, which controls the selection strategies’ bias towards 

either density or diversity was shown to have a more pronounced effect on the accuracy 

of the resulting linear regression model.  

 

Figure 7 Impact of the omega parameter on model accuracy. This graph is reproduced and enlarged in Appendix A 

A higher value for the ω parameter results in a bias towards density. In each of the cases 

above, an ω value of 0.75 results in an initial spike in root mean square error. This 

strategy is outperformed by the others across all datasets. The difference between an ω 

value of 0.5 and a value of 0.25 is less apparent. However, in each of the three datasets, 

the lower parameter is less prone to spikes in RMSE, and the resulting curve has a 

smoother gradual descent than the alternatives. The areas under the curve (AUCs) for 

each of these algorithms are tabulated below, showing that performance tends to increase 

as the value of ω decreases. 
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  δ = 2 δ = 10 δ = 27 

ω = 0.25 504.4977 2452.423 6525.273 

ω = 0.5 529.3337 2565.52 6786.643 

ω = 0.75 591.0677 2796.037 7359.806 

Table 3 Comparison of Area under the curve for EGAL selection strategies by omega Parameter, the best performing 

algorithm on each evaluation is highlighted in bold. 

The results above suggest that a lower value for omega is generally desirable. While 

there are insufficient independent datasets for a reliable test for statistical significance, 

the above results suggest that a low value of omega should be used regardless of the 

expected noise of the dataset. 

4.2.3 Suggested Default Parameters 

The primary aim of the current study is to evaluate the applicability of a number of active 

learning algorithms proven in the context of classification problems to active learning 

for regression. Statistically verifying the optimal parameters for EGAL is an area 

deserving of further study, but outside the scope of this work. The findings above suggest 

that the impact of the α parameter may not be statistically detectable, however, there is 

possibly an inverse linear relationship between the ω parameter and model performance. 

The results suggest that a low ω and high α value are desirable parameters regardless of 

the expected noise in the dataset under consideration. On the strength of these findings, 

the α and ω parameters used in the following section were fixed at 0.75 and 0.25 

respectively. 

4.3 Comparison of Active Learning Selection Strategies for Linear 

Regression 

Having selected the optimal parameters for EGAL, each of the selection strategies 

outlined in Section 3.2 were evaluated on ten real-world datasets, described in Section 

3.1.1. The parameters for the experimental framework follow those in Section 3.1.4. 

This section presents the empirical findings across all datasets. Section 4.4 reports on 

the tests for statistical significance carried out on the results. 

Most of the datasets yielded relatively accurate models using the random baseline. 

However, the impact of good selection strategies was apparent. Figure 8 shows the 

results of testing on the treasury and ratings dataset. As indicated in 3.2.1, the random 
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baseline shown is the mean over ten runs, with error bars showing one standard deviation 

above and below the mean. The RMSE of effective selection strategies on these datasets 

drops sharply as the most informative observations are labelled early on,  

 

Figure 8 Algorithm performances on the treasury and ratings datasets. The AUC of each algorithm is shown between 

brackets in the legend. 

The impact of using a selection strategy varied across datasets. For example, both of the 

wine quality datasets showed little reduction in RMSE over iterations. The error curves 

for these datasets decrease steadily and gradually, reflecting the fact that as each 

observation is labelled it reduces the overall error, but adds little predictive power to the 

regression models. While the active learning strategies outperformed the baseline in 

these datasets, there is less improvement than in the datasets above.  
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Figure 9 Datasets showing little response to active learning selection strategies. The AUC of each algorithm is shown 

between brackets in the legend. 

 

The online news dataset showed a pronounced improvement with effective selection 

strategies. QBC, Expected Model Change and Diversity had a significantly reduced error 

compared to Density and Random. The EGAL selection strategy performed poorly on 

this dataset. 
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Figure 10 Selection strategy performance on the Online News dataset. The graph on the right is rescaled to show the 

relative performance of the effective selection strategies 

There appears to be a strong correlation between the number of outliers in the dataset 

and the effectiveness of active learning selection strategies. The class value output 

distributions for four of the datasets used are depicted in Figure 11. This indicates that 

the datasets on which the active learning selection strategies had the greatest impact 

were those in which the highest concentration of outliers were found.  
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Figure 11 Comparison of class output value distributions between datasets 

 

4.4 Experimental Results and Statistical Testing 

The experimental results in Section 4.3 suggested that active learning algorithms 

perform consistently better than a random baseline, across a range of datasets. This 

section aims to verify this claim by testing the results for statistical significance. An 

aligned ranks Friedman test, as described in Section 2.5.3 is used to account for relative 

performance differences across datasets, while adjusting for the large differences in 

AUCs found between different datasets. The aligned rank test is adapted from that 

described by Wobbrock et al. (2011), and applied to active learning for regression by 

Trawiński et al. (2012). Whereas Trawiński et al. calculate aligned values by subtracting 

the mean performance of all algorithms on a given dataset from the performance of each 

individual algorithm; this implementation expresses the performance of each algoirthm 

as a proportion of the mean. Without this adjustment, the increased AUC in larger 

datasets could mask an algorithm’s true improvement over the mean. 
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 QBC5 Density EGAL Diversity EMC Random 

House 1645.138 6869.11 2658.679 1675.837 1699.345 2487.919 

Treasury 128.6814 246.3101 132.4929 97.90293 125.1006 137.2967 

Bikes 80845.4 82868.55 80577.95 79912.81 78550.19 81723.57 

Concrete 5295.104 7678.782 5632.93 4925.694 5363.381 5558.064 

News 1879243 9.43E+11 3.19E+11 1837987 1893041 4.41E+11 

Red Wine 518.0445 686.7273 501.9587 483.296 523.1188 535.2783 

White Wine 755.7992 943.2882 825.2064 791.7877 759.2629 797.0211 

Cars 658.0499 1009.814 698.0459 617.5846 660.4059 705.7087 

Yacht 1599.275 2346.35 1486.415 1462.768 1522.813 1570.506 

Ratings 5.122294 5.602077 5.806533 5.932432 5.112155 6.076917 
Table 4 Raw AUC scores for all algorithms across all datasets. The most effective algorithm on each dataset is 

highlighted in bold 

Table 4 summarizes the raw AUC scores over each of the datasets. Due to the large 

difference in average scores between datasets, the absolute values depicted above have 

been aligned and ranked, as shown in Table 5. 

 QBC5 Density EGAL Diversity EMC Random 

House 

Prices 
6 59 54 5 7 38 

Treasury 20 58 13 8 10 15 

Bikes 45 50 36 22 46 44 

Concrete 26 56 29 11 30 35 

News 3 4 9 2 1 60 

Red wine 23 55 21 12 27 41 

White 

Wine 
40 52 34 19 33 42 

Cars 24 57 31 14 16 37 

Yacht 32 53 17 25 39 49 

Ratings 18 43 48 47 28 51 

Table 5 Aligned Rank scores for each algorithm over each dataset 

The Friedman aligned-ranks test for statistical significance returned a p value < 0.00001, 

indicating an extremely strong likelihood that there is a statistically significant 

difference in the performance of at least one of the algorithms in the group. The results 

of the post-hoc Friedman-Nemenyi test are summarised in Table 6 and Table 7. 
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 QBC Density EGAL Diversity EMC 

Density 0.0018* - - - - 

EGAL 0.6292 0.206 - - - 

Diversity 0.9607 0.000003* 0.154 - - 

EMC 1 0.0018* 0.6292 0.9607 - 

Random 0.0902 0.8394 0.8912 0.007* 0.0902 

Table 6 Post-hoc Friedman Nemenyi test for statistical differences between algorithms. Algorithms with significant 

differences in performance are highlighted in bold and marked with an asterix 

 

Algorithm Groups 

QBC - B C 

EMC - B C 

EGAL A B C 

Diversity - B C 

Density A - - 

Random A B - 

Table 7 Summary of post-hoc findings. No statistical significance was detected between algorithms sharing 

membership of any group. 

The results of the post hoc test indicate that there is a significant difference between the 

performance of QBC, EMC and Diversity on the one hand, and Density on the other. 

The only algorithm which could be statistically verified to outperform a random baseline 

was Diversity; though EMC and QBC came close. It seems likely that this could be 

proven in a test using more datasets. While no statistically significant difference was 

detected between Diversity and any of the other effective selection strategies, empirical 

evidence from Section 4.3 suggests that this algorithm is most likely to perform best on 

an unseen dataset. 

4.5 Conclusion 

Section 4.2 tentatively established generally optimal parameters for the EGAL algorithm 

in the context of regression problems. While the α parameter was shown to have little 

impact on the overall accuracy of the resulting linear regression model, the effect of the 

ω parameter was demonstrated to be more pronounced. As a rule of thumb, high α values 

and low ω values are recommended for optimal results. 

Section 4.3 empirically established that most active learning algorithms tend to 

outperform a random baseline. The Density selection strategy, however, tended to 
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perform consistently worse. The findings suggest a correlation between the presence of 

outliers in the dataset and the effectiveness of active learning algorithms. The results of 

the random selection strategy on a dataset containing a large number of outliers suggest 

that active learning algorithms perform best where passive learning algorithms fail.  

Section 4.4 statistically verified the hypothesis that active learning algorithms can 

increase the accuracy of linear regression models. While no statistical difference was 

detected between any of the effective algorithms, the evidence suggested that a diversity-

based approach to query selection usually outperforms the alternatives. 
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5 FINDINGS 

5.1 Importance of Density and Diversity in Active Learning for Regression 

The experimental analysis in Section 4 has shown that a diversity-based approach to 

active learning regularly outperforms the state-of-the-art alternatives. The consistently 

poor performance of the density-based approach reinforces the notion that choosing 

observations for labelling based on their density has a significant impact on the 

performance of the learning model. Diversity-only approaches to active learning are 

rarely mentioned in the literature; so it is highly likely that this phenomenon is particular 

to active learning for regression problems. 

A linear regression algorithm attempts to find the line of “best fit” which minimizes the 

error across the dataset. This can be represented on a 2 dimensional plane, where the 

input features are mapped to an x value, and the class value, or output is represented on 

the y axis. As new observations are labelled and added to the model, the regression 

function, mapping observations to output values is updated to accommodate the new 

data. Figure 12 illustrates how diversity-based approaches to active learning exploit this 

property. 
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Figure 12 Illustrating the benefit of diversity in active learning for regression 

Consider the simple regression function y = x illustrated above. Having labelled the point 

(2, 2), the algorithm now has to choose between two observations, equally corrupted 

with noise of 1. The shorter distance between (2, 2) and (3, 4) will result in a greater 

change to the slope of the regression function, meaning the impact of the noise will be 

more pronounced. On the other hand, labelling the observation at (10, 11) will cause the 

slope to shift only slightly, reducing the impact of the noise on the accuracy of the overall 

model. This effect may be exacerbated by the evaluation framework which removes 

labelled data from the model scoring. Labelling outliers early means the model will not 

be asked to re-evaluate them in future iterations, and can thereby avoid repeated large 

errors. 

The same effect may be occurring in both the QBC and EMC frameworks. Linear 

regression models aim to minimize the total error across the entire dataset, so the 

regression function will be adjusted to fit areas with a higher density of labelled data, at 

the expense of lower density areas if doing so reduces the overall error. Because of this, 

models trained on differing subsets of the data are more likely to disagree on areas which 

are sparsely labelled, as these are the areas in which the function is most likely to deviate 
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from the data. Both of these frameworks will therefore, to a certain extent approximate 

the diversity-based approach, which may explain their superior performance to EGAL 

and the baseline. 

5.2 Low Performance of EGAL in Active Learning for Regression 

EGAL was the only effective active learning algorithm which failed to outperform the 

random baseline. This appeared to be a surprising result given its strong performance in 

classification tasks. Section 5.1 has shown the drawbacks of density-weighted 

algorithms, however; and suggested that this effect may be more pronounced in 

regression tasks than in classification. The EGAL selection strategy favours the densest 

observations for labelling once they are part of the candidate set. The candidate set, 

however, is recalculated only at the beginning of each batch. As the algorithm is density-

weighted, it is likely to label entire clusters in a single batch, which may explain EGAL’s 

oscillating error curves. If the algorithm were to be adjusted, such that the candidate set 

was pruned after every label was selected, this could be avoided and the accuracy of 

EGAL could be expected to improve as a consequence. 
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6 CONCLUSION 

This section summarizes the key objectives and goals of this project. The key findings 

are summarised, and the project’s contributions to the body of knowledge is outlined. 

Finally, further work and research is recommended. 

6.1 Problem Definition & Research Overview 

This project aims to establish whether or not active learning strategies can be 

successfully applied to training linear regression models. A lack of research in the area 

of active learning for regression problems, and more specifically, for a solid statistical 

underpinning ground to this claim was the catalyst for the research. As the field of active 

learning for regression has received little attention, the opportunity was taken to apply 

EGAL, a strategy proven in the field of classification, to a regression context.  

6.2 Experimentation, Evaluation & Limitations 

This dissertation established that active learning algorithms can significantly improve 

the accuracy of linear regression models. However, the only algorithm which could be 

conclusively shown to outperform a random baseline was Diversity. Empirical evidence 

suggests that most of the algorithms under scrutiny provide consistent benefits, but 

further evaluation on a larger number of datasets would be required to verify this claim. 

The EGAL algorithm did not perform as well as was hoped and may need further 

adjustments in order to make it suitable for regression problems. 

The data used in this research was taken mostly from the UCI Machine Learning 

repository; and the size of the datasets were limited by the computational effort required 

to train models. The increasing public use of the internet has made ever larger datasets 

available in recent years, and work is being done on sentiment analysis on websites such 

as Twitter (Go et al., 2009) and Amazon (Blitzer et al., 2007). Only one comparable 

dataset was included in this study. In order to provide more of a “real-world” context, 

ideally more such datasets would have been utilized. 

It is important to remember that the evaluation criteria used are not typical of most 

machine learning problems. Whereas prediction models are required to label previously 



 

 

43 

 

 

unseen data; our evaluation task makes so such assumption. Models are trained purely 

to aid in evaluating the current dataset; and the extent to which a model has been over-

fitted to the data is not measured. This is not necessarily a limitation in itself, but it 

becomes one when comparing this research to existing experiments. Allowing the model 

to ignore the generalisation error makes this an easier problem than training a model 

which must aim to generalize easily. 

6.3 Contributions to Body of Knowledge 

This dissertation has provided a statistically verified comparison of the effectiveness of 

multiple active learning selection strategies across a broad selection of real-world 

datasets. While traditional approaches which have worked well in a classification 

context appear to consistently outperform a random baseline; a diversity-only approach, 

which has received less attention in the literature was determined to be the only 

algorithm for which this claim could be statistically verified. 

The applicability of EGAL to regression problems has been explored; with optimal 

parameters suggested for use across datasets. The performance of EGAL on datasets 

with different class value distributions has been explored; laying the groundwork for 

future improvements to the algorithm in the context of regression-based learning. 

This study suggests the use of the Friedman aligned ranks test when comparing multiple 

regression classifiers, to cope with the incommensurability of the raw performance 

measures for regression, while taking into account the intuitively apparent relative 

“magnitude” of performance differences across datasets. 

 

6.4 Future Work & Research 

While the EGAL selection strategy has been applied in the context of regression 

problems, the evidence suggests that the algorithm may need modification before it is 

suitable for use in this new environment. There is scope for further research on how the 

algorithm can be improved, and whether density can be utilised, under certain 

circumstances to improve the performance of an active learning algorithm. 



 

 

44 

 

 

Only a single active learning algorithm was shown to significantly outperform a random 

baseline. However, the results would suggest that EMC and QBC may also be 

statistically significant. Further testing across a broader range of datasets may well to 

establish this hypothesis statistically. 

6.5 Conclusion 

This project aimed to answer the question of whether “active learning selection strategies 

based on integral dataset properties combined with an analysis of prediction model 

output be used successfully for linear regression models”. The research has conclusively 

shown that the answer is an emphatic “yes”. While there is little doubt that active 

learning selection strategies can be used successfully for linear regression models, only 

a single strategy could be verified to significantly outperform the baseline. Fortunately, 

the empirical results are encouraging and it seems likely that all mainstream 

classification algorithms tested are also useful in the domain of regression problems. 

The success of the Diversity based approach, however, suggests that regression 

problems and classification problems cannot be treated identically; and that perhaps 

algorithms successful in a classification context may benefit from some altering before 

being applied to problems of regression. 
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APPENDIX A 

The following graphs, from Section 4.2, have been reproduced, enlarged and rotated for 

readability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13 An enlarged reproduction of Figure 6 
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Figure 14 An enlarged reproductin of Figure 7 
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