The Systems Approach to Supply Chain Re-Engineering

Edward Sweeney
Technological University Dublin, edward.sweeney@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/nitloth

Part of the Business Administration, Management, and Operations Commons, and the Engineering Commons

Recommended Citation

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
The Systems Approach to Supply Chain Re-Engineering

Edward Sweeney

Dublin Institute of Technology, edward.sweeney@dit.ie
The Systems Approach to Supply Chain Re-engineering

Edward Sweeney
Director of Training and Education
National Institute for Transport and Logistics

Supply chain management
A product or service is delivered to the ultimate customer through a complex interaction of several companies on the way, i.e. through a supply chain. The manufacturer’s ability to give customers what they want, when they want it, at the price and quality that they want, is not just determined by the manufacturer’s skill or expertise in running his/her own operation. No degree of improvement in the company itself can make up for suppliers not delivering, delivering wrongly or late. High inventory levels are often the result of an effort to buffer against such uncertainties. Inefficient production methods add additional uncertainties and unnecessary costs. The distribution of goods into foreign markets adds significantly to the cost of most consumer goods or components. Inefficiencies anywhere in the chain will reduce the chances of the manufacturer successfully competing against other suppliers. It is now recognised, therefore, that supply chains compete with other supply chains.

Supply chain management is concerned with the total management of the supply chain. As such, it is an essential activity in any company’s everyday life. Very often the company is let down not by their own actions, but by the actions of other parties involved. Many companies do not even realise the importance of supply chain management to their future survival. It applies to small or large companies, whether they are in manufacturing, process or service industries. Improving one’s own business is no guarantee of success in today’s competitive markets. The individual success of a company depends not alone on their in-house skills and expertise. Without the right companies up and down the supply chain to work with a company will never achieve true competitive advantage.

At the end of the day supply chain management is the management of all the activities in any of the companies involved in a supply chain to achieve two things: to provide the highest possible level of customer service at minimum cost.

What is supply chain re-engineering?
Supply chain re-engineering is about analysing the existing configuration of a supply chain, planning improvements to that configuration and then putting these improvements into practice. In short,
Re-engineering = analysis + planning + implementation.

It is important to recognise that when it comes to re-engineering there is no "magic" solution. In the past companies have often come to regard the latest managerial philosophy (whether it be total quality management, just-in-time, business process re-engineering or whatever) or the latest technological development (e.g. materials requirements planning or electronic data interchange) as some kind of “silver bullet” or panacea. Whilst these management philosophies and technologies all potentially have a role to play none of them in isolation can ever solve all of our problems. We should also beware of copying solutions which are inappropriate for our businesses. This involves recognising that every company is unique (in terms of products, processes and, above all, people) and that, therefore, just because a particular solution worked in one organisation it does not automatically follow that it will necessarily work in another.

That’s a lot of bad news. So, what’s the good news? The good news is that there is a logical and systematic way of addressing the task of supply chain re-engineering. This logical and systematic approach is referred to as the systems approach.

Why do we call it the systems approach?
We call it the systems approach for two reasons. Firstly, we want our supply chains to display the characteristics of a system. The Oxford English dictionary describes a system as, ‘a set of connected things or parts; an organised group of things; orderliness’. The italics are those of the author because they highlight those aspects of the definition which provide some pointers to problems which exist in supply chains and, hence, to the type of change which might be required. In other words, we want the different elements of our supply chain to be connected and we want our supply chain to be properly organised and to be characterised by orderliness. Secondly, we should tackle the re-engineering task in a systematic manner with dedicated resources and with proper attention to detail.

Elements of the systems approach
The systems approach to analysing supply chains and improving their performance has been developed based on the experiences of a range of companies in a range of different business sectors. There are four distinct constituent elements of the systems approach. The principles summarise the underlying thinking and concepts. The methodology is the series of steps to be followed in analysing and improving a typical supply chain. The guidelines on good practice summarise the main relevant elements of world class operating
practice. Finally, the *tools and techniques* support the implementation of the methodology.

Principles
The supply chain system could be regarded as shown in Figure 1. The interaction of the system with its environment is represented by the system inputs and outputs.

![Figure 1 – The supply chain as a system](image)

In practice, supply chain systems can be broken down into subsystems. This aids understanding of the operation of the system and facilitates systems analysis. Each of the subsystems should display the characteristics of a system; each subsystem will have inputs, outputs and a boundary. When considering a company’s internal supply chain the subsystems can be regarded as the company’s business processes (e.g. designing, buying, making, moving, selling). These business processes are multidisciplinary activities that cross traditional functional department boundaries. When considering a supply chain which comprises several companies the subsystems can be regarded as the individual companies or the business processes which cross company boundaries. Traditionally, efforts at improving supply chain or organisational effectiveness have focussed on making changes within the subsystems. This often resulted in optimal subsystems but sub-optimal total systems.

The systems approach to analysing supply chains and improving their performance is based on the need to consider the whole system rather than confining improvement efforts to particular subsystems. Developing the best solution requires the analysis, planning and implementation work to be carried out *systematically* (i.e. methodically, thoroughly and with proper attention to detail). This involves a far reaching investigation and radical reappraisal of the whole
supply chain and often results in a complete redesign of supply chain organisation and operations.

Methodology
The systems approach to analysing supply chains and improving their performance involves the application of logical, structured methods rather than relying on making limited improvements in particular areas of the system. The methodology provides guidance on how to address this process in an organised manner, proceeding in logical stages to develop a solution. Figure 2 shows an outline of the methodology.

<table>
<thead>
<tr>
<th>STAGE</th>
<th>STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIATION</td>
<td>- Set project scope, objectives and time plan</td>
</tr>
<tr>
<td></td>
<td>- Create project team or task force</td>
</tr>
<tr>
<td>DATA COLLECTION</td>
<td>- Determine structure of supply chain and objectives of each element</td>
</tr>
<tr>
<td></td>
<td>- Supply chain audit: detailed data collection concerning the companies and their competitors, markets, currently available resources and future resource requirements</td>
</tr>
<tr>
<td>ANALYSIS</td>
<td>- Preliminary analysis of supply chain</td>
</tr>
<tr>
<td></td>
<td>- Identification of key supply chain business processes</td>
</tr>
<tr>
<td>PLANNING / DESIGN</td>
<td>- Realignment of organisation and operations in line with key business processes</td>
</tr>
<tr>
<td></td>
<td>- Detailed design of organisational structures</td>
</tr>
<tr>
<td></td>
<td>- Detailed design of operational procedures</td>
</tr>
<tr>
<td></td>
<td>- Develop business plans</td>
</tr>
<tr>
<td>IMPLEMENTATION</td>
<td>- Development implementation plans</td>
</tr>
<tr>
<td></td>
<td>- Implementation of change</td>
</tr>
<tr>
<td></td>
<td>- Performance measurement</td>
</tr>
<tr>
<td></td>
<td>- Continuous improvement</td>
</tr>
</tbody>
</table>

Figure 2 – Outline of systems approach methodology

There are a number of features of this methodology which are worth highlighting. The data collection, analysis and planning stages are carried out by a project team or task force. Such a team is multi-company (multidisciplinary in the case of internal company supply chains) and possesses the knowledge and skills necessary to carry out the tasks required. It should have the commitment of management and be dedicated to its task for the duration of the project. Once the overall structure of the supply chain has been determined and the strategic objectives of each element identified, the task force carries out a supply chain audit. This audit involves collection of detailed data concerning all aspects of the supply chain. The general classifications of data to be collected are: general company and competitor data; market and customer data; data concerning currently available supply chain resources; and, data concerning future resource
requirements. The supply chain audit is one of the most important parts of the methodology and it results in a considerable volume of data. The next stage of the methodology involves analysing this data with a view to identifying the key supply chain business processes. The planning / design stage involves (top-down) realignment, and (bottom-up) detailed design of supply chain organisational structures and operational procedures. Business plans for each element in the realigned organisational structures are also required. Detailed implementation plans define how the required change will be put into place. An effective performance measurement system forms the basis of the continuous improvement process.

Guidelines on good practice

Every supply chain is unique. It has unique products, processes, people and a lot more besides. Hence, there is no universal solution which can be applied which will automatically result in a supply chain achieving its optimum competitive potential. The methodology helps to identify the most suitable solution for a particular supply chain but there are approaches which appear to exist in the majority of world-class companies. Figure 3 shows some of the major manufacturing improvement initiatives, all of which can be considered to be elements of world class operating practice.

![Figure 3 – Elements of world class operations](image)

These approaches include employee involvement, total quality management, JIT, (total) preventive maintenance and a philosophy of continuous improvement. The key is not to blindly copy the approaches used by successful companies but to learn from their experiences.
Tools and techniques
A potential problem when analysing supply chain organisation and operations is that there are few (if any) established analytical tools which can be employed. The lack of such tools can result in practitioners failing to apply a methodical, scientific approach and instead relying purely on experience, intuition and iteration. However, there are many techniques in use in other fields which are relevant to supply chain analysis. Such approaches include financial analysis, strategic planning techniques (e.g. SWOT analysis, the Porter model), Pareto analysis, systems analysis techniques (e.g. input/output analysis, flowcharting), IDEF0 and process mapping. These techniques can be used to support various stages of the methodology with many being particularly useful at the analysis stage.

In addition, computer-based tools, which assist in the application of the techniques, are also available. Many of these tools are useful in managing the data collected during the supply chain audit. Useful tools include spreadsheets, databases, visual interactive simulation and project planning software.

Conclusions
The systems approach to supply chain re-engineering provides a basis for achieving world class standards for supply chains operating in all types of industry. The approach involves considering the whole supply chain and avoiding a situation where subsystems are optimised but the whole supply chain is sub-optimal. To apply the approach requires a methodology, a recognition of what constitutes good working practice and the use of tools and techniques to perform the required analysis. The process of supply chain analysis and improvement is complex – it requires total management commitment and dedicated resources. With this commitment and the necessary resources, the use of the systems approach can result in significant improvements in supply chain performance.