Raman Microspectroscopy for the Early Detection of Pre-Malignant Changes in Cervical Tissue

Nosheen Rashid
Technological University Dublin

Haq Nawaz
Technological University Dublin

Kelvin W. Poon
Technological University Dublin

Franck Bonnier
Technological University Dublin, Franck.Bonnier@tudublin.ie

Salih Bakhiet
Coombe Hospital

Follow this and additional works at: https://arrow.tudublin.ie/nanolart

Part of the Atomic, Molecular and Optical Physics Commons, Diagnosis Commons, and the Other Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons

Recommended Citation

This Article is brought to you for free and open access by the NanoLab at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
Raman microspectroscopy for the early detection of pre-malignant changes in cervical tissue

Nosheen Rashida,1, Haq Nawaza,1, Kelvin W.C. Poona,2, Franck Bonniera, Salih Bakhietb, Cara Martinb, John J. O’Learyb, Hugh J. Byrnec, Fiona M. Lynga,d

a DIT Centre for Radiation and Environmental Science (RESC), Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
b Department of Pathology, Coombe Women and Infants University Hospital, Dublin 8, Ireland
c Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
d School of Physics, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.

*Corresponding Author:
Fiona M. Lyng
DIT Centre for Radiation and Environmental Science (RESC)
Focas Research Institute
Dublin Institute of Technology
Kevin Street
Dublin 8
Ireland
Tel. 00 353 1 4027972
Email: fiona.lyng@dit.ie

1 Present address: National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O.Box 577, Jhang Road Faisalabad, Pakistan.
2 Present address: Hotchkiss Brain Institute, The University of Calgary, Canada
Abstract
Cervical cancer is the third most common cancer affecting women worldwide. The mortality associated with cervical cancer can, however, be significantly reduced if the disease is detected at the pre-malignant stage. The aim of this study was to evaluate the potential of Raman microspectroscopy for elucidation of the biochemical changes associated with the pre-malignant stages of cervical cancer. Formalin fixed paraffin preserved tissue sections from cervical biopsies classified as negative for intraepithelial lesion and malignancy (NILM), low grade squamous intraepithelial lesion (LSIL) or high grade squamous intraepithelial lesion (HSIL) were analysed by Raman spectral mapping. Raman mapping, with K-Means Cluster Analysis (KMCA), was able to differentiate the NILM cervical tissue into three layers including stroma, basal/para-basal and superficial layers, characterised by spectral features of collagen, DNA bases and glycogen respectively. In the LSIL and HSIL samples, KMCA clustered regions of the superficial layer with the basal layer. Using Principal Component Analysis (PCA), biochemical changes associated with disease were also observed in normal areas of the abnormal samples, where morphological changes were not apparent. This study has shown that Raman microspectroscopy could be useful for the early detection of pre-malignant changes in cervical tissue.

Keywords: Confocal Raman Microspectroscopy, Cervical cancer, Cervical Intraepithelial Neoplasia, K-Means Cluster Analysis, Principal Components Analysis
Introduction

Cervical cancer is the third most common cancer in women worldwide, 85% of cases arising in the developing world (Jemal et al., 2011). Mortality associated with cervical cancer can, however, be significantly reduced if the disease is detected at the early stages of its development or at the pre-malignant stage (cervical intraepithelial neoplasia, CIN) (Parkin et al., 2005).

Current methods for identifying neoplastic cells and differentiating them from their normal counterparts are often nonspecific, slow, invasive, or a combination thereof (Chan et al., 2006). The primary screening tool for cervical neoplasia is the Papanicolaou (Pap) smear test (Papanicolaou & Traut, 1941) and colposcopy normally follows an abnormal Pap smear. The incidences of the disease and associated mortality have been falling in developed countries, where these screening methods are widely practiced. However, these methods have several shortcomings, including high false negative/positive results that could be due to the subjective interpretation of the cytologist/pathologist diagnosing the disease based on morphological abnormalities. There are difficulties in separation of normal, basal cell hyperplasia, immature squamous metaplasia and inflammation associated changes from true koilocytes, which are indicative of low grade squamous metaplasia (McCluggage et al., 1998). There are also difficulties in differentiating low grade squamous intraepithelial lesions (LSIL) from immature squamous metaplastic cells with atypia, a mild abnormality, resulting in inter- and intra-observer difference of opinion (McCluggage et al., 1998).

It is estimated that 90% of deaths can be prevented by early diagnosis, (Bazant-Hegemark et al., 2008), which emphasizes the need for improved effective screening
methods. The molecular and biochemical changes that ultimately lead to the occurrence of cancer in tissue include the disruption of the normal organisation of nucleic acids, proteins, lipids, and carbohydrates (Ooi et al., 2008) and these changes can be used as diagnostic markers of cancer. Historically, many techniques have targeted the above mentioned biomolecules and sub-cellular structures, nucleus to cytoplasm ratio or cellular morphology, for diagnosis as well as for the prognosis of cancer. However, changes at this level are detectable only after they have already caused considerable gross morphological changes in the tissue. Due to technological advances, more opportunities have arisen to investigate the bio-molecular components in tissue samples and to examine malignant abnormalities on this basis. As a result, the mutations/ biochemical changes in bio-molecules appearing before manifestation of disease on a cellular level can be detected earlier, facilitating timely and precise diagnosis, leading to increased patient survival and quality of life (Ooi et al., 2008). Potentially offering higher sensitivity and specificity based on biochemical analyses, spectroscopic methods such as IR absorption and Raman scattering are attracting increased attention. Investigation of 150 formalin fixed and paraffin preserved (FFPP) cervical tissue sections by Raman spectroscopy was carried out and normal cervical tissue was separated from malignant tissues with a sensitivity and specificity of 99.5% (Krishna et al., 2006). An in vivo study on 66 patients showed that Raman spectroscopy has 89% sensitivity and 81% specificity to distinguish high grade dysplasia (CIN II/CIN III) from benign tissue (Robichaux-Viehoever et al., 2007). The reported results are higher than colposcopy, which has a sensitivity of 87% and specificity of 72%. In another study, the incorporation of the woman's hormonal status, mainly the stage in menstrual cycle and menopausal state, into the classification algorithm was shown to improve the sensitivity of Raman spectroscopy
to detect cervical pre-cancers from 88% to 94% (Kanter et al, 2009b). The same
group characterised the Raman spectral changes associated with the menopause as
well as within the menstrual cycle which led to more accurate diagnosis of LSIL in
vivo (Kanter et al, 2009a). These results render Raman spectroscopy a valid
alternative for clinical screening. However, few studies have delved further into the
biochemical origin of the diagnostic differentiation between the different tissue
pathologies. Our group has reported differentiation of 40 FFPP histological samples
into normal cervical epithelium, invasive carcinoma and CIN with nearly 100%
sensitivity and specificity with the differentiation of normal epithelium and carcinoma
in situ largely due to the absence of strong glycogen bands in the abnormal tissue
containing rapidly proliferating cells (Lyng et al, 2007). A recent study of de-
paraffinised cervical tissue with Raman mapping and hierarchical cluster analysis
(HCA) was able to differentiate between normal squamous epithelium and cervical
intraepithelial neoplasia-grade II (CIN II) and it was shown that the Raman spectra
associated with the CIN II lesion clustered predominantly with those of the basal
epithelial cells of normal squamous epithelium which suggested that the cells of these
regions share common biochemical profiles and spectral features responsible for their
differentiation are associated with the amide-I and amide-III bands (Tan et al, 2011).
In an ex vivo study of human cervix, Raman spectral profiles from the stroma of
tissue with HPV associated histological changes showed differences for DNA (1316
and 1334cm⁻¹) and glycogen (1048, 1083, 1256, 1333cm⁻¹) assignments. Further
differences at 1260 and 1304cm⁻¹ were also observed. Kamemoto et al. (2010)
showed that Raman spectroscopy could distinguish normal cervical tissue from
cervical cancer tissue based on collagen bands in the 775-975cm⁻¹ region.
The aim of the present study is to evaluate the potential of Raman micro spectroscopy for the elucidation of the biochemical origin of the spectral markers associated with the onset and progression of the disease. The initial stages will establish the biochemical signatures of different layers of the normal cervical epithelium. It is expected that these signatures will be distinct, as the biochemistry of each layer is different. These differences in the biochemistry of each layer in the form of Raman spectral markers may be helpful for the better classification of cervical intraepithelial neoplasia. This would lead to the classification of cervical cancer on the basis of the biochemical changes occurring during the progression of the disease instead of on morphological changes. Raman micro spectroscopy will then be used to monitor the complete progression of cervical cancer from normal through to low grade squamous intraepithelial lesion (LSIL) and high grade squamous intraepithelial lesion (HSIL) on the basis of spectral differences obtained from the different layers of the respective tissue samples.
Materials and Methods

Sample collection

The samples used in this study were obtained from the Histopathology Department, Coombe Women and Infants University Hospital, Dublin, Ireland. This study was approved by Research Ethics Committee at the Coombe Women and Infants University Hospital. Normal cervical tissue samples were taken from hysterectomy specimens for a benign diagnosis such as uterine prolapse or fibroids. Further cervical H&E sections from these hysterectomy specimens were microscopically examined to reveal no Cervical Intraepithelial Neoplasia or significant pathological abnormality. The clinical history of these cases confirmed no significant previous cervical pathology. Anonymised tissue sections from cervical biopsies clinically characterised as NILM, LSIL (or CIN 1) or HSIL (or CIN 2, CIN 3) were analysed. Raman spectral maps from cervical tissue samples of twenty different patients, including, five NILM, two LSIL (CIN 1), ten HSIL (five CIN 2, five CIN 3) and three carcinoma in situ samples, were acquired. Raman spectral mapping of regions identified by the pathologist as normal and diseased was carried out. For each sample, two parallel tissue sections of 10µm thickness were cut from the Formalin Fixed Paraffin Processed cervical tissue block using a microtome. After dewaxing with xylene according to standard clinical procedures (Ó Faoláin et al, 2005), one section was mounted on a calcium fluoride slide (Crystran Ltd., UK) and used for the Raman spectroscopic analysis and the other section was mounted on a glass slide for hematoxylin and eosin (H&E) staining.

Raman spectral mapping
Tissue sections from cervical tissue biopsies were mapped with Raman spectroscopy from the regions that were identified by the pathologist as normal and as low/high grade squamous lesions to elucidate the layer differentiation within the normal tissue and how this differentiation is affected by the progression of CIN, based on the spectroscopic signatures of the biochemical composition. The analysis of the Raman maps from the cervical epithelium of different tissue sections revealed a serial change associated with the progression of disease.

Raman Data acquisition

Raman maps were recorded using a HORIBA Jobin Yvon HR 800 Raman microscope (LabSpec V5.58) with a 785 nm laser as source. An Olympus (MPLN100X) dry objective, having a numerical aperture of 0.9, providing a spot size of ~1μm on the sample, was used to focus on the sample and collect the Raman scattered light in a backscattering geometry. Raman scattering was collected through a 100 μm confocal hole onto a Synapse air-cooled CCD detector for the range of 400-1800 cm$^{-1}$ using a 300 lines/mm diffraction grating, yielding a dispersion of ~1.5 cm$^{-1}$ per CCD pixel. The instrument was calibrated using the 520.7 cm$^{-1}$ peak of silicon. Raman spectral mapping was performed using 2 x 15 seconds acquisitions with a step size of 18μm.

Data pre-processing of Raman maps

All data processing was performed directly on the spectral image using MatLab 7.2 and protocols which have been established in the Dublin Institute of Technology (Knief, 2010). Data pre-processing included smoothing, baseline correction and normalization. All spectra, including calibration and substrate backgrounds, were vector normalized and smoothed using a Savitzky Golay smoothing (order 5, 13 point
window) method. A rubber band correction for baseline removal for all the spectra was carried out and the substrate spectra were subtracted from each spectrum.

Data analysis

K-means cluster analysis (KMCA) and Principal Components Analysis (PCA) were used to analyse the spectral data sets obtained from the Raman maps. KMCA is an unsupervised non hierarchical method of clustering the cases randomly into user predefined clusters (5 cluster with 10 iterations for the current study) and cycles until a local minimum is found by using the Euclidean sum of squares as a descriptor (Wang & Mizaikoff, 2008). The false colour map generated then shows the clusters with similar spectral and hence biochemical properties. The pseudo colour map generated by the KMCA leads to the identification of the distinct layers of the cervical epithelium, separated on the basis of the similarities of the Raman spectral profiles and the clustered data is represented by an average of all the spectra of one layer.

In order to further elucidate the biochemical basis of the results of the KMCA, Principal component analysis (PCA) was employed. PCA is a mathematical procedure involving the transformation of possibly correlated variables into a smaller number of uncorrelated variables known as principal components (PC). The first principal component accounts for as much variability in the data as possible, and each succeeding principal component accounts for as much of the remaining variability as possible. The PC loadings can describe the biochemical differences which are used by the PCA to determine the variability in the Raman spectral data and hence separation of different groups of spectra.
Results and Discussion

KMCA of NILM cervical epithelium

Figure 1a, shows the H&E stained tissue section and Figure 1b shows the extended video image of an unstained NILM tissue section with a 100x objective acquired using the Raman micro spectrometer. The sample was spectroscopically mapped and analysed in the area indicated by the red box. KMCA of the Raman map is shown in Figure 1c. The analysis employs 5 clusters which divide the cervical epithelium into three distinct layers. A comparison of the unstained tissue section with the results of the KMCA for this map suggests that the blue cluster represents the stroma, the red cluster the basal and parabasal layers, the green cluster the superficial layer and the black cluster the substrate, while the yellow cluster represents the presence of residual wax in the tissue section.

Mean Raman spectra representing the respective clusters are shown in Figure 1d (the spectra of clusters describing the substrate and residual wax are not shown). The Raman spectra of pure collagen and glycogen used for reference are described by Lyng et al, 2007, Tan et al, 2011.

The most distinctive Raman bands in the blue spectrum of Figure 1d, indicative of the blue cluster of Figure 1c, can be assigned to collagen (853 cm\(^{-1}\), 921 cm\(^{-1}\), 938 cm\(^{-1}\) and 1245 cm\(^{-1}\)) and phenylalanine (1002 cm\(^{-1}\)). Collagen is a structural protein and is a major component of the connective tissue layer, termed the stroma in the case of cervical tissue. The distinctive bands in the red spectrum of Figure 1d, corresponding to the red cluster of Figure 1c, are of DNA bases, thymine (755 cm\(^{-1}\)), adenine (722 cm\(^{-1}\)) and cytosine (782 cm\(^{-1}\)). On the basis of this information, it can be concluded that the red cluster represents the basal and parabasal layers. The bands present at
480 cm\(^{-1}\), 849 cm\(^{-1}\) and 938 cm\(^{-1}\) in the Raman spectrum suggest that accumulation of glycogen starts in the basal and parabasal layers, which are also rich in DNA. The major differentiating Raman features observed in the mean representative spectrum of the green cluster can be assigned to glycogen (480 cm\(^{-1}\), 849 cm\(^{-1}\) and 938 cm\(^{-1}\)), and are Raman signatures of the superficial squamous epithelium of the cervix, as cervical epithelial cells accumulate glycogen with maturity (Sellors & Sankaranarayanan, 2003).

It should be noted that two important Raman markers of collagen and glycogen can be used to differentiate the Raman spectra of the layers of squamous epithelium and stroma. Based on the analyses of (Jess et al., 2007; Lyng et al., 2007; Notingher, 2007; Notingher et al., 2003), the Raman bands at 853 cm\(^{-1}\), 921 cm\(^{-1}\), 938 cm\(^{-1}\) and 1245 cm\(^{-1}\) are indicative of collagen and those at 480 cm\(^{-1}\), 849 cm\(^{-1}\) and 938 cm\(^{-1}\) can be assigned to glycogen. Notably, the two bands at 853 cm\(^{-1}\) (collagen) and 849 cm\(^{-1}\) (glycogen) overlap and are not well differentiated by Raman spectroscopy. By considering the pattern of the collagen and glycogen bands in the current study, it is observed that 921 cm\(^{-1}\) and 938 cm\(^{-1}\) are normally co-incident in spectra of collagen and the 480 cm\(^{-1}\) and 853 cm\(^{-1}\) bands are normally present in the spectra of glycogen. These Raman bands are therefore good differentiating bands between collagen and glycogen.

Another differentiating marker can be that at 1245 cm\(^{-1}\), which is observed as a very sharp band if associated with the presence of collagen, while otherwise it is very much diminished and broadened.

It is also notable that the basal layer shares some features with the stromal layer, such as that at 1318 cm\(^{-1}\), assigned to guanine, and the superficial layer, such as that at 1084 cm\(^{-1}\), assigned to the O-P-O stretching of DNA, and these Raman bands are
therefore not differentiating bands between these layers. The Raman band at 1339 cm\(^{-1}\) is assigned to tryptophan and is also present in the Raman spectra of all the layers.

Comparison of the H&E stained tissue section, the unstained tissue section and the KMCA of the Raman map demonstrates that Raman spectroscopy is able to differentiate normal cervical epithelium into three layers; stroma, basal, and squamous epithelium, on the basis of the prominence of Raman signatures of collagen in the stroma, DNA bases in the basal and parabasal layer and glycogen in the superficial layer. The presence of glycogen bands in the mean spectrum of the basal layer is an indication that cells are dividing normally and gradually maturing to accumulate glycogen.

PCA of normal cervical epithelium [NILM]

PCA of normal basal layer vs normal stromal layer

Figure 2 A & B represents the scatter plot and loadings of the PCA for the basal versus stromal layer. These two layers are well differentiated by PC1, which accounts for 67.4 % of the variance. PC2 does not differentiate these groups of Raman spectra as indicated by the PCA scatter plot.

Notably, in the PCA scatter plot, the cluster of the Raman spectra of the basal layer is distributed negatively with respect to PC1 and the Raman spectra of the stroma are clustered on the positive side. This is translated to the loadings of PC1, as all the negative loadings are associated with the characteristic Raman features of DNA bases (Bonnier & Byrne, 2012) and are clearly indicative of the characteristics of the basal layer, as it is richer in DNA as compared to the stromal layer. The features associated with DNA, contributed by the basal layer, include those at 728 cm\(^{-1}\) (A), 827 cm\(^{-1}\) (O-P-O of DNA), 898 cm\(^{-1}\) (deoxyribose ring breathing), 1276 cm\(^{-1}\) and 1340 cm\(^{-1}\) (G).
Only a few features related to proteins are observed, including those at 509 cm$^{-1}$ (S-S stretching), 642 cm$^{-1}$ (C-C stretching), 1129 cm$^{-1}$ (C-N stretching) and 1449 cm$^{-1}$ (CH deformation). On the other hand, the positive loadings can be assigned to the characteristic Raman features of the stromal layer. These loadings are assigned to collagen and contribute strongly to differentiating this layer from the basal layer. The features contributed by the stroma include those at 853 cm$^{-1}$, 921 cm$^{-1}$, 972 cm$^{-1}$ and 1242 cm$^{-1}$, assigned to the collagen of the stromal layer and 1165 cm$^{-1}$, 1195 cm$^{-1}$ (C-N stretching) and 1655 cm$^{-1}$ (amide-I).

PCA of normal basal layer vs normal superficial layer

Figure 2 C & D presents the PCA scatter plot and loadings of the PCA respectively for the normal basal versus normal superficial layers. A good separation of the two layers based on PC1, which accounts for 74.2% of the variance, is observed as two well distinguished clusters of the spectra in the PCA scatter plot. In the PCA scatter plot, the cluster of the Raman spectra of the normal basal layer is observed in the negative PC1 axis and Raman spectra of the superficial layer are clustered in the positive axis which is consistent with the loadings of the PCA as the negative loadings are related to the characteristic Raman features of DNA bases which are characteristic of the basal layer. The clustering of the Raman spectra of the superficial layer is observed in the positive axis, which is consistent with the loadings of the PCA, because the positive loadings are assigned to the characteristic Raman features of glycogen, a specific marker of this layer.

The loadings of PC1 elucidate the discriminating Raman features which can be attributed to the basal layer, including predominantly DNA related Raman bands in the negative sense, and glycogen related Raman bands in the positive sense, which can be attributed to the superficial layer. Specifically, the loadings of PC1 show...
negative features at 755 cm\(^{-1}\) (T), 728 cm\(^{-1}\), 1338 cm\(^{-1}\) (A), 775 cm\(^{-1}\) (C), 1182 cm\(^{-1}\), 1313 cm\(^{-1}\) (G) and 1080 cm\(^{-1}\) (O-P-O of DNA). Positive features of PC1 at 480 cm\(^{-1}\), 853 cm\(^{-1}\) and 938 cm\(^{-1}\) are assigned to the glycogen of the superficial layer.

The PCA of the basal layer of different NILM samples are presented in the Supplementary Information (figure S1), as scatter plot and loadings respectively. The scatter plot shows some differentiation of the two clusters of the Raman spectra by PC1 (56.7\%) and very little differentiation by PC2 (15.80\%) which is attributed to some degree of inter-patient variability, largely based on intensity variations of peaks associated with proteins and lipids (figure S1).

Thus, while KMCA can be employed to visualise the differences of the tissue architecture, the results of the PCA of the normal basal layer versus the normal stromal and superficial layers demonstrate the potential to identify the specific spectral features which lead to the differentiation of these layers on the basis of the Raman spectral features characteristic for each layer.

KMCA of HSIL tissue

Raman spectral results of a HSIL (CIN 2) cervical tissue sample are presented in Figure 3, wherein Figure 3a shows a H&E stained tissue section which has abnormal and normal tissue areas adjacent to each other. These regions are ideal to investigate how the layer differentiation is affected by the proliferation of disease. Figure 3b shows the optical image of the parallel unstained tissue section as viewed by the Raman micro spectrometer. KMCA of the Raman map of the same sample is shown in Figure 3c.
The KMCA of the Raman map (Figure 3c) clearly shows the separation of the normal and abnormal regions. The normal region is separated into three layers, including stroma (indicated by the yellow and blue colour clusters with a mean spectrum having characteristic bands of collagen, Figure 3d), basal layer (indicated by the red colour cluster with mean spectrum having characteristic bands of DNA bases) and squamous epithelium (indicated by the green colour cluster, with mean spectrum having characteristic bands of glycogen). The reason for the two clusters (yellow and blue) in the stromal layer is the difference in the intensity of the collagen related bands. Notably, the stromal layer also has points which are clustered with the basal layer, indicating increased DNA, or reduced collagen content. This will not be discussed further here, but will be the subject of a further communication.

In contrast, the abnormal region of the tissue section is separated into only two layers, representing stromal and basal layers. The representative mean spectrum (Figure 3d) from KMCA of the Raman map of this region indicates the presence of the characteristic features of the basal cells in the superficial layer, as characterised by the Raman spectral features of thymine (755 cm\(^{-1}\)), adenine (722 cm\(^{-1}\)) and cytosine (782 cm\(^{-1}\)).

Thus, the analysis indicates three distinct layers, stromal, basal and superficial layers for the normal region, and two distinct layers, stromal and basal layers for the abnormal region in Figure 3. This is consistent with the diagnosis and confirms that the abnormal region is characterized by increased DNA contributions and reduced glycogen contributions in the abnormal cells.

KMCA of LSIL tissue
Figure 4a shows the H&E stained image of an LSIL (CIN 1) tissue section which exhibits the normal pattern of the stroma, basal, parabasal, intermediate and superficial epithelium. Figure 4b shows the extended video image of the same unstained tissue section with a X100 objective, acquired using the Raman microspectrometer and the red box indicates the area analysed. KMCA of the Raman map is shown in Figure 4c.

The images indicate an intact stroma, distinct from the basal layer, as confirmed by the Raman bands of the collagen, including 849 cm\(^{-1}\), 921 cm\(^{-1}\), 938 cm\(^{-1}\) and 1245 cm\(^{-1}\), in the blue mean spectrum in Figure 4d. The separation of the stroma and basal layer is very clear, but, at the same time, the squamous epithelium has three types of clusters, two with strong Raman spectral features of glycogen (green and yellow clusters) and one with the characteristic Raman spectral features of the basal layer (red cluster), indicating characteristics of basal cells in this layer.

KMCA indicates that the superficial layer shows evidence of disease, based on strong DNA features throughout this layer. This is unexpected in the LSIL tissue as abnormal cells would be expected to be locally confined, adjacent to the basal region, and constitute only a third of the epithelium. Further investigation was thus performed using PCA.

PCA of NILM basal layer versus LSIL basal layer

PCA of the Raman spectra from the basal layer of the NILM cervical epithelium against the LSIL basal layer (Figure 4) is shown in Figure 5 A & B as scatter plot and loadings of the PCA respectively. The PCA scatter plot shows clear
differentiation of the two groups by clustering the Raman spectra of the normal basal layer in the negative axis and the spectra of the LSIL basal layer in the positive axis of the scatter plot and hence negative and positive loadings are associated with them respectively.

The loadings of the PCA, including those at 480 cm\(^{-1}\), 849 cm\(^{-1}\) and 939 cm\(^{-1}\) (glycogen), 1346 cm\(^{-1}\) (guanine), 1056 cm\(^{-1}\), 1088 cm\(^{-1}\) (O-P-O of DNA) and those associated with proteins, at 831 cm\(^{-1}\) (tyrosine), 1144 cm\(^{-1}\) (C-C stretching), 1222 cm\(^{-1}\) (amide-III beta sheet) are contributed by the LSIL basal layer. The loadings associated with the normal basal layer include those at 728 cm\(^{-1}\) (adenine), 783 cm\(^{-1}\) (cytosine), 1375 cm\(^{-1}\) (thymine), 1482 cm\(^{-1}\) (guanine), 1449 cm\(^{-1}\) (CH deformation) and 1577 cm\(^{-1}\) (tryptophan ring breathing).

PCA shows clear differentiation of the normal basal layer and the LSIL basal layer, indicating that cells of the normal basal layer are clearly different to the cells of the LSIL basal layer.

PCA results of NILM basal layer vs HSIL basal layers

PCA was also performed for the NILM basal layer and the HSIL basal layers to elucidate any differences between the normal and abnormal areas shown in Figure 3. As indicated in Figure 3c, HSIL-basal-a is the normal area and HSIL basal-b is the abnormal area which can be further subdivided into two parts, HSIL basal-bi and HSIL basal-bii.

PCA of the normal basal layer vs the normal area of the HSIL basal layer (HSIL basal-a) is presented in Figure 5 C & D as scatter plot and loadings respectively. It may be helpful in identifying the Raman spectral features which may be taken as the markers of the early stage of the disease or a pre-disease stage.
Interestingly, although the HSIL basal-a region was classified as normal, the PCA scatter plot differentiates the two regions by PC1 (71.6%). The Raman spectra of the normal basal layer are clustered in the negative axis and spectra of the HSIL basal-a region in the positive axis of the scatter plot. This indicates that the loadings of the PCA which are negative, including those at 480 cm\(^{-1}\), 849 cm\(^{-1}\) and 939 cm\(^{-1}\) (glycogen), and some loadings related to DNA, including the feature at 718 cm\(^{-1}\) (adenine), are contributed by the normal basal layer. The positive loadings associated with the DNA, including 1088 cm\(^{-1}\) (O-P-O of DNA) and 1346 cm\(^{-1}\) (guanine) and 1202 cm\(^{-1}\), 1222 cm\(^{-1}\) (amide-III beta sheet) and 1675 cm\(^{-1}\) (amide-I) are contributed by the HSIL basal-a layer. Thus, PCA differentiates the HSIL basal-a layer from the normal basal layer and confirms that HSIL basal-a is not a true normal region in terms of biochemical composition.

PCA analysis of the normal basal layer versus the abnormal area of the HSIL basal layer (HSIL basal-bi) was performed to explore biochemical differences between these layers, as HSIL basal-bi may be expected to be closer in biochemical composition to the normal basal layer, as compared to HSIL basal-bii layer.

PCA results of the normal basal layer vs HSIL basal-bi layer are presented in Figure 5 E & F as scatter plot and loadings respectively. It can be seen in the PCA scatter plot that the two groups are well differentiated and the Raman spectra of the normal basal layer are clustered in the negative axis, while the spectra of the HSIL basal-bi layer are clustered in the positive axis. Notably, the major difference which can be identified at first glance is the presence of glycogen related bands at 482 cm\(^{-1}\), 849 cm\(^{-1}\) and 938 cm\(^{-1}\) in the negative sense, solely contributed by the Raman spectra of the normal basal layer. This indicates that the normal basal layer, as expected, has more glycogen in the cells as compared to the HSIL basal-bi layer. Moreover, this
also means that the cells of the HSIL basal-bi layer are more proliferative and more immature as compared to the normal basal layer and hence the glycogen content is reduced due to its consumption by the cells during the process of the cell growth or proliferation.

Other negative loadings of PC1 including those at 524 cm\(^{-1}\) (S-S stretching), 718 cm\(^{-1}\) (adenine) and 1348 cm\(^{-1}\) (tryptophan ring breathing) are contributed by the normal basal and the positive loadings, including those at 669 cm\(^{-1}\) (thymine), 788 cm\(^{-1}\), 1088 cm\(^{-1}\) (O-P-O of DNA) and 1062 cm\(^{-1}\) (C-N stretching) correspond to the HSIL basal-bi layer. This confirms that HSIL basal-bi layer is not biochemically normal and has more dividing/DNA rich cells as compared to the cells of the normal basal layer.

Another prominent loading is that at 1222 cm\(^{-1}\) (amide-III beta sheet) which is contributed by the HSIL basal-bi layer and differentiates the Raman spectra of this layer from those of the normal basal layer. It should be noted that this band also contributed to the differentiation of the normal basal layer versus LSIL basal layer (Figure 5 A & B) and HSIL basal-a layer (Figure 5 C & D). The prominence of this band has been observed using a number of NILM tissue samples for comparison, as shown in supplementary information figure S2. This suggests that this signature could be associated with the early stages of disease and, given the established aetiology, with HPV infection in the cervical tissue samples.

PCA analysis of the normal basal layer versus the HSIL basal-bii layer was also carried out to explore biochemical differences between these layers, as the HSIL basal-bii layer might be expected to be different from the normal basal layer and resemble the superficial layer of the normal sample.
PCA results of the normal basal layer vs the HSIL basal-bii layer are presented in Figure 5 G & H as scatter plot and loadings, respectively. It can be seen in the PCA scatter plot that the two groups are different from each other and the Raman spectra of the normal basal layer are clustered in the negative axis and spectra of the HSIL basal-bii layer are clustered in the positive axis. Once again, the major difference between the two groups of the Raman spectra appearing in the form of the loadings is the presence of the glycogen related bands at 482 cm$^{-1}$, 849 cm$^{-1}$ and 938 cm$^{-1}$, which are solely contributed by the Raman spectra of the normal basal layer (in the negative). This confirms, as described earlier, that the cells of the normal basal layer are rich in glycogen as compared to the cells of the HSIL basal-bii layer. In addition, the cells of the HSIL basal-bii layer appear to be more proliferative in nature as compared to those of the normal basal layer and hence glycogen content is reduced due to its consumption by the cells during the process of cell growth and/or proliferation. Other positive loadings contributed by the HSIL basal-bii layer include those at 669 cm$^{-1}$, 759 cm$^{-1}$ (thymine), 1062 cm$^{-1}$ (C-N stretching) and by the normal basal layer include 644 cm$^{-1}$ and 1108 cm$^{-1}$ (C-C stretching) and 1348 cm$^{-1}$ (tryptophan ring breathing). Thus, the HSIL basal-bii region is well differentiated from the normal basal layer and seems to have more dividing/DNA rich cells as compared to the cells of the normal basal layer. In addition, no positive loadings associated with glycogen are seen, which are normally associated with the superficial layer. It can be concluded that the HSIL basal-bii layer is not similar or close to the biochemical composition of the superficial layer and this has also been confirmed using PCA (see supplementary information figure S3). The loading observed at 1222 cm$^{-1}$ (amide-III beta sheet), contributed by the HSIL basal-bii layer, is again the predominant difference between these two groups of spectra and is consistent with the
previous PCA results, further indicating that it may be associated with the early onset
of disease.

PCA of HSIL basal-a layer versus HSIL basal-bi layer versus HSIL basal-bii layer

PCA has also been performed on HSIL basal-a and HSIL basal-b, the normal and
abnormal areas of the cervical tissue section presented in **Figure 3c**, respectively. On
the basis of the fact that DNA related Raman features are predominant in the
abnormal area as compared to the normal area, the HSIL basal-b region is expected to
give more DNA related features as compared to the HSIL basal-a region. PCA of the
HSIL basal a versus HSIL basal-bi and HSIL basal-bii was performed to explore
biochemical differences between these layers, as HSIL basal-bii might be expected to
be different to HSIL basal-a (as compared to HSIL basal-bi) and resemble the
superficial layer of the true normal sample. It should be noted that HSIL basal-bii
derives from the superficial layer and has been termed basal due to the classification
of KMCA on the basis of the observation of the DNA related bands, in **Figure 3d**.

PCA results of the HSIL basal-a versus HSIL basal-bi are presented in **Figure 6** as
scatter plot (**Figure 6A**) and loadings (**Figure 6B**) of the PCA. There is little or no
differentiation between the two groups of spectra indicating that they are similar in
biochemical nature. The major loadings in this case are only related to proteins and
include those at 1004 cm\(^{-1}\) (phenyl alanine), 1129 cm\(^{-1}\), 1142 cm\(^{-1}\) (C-N stretching)
and 1449 cm\(^{-1}\) (CH deformation).

This finding confirms the PCA finding from **Figure 5 D** that the normal basal layer
and the HSIL basal-a layer were not biochemically similar, i.e. the HSIL basal-a layer
was not biochemically normal despite appearing normal morphologically.
PCA results of the HSIL basal bi and HSIL basal-bii, two subdivisions of the HSIL basal-b layer, indicated in Figure 3c, which is the abnormal area of the HSIL sample, are presented here in Figure 6 C & D as scatter plot and loadings respectively. The purpose of this analysis was to establish whether these two groups are similar or different in their biochemical composition, affected by the progression of the disease, and on what basis the KMCA clustered the Raman data.

It is clear from the PCA scatter plot that the two groups are not very different from each other as, although they are partially differentiated, they overlap to some extent. The Raman spectra of HSIL basal-bi are largely clustered in the negative axis and spectra of the HSIL basal-bii in the positive axis. This means that the loadings of the PCA which are negative, including 669 cm\(^{-1}\)(thymine), 782 cm\(^{-1}\)(cytosine) and 1062 cm\(^{-1}\)(O-P-O of DNA), correspond to the HSIL basal-bi region and the positive ones including 718 cm\(^{-1}\), 1238 cm\(^{-1}\)(adenine), 1260 cm\(^{-1}\)(thymine) and 1278 cm\(^{-1}\)(cytosine), correspond to the HSIL basal-bii region. Notably, the spectral groups are not very different, as indicated by the scatter plot and reflected in the presence of DNA features (thymine and cytosine) as both positive and negative loadings of the PC.

It should be noted that the loadings of the PCA between HSIL basal-bi and HSIL basal-bii (Figure 6 D) are very different than those of the normal basal layer versus the normal superficial layer (Figure 2 D) as there are no representations of glycogen in the former as compared to the latter. The differentiating features are rather associated with DNA, characteristic of rapidly proliferating cells. The findings are also consistent with the PCA results showing clear differentiation between the normal superficial layer and the HSIL basal-bii layer (supplementary information figure S3).

Under normal conditions, the basal layer provides cells to the superficial layer, but those cells are under controlled growth and have the ability to store glycogen during
the process of the maturation, and only matured cells, having stored glycogen, move
into the superficial layer. This may lead to the conclusion that, during the progression
of cervical cancer, characteristic biochemical features of the rapidly proliferating
basal cells, rich in DNA and lacking in glycogen, appear in the superficial layer due to
the progression of the disease. The KMCA clustering of the HSIL basal bii layer with
the HSIL basal bi layer is a representation of this process.

PCA results of the HSIL basal-a versus HSIL basal-bii are presented in Figure 6 (E)
as scatter plot and Figure 6 (F) as loadings of the PCA. There is very good
differentiation between the two groups of spectra, indicating that they are different in
biochemical nature. In the PCA scatter plot, HSIL basal-a, is clustered in the negative
axis and HSIL basal-bii in the positive and they are hence associated with the negative
and positive loadings respectively. Loadings associated with HSIL basal-bii include
those at 669 cm\(^{-1}\) (thymine), 718 cm\(^{-1}\) (adenine), 782 cm\(^{-1}\) (cytosine), 888 cm\(^{-1}\)
deoxyribose ring breathing) and 825 cm\(^{-1}\) (O-P-O of DNA), which are associated
with DNA, indicating the presence of rapidly proliferating cells having high DNA
content. On the other hand HSIL basal-a has contributed loadings associated only
with proteins, including those at 1129cm\(^{-1}\), 1158 cm\(^{-1}\) (C-N stretching), 1172cm\(^{-1}\)
tyrosine ring breathing), 1449 cm\(^{-1}\) (CH deformation) and 1675 cm\(^{-1}\) (amide-I).
Notably the loadings of HSIL basal-a versus HSIL basal-bii and HSIL basal-a versus
HSIL basal-bi are very similar, although HSIL basal-a shows some features associated
with glycogen (482cm\(^{-1}\)).

The repeated observation of the 1222cm\(^{-1}\) band, associated with the amide III band of
beta sheeted proteins, in differentiating normal and early stage disease of the cervix
suggests that it may be a spectroscopic marker of the early stages of the onset. As cervical cancer is predominantly associated with high risk HPV, it may therefore, by extension, be an indicator of infection. Should this be the case, it is more likely a marker for the physiological effects of HPV infection in tissue, rather than the spectroscopic bands associated with the virus itself, due to the very small genome size of the HPV as compared to the human genome (Diem et al., 2012). The intracellular targets for HPVs include a number of regulatory proteins such as cyclins, cyclin dependent kinases, cyclin inhibitors, and cell cycle-associated proteins and p16$^{\text{INK4A}}$ overexpression has been demonstrated in cervical cancers as a result of functional inactivation of retinoblastoma protein by the HPV E7 protein (Tam et al., 1994). p16$^{\text{INK4A}}$ expression levels have been shown to be correlated with degree of HPV infection in cervical cell lines (Ostrowska et al., 2011) and to the degree of CIN in tissue biopsies (Lesnikova et al., 2009). However, in an FTIR study of cervical cell lines of varying HPV infection, and correlated p16$^{\text{INK4A}}$ expression levels, only weak variations of the cytoplasmic amide III features were observed (Ostrowska et al., 2011) and although a PCA analysis of Raman spectra of pellets of the same cell lines showed a good differentiation between the cell lines, any features which could be related to the amide III band were evident only in PC2 and PC3 (Ostrowska et al., 2010). Indeed, a pairwise PCA of the same data revealed no strong contribution of the amide III feature to the discrimination of the HPV negative cell lines from progressively HPV positive cell lines (Rashid, 2013).
Conclusion

Raman micro spectroscopy together with KMCA was able to differentiate NILM cervical tissue into three layers including stroma, basal/parabasal and superficial layers on the basis of the spectral features of collagen, DNA bases and glycogen respectively. In the HSIL tissue with both normal and abnormal regions, KMCA showed three distinct layers, stromal, basal and superficial layers for the normal region, and two distinct layers, stromal and basal layers for the abnormal region. This finding confirms that the abnormal cells are characterised by increased DNA contributions and reduced glycogen contributions. Further analysis by PCA, however showed that the normal region was not in fact normal and could be differentiated from the NILM samples. Interestingly, KMCA showed strong DNA features throughout the superficial layer of the LSIL tissue. As this tissue was classified as LSIL, abnormal cells would be expected only in the basal third of the epithelium rather than throughout the epithelium. These findings indicate that Raman microspectroscopy can identify biochemical changes in tissue where morphological changes are not yet prominent. The 1222cm$^{-1}$ Raman feature, associated with the amide III band of beta sheeted proteins, was consistently observed in differentiating normal and pre-malignant tissue suggesting that it may be a spectroscopic marker of the early biochemical changes.

In conclusion, this study has shown that Raman microspectroscopy in combination with KMCA and PCA can be useful for the early detection of pre-malignant changes in cervical tissue.
Acknowledgements

This research was supported by the National Biophotonics and Imaging Platform (NBIP) Ireland funded under the Higher Education Authority PRTLI (Programme for Research in Third Level Institutions) Cycle 4, co-funded by the Irish Government and the European Union Structural fund.

Conflict of Interest

The authors declare no conflict of interest.
References

pathology, from biochemical analysis to diagnostic tool. Experimental and Molecular Pathology 82(2): 121-129

29

Rashid N. Raman micro spectroscopy for the characterisation of cervical cancer. PhD, Dublin Institute of Technology, Dublin, 2013

Titles and Legends to Figures

Figure 1 (a) H&E stained NILM tissue, (b) unstained tissue under Raman spectroscope, (c) Five cluster K means cluster map generated from the Raman map, (d) K-means cluster spectra, blue representing the stroma (collagen), red representing the basal layer (DNA) and green representing the superficial layer (glycogen), for the Raman map of the marked region in c.

Figure 2 PCA scatter plot and loading (PC1) for: (A, B) normal basal vs normal stromal layer and (C, D) normal basal vs normal superficial layer.

Figure 3 (a) H&E stained normal and abnormal region of HSIL (CIN 2) tissue with scale bar of 200µm, (b) unstained tissue under Raman spectroscope, (c) Five cluster KMCA map generated from the Raman map, (d) Representative mean Raman spectra from KMCA of Raman map, yellow and blue clusters corresponding to stroma, red corresponding to basal layer, and green corresponding to squamous epithelium from the marked region.

Figure 4 (a) H&E stained region of LSIL (CIN 1) tissue with scale bar of 500µm, (b) unstained tissue under Raman spectroscope, with scale bar of 100µm, (c) Five cluster KMCA map generated from the Raman map, (d) and K-means cluster spectra, blue representing stroma (collagen), red representing basal (DNA), green & yellow representing superficial (glycogen) layers, for the Raman map of the marked region.

Figure 5 PCA scatter plot and loadings (PC1) of NILM basal layer versus LSIL basal (A, B), HSIL basal-a (C, D), HSIL basal-bi (E, F), HSIL basal-bii (G, H).

Figure 6 PCA scatter plot and loadings (PC1) for HSIL basal-a layer versus HSIL basal-bi layer (A, B), HSIL basal-bi layer vs HSIL basal-bii layer (C, D), HSIL basal-a layer versus HSIL basal-bii layer (E, F).
Figure S1 PCA scatter plot (A) and PC1 loadings (B) of the basal regions of two NILM samples. PC1 accounts for only 56% of the variability, and the dominant differentiating features are largely attributed to proteins and lipids.

Figure S2 PCA scatter plot (A) and PC1 loadings (B) of the differentiation of the basal layer of a second NILM sample from the LSIL basal layer. Again, the amide III at 1222 cm\(^{-1}\) is dominant.

Figure S3 PCA scatter plot (A) and loadings of PC1 (B) of the normal superficial layer and the HSIL basal-bii layer showing good differentiation with the loadings contributed by the Raman spectra of the HSIL basal-bii layer attributed to DNA and no glycogen related loadings contributed by the cells in this layer.
Figure 1
Figure 2
Figure 4
Figure 5
Figure 6