
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Science

2001-01-01

Applying Event-Condition-Action Mechanism in Healthcare: A Applying Event-Condition-Action Mechanism in Healthcare: A

Computerised Clinical Test-Ordering Protocol System (TOPS) Computerised Clinical Test-Ordering Protocol System (TOPS)

Bing Wu
Technological University Dublin, bing.wu@tudublin.ie

Kudakwashe Dube
Technological University Dublin

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

Recommended Citation Recommended Citation
Wu, B. & Dube, K. (2001). Applying Event-Condition-Action Mechanism in Healthcare: A Computerised
Clinical Test-Ordering Protocol System (TOPS). IEEE third International Symposium on Cooperative
Database Systems for Advanced Applications (CODAS’01), Beijing, China. doi:10.1109/
CODAS.2001.945143

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Antenna & High Frequency Research Centre

Conference Papers

Dublin Institute of Technology Year

APPLYING

EVENT-CONDITION-ACTION

MECHANISM IN HEALTHCARE: A

COMPUTERISED CLINICAL

TEST-ORDERING PROTOCOL

SYSTEM (TOPS)

Bing Wu Ph.D∗ Kudakwashe Dube†

∗Dublin Institute of Technology, Bing.Wu@dit.ie
†Dublin Institute of Technology

This paper is posted at ARROW@DIT.

http://arrow.dit.ie/ahfrccon/1

— Use Licence —

Attribution-NonCommercial-ShareAlike 1.0

You are free:

• to copy, distribute, display, and perform the work

• to make derivative works

Under the following conditions:

• Attribution.
You must give the original author credit.

• Non-Commercial.
You may not use this work for commercial purposes.

• Share Alike.
If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms
of this work. Any of these conditions can be waived if you get permission from
the author.

Your fair use and other rights are in no way affected by the above.

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike License. To view a copy of this license, visit:

• URL (human-readable summary):
http://creativecommons.org/licenses/by-nc-sa/1.0/

• URL (legal code):
http://creativecommons.org/worldwide/uk/translated-license

Applying Event-Condition-Action Mechanism in Healthcare: a Computerised
Clinical Test-Ordering Protocol System (TOPS)

Bing Wu and Kudakwashe Dube
Department of Computer Science, Dublin Institute of Technology, Kevin Street Lower, Dublin 8, Ireland

Emails: {Bing. Wu, Kudakwashe. Dube)@dif. ie

Abstract

This paper addresses issues of the active database
application in the challenging healthcare area: the
management and execution of computerised clinical
practice guidelines/protocols. The problem of how to
efficiently and effectively q u e y and manipulate the
computerised clinical protocols/guidelines has posed a
major challenge but received little research attention until
very recently. By proposing a declarative modeling
language (PLAN) with an Event-Condition-Action (ECA)
mechanism for clinical test-ordering protocols, and an
automatic mapping and management system (TOPS), this
paper addresses this issue, in an important medical
domain, from a unified approach based on an active rule
mechanism. The work presented in rhis paper is part of an
on-going research effort that investigates a new
application domain for active databases, and proposes
some new requirements towards the enhancements of
active DBMS functionalities

1. Introduction

The cost of clinical laboratory testing has increased
considerably during the past two decades. This has
prompted research aimed at controlling clinical laboratory
utilization without affecting the continued improvement
of the quality of patient care. One of the most effective
and proven approaches to clinical laboratory utilization
management is the use of clinical test-ordering protocols.
The major challenges being faced are those of modeling
and specifying clinical guidelines and protocols in a
manner that facilitates their integration into information
systems, their subsequent management and their linking
with the electronic healthcare record systems such as the
Synapses Server [1 3 . Furthermore how to efficiently and
effectively manage, query and manipulate the
computerised clinical test-ordering protocols has posed a
major challenge but received little research attention until
very recently.

This paper addresses these challenges by following an
active database approach with focus being put on the

management and execution of computerised clinical test-
ordering protocols.

This paper contains 6 main sections. Section 2 briefs
the application domain background and links it with the
ECA mechanism. Section 3 presents the general overview
of the on-going project. A declarative modeling language
(PLAN) with an Event-Condition-Action (ECA)
mechanism for specifying clinical test-ordering protocols
and its associated concepts are briefly presented in
Section 4. Section 5 discusses the design and development
of a computerised clinical Test-Ordering Protocol System
(TOPS). Finally, Section 6 summaries the whole paper.

2. Clinical Protocols and Event-Condition-
Action Mechanism

2.1 Brief background of research on clinical
guidelines/protocol

Clinical guidelines/protocols contain medical concepts
and knowledge about how to carry out specific activities,
such as ordering timely and appropriate tests and planning
treatments for clinical patients [2]. The need to improve
the quality of healthcare has led to a strong demand for
clinical protocols/guidelines supported by computer
systems in their creation and execution [3] . Research and
practice on the computerised clinical guidelines/protocols
have been conducted for over two decades [4]. Recently,
they have become one of the major focuses in the
healthcare informatics area.

One of the major challenges within this area is not only
a matter of disseminating best practice, but also a matter
of ensuring that the protocols enshrined in this best
practice can be easily and readily specified and then
integrated into the existing computing infiastructure, and
are easily customizabfe to suit local practice and needs.
However, from a computing technology perspective, most
attention have been paid from the Artificial Intelligence
discipline towards specibing and executing computerised
protocols with a strong decision-support flavour. Little
attention was paid towards the storage and management
of the generated protocols, to which the database
applications can play an essential role.

0-7695-1 128-7/01 S10.00 0 2001 IEEE 2

Currently, there is an on-going project in the Dublin
Institute of Technology. Its main aim is to develop a
generic framework and its associated language to specify
automatic clinical test-ordering protocols based on an
Event-Condition-Action mechanism. Together with this
framework and language, a mechanism and
implementation of protocol-based system for the creation,
execution and management of the specified clinical test-
ordering protocols employing an active database will be
developed.

2.2 ECA rule application and clinical test-
ordering protocols

The Event-Condition-Action (ECA) rule (also known
as trigger) mechanism is well established in the database
community. It originated from the need to free individual
applications from behavioural knowledge [5] . An active
database is normally referred to as a DBMS with an
integrated trigger mechanism. Recently, the real-world
application areas of active databases (trigger applications)
have been identified by [6] as Business rules, Scheduling,
Supply chain management, Web application and
Workflow management. Also in [6], from functional and
behavioural points of view, triggers are classified into 9
types: 1) constraint-preserving, 2) constraint-restoring, 3)
invalidating, 4) materialized, 5) meta-data, 6) replication,
7) extenders, 8) alerters and 9) ad-hoc triggers. It is
pointed out there that type 5, 6 and 7 are clearly
derivatives of type 4, and type 4 itself can be considered a
specific instance of type 2 . In other words, for many
trigger applications, the primary purpose is to monitor and
maintain some kind of constraint [6].

In the clinical test-ordering domain, the activity of a
test-ordering rule in a clinical protocol can be seen as
following such a procedure: when any of the specified
events occur, check the test-ordering condition; if the
condition is true, then a test order is issued. Therefore
every test order is a result of an event followed by a
decision that is made to order the test. A possible event
that triggers a test order may be the emergence of a
patient with a problem, the passage of time, the
occurrence of abnormalities in a patient’s condition, or a
combination of these events. A possible condition can be
a specification of the medical condition of a patient. A
possible action can be the issuing of a test order, the
sending of an alarm or the issuing of a reminder to a
clinician. Other actions can affect the test-ordering plan
itself such as adding new, suspending or even removing a
scheduled test order for a patient.

It is important to observe that the working scenario
described here has some unique features: Firstly, It is
event-driven and can also be time-driven. A clinical test
can be ordered based on the patient’s condition. It can
also be triggered on certain time points for some

scheduled regular tests. For example, for a Liver-
transplant patient, a U&K test (the clinical meaning is not
important here) may be scheduled on days -1, 0, 1,2, 3, 4,
6, 8, 11(+3). Here -1 means the day before the operation,
0 the day of operation and +3 means every 3 days later on
until further notice. Secondfy, the actions of a test-
ordering rule can be alarm- or alert-oriented. It can also
be dynamic-mod~cation-oriented. An action of a test-
ordering rule may specify that on arrival of a test result,
send paging information to a clinician. However, there is
a much more complicated scenario. On checking the
arrived test result, some more tests may need to be
ordered immediately or at some late time points - if the
ordering logic is pre-determined. Obviously, it can also be
the case that an action may be pending on a medical
expert’s decision, which involves external actions.
Finally, the. reaction time for a test-ordering rule would
generally not be in terms of ‘seconds’ or ‘minutes’, but a
test order may be repeated at time points within a long
time interval as the previous example indicated.

Therefore this may be seen as a new application
domain for active databases, which falls under type 9, ad-
hoc triggers identified in [6] but incorporating special
requirements for temporal triggers and comprehensive
high-level DBMS facilities for dynamically manipulating
triggers automatically and with human concurrence from
the application.

3. Overview of the Project

This section serves as an introduction to the following
sections. It discusses the context of the paper on a high
level. Subsection 3.1 discusses the clinical requirements
for the proposed TOPS system. Subsection 3.2 describes
the project approach and the overall architecture of the
TOPS system.

3.1 The clinical requirements

The main aim of this project is to assist healthcare
professionals with the specification, implementation,
management and execution of clinical test-ordering
protocols. There are two major areas in which this
assistance can be given. First, assistance can be provided
for healthcare professionals to specify and manage a
computerised test-ordering protocol for a particular
category of patients, such as Liver-transplant, or Diabetes.
This involves creation, storage, query and manipulation of
computerised test-ordering protocols on a general level
for different categories of patients. Second, assistance can
also be provided for healthcare professionals to
dynamically develop and manage a patient test-ordering
plan for a particular individual patient. This patient test-
ordering plan is obtained for the patient from a
computerised test-ordering protocol of the particular

3

category to which the patient belongs. This involves
creation, storage, query, execution and 4namic
manipulation of patient test-ordering plans. It is very
important to notice the relevance and difference of these
levels o f assistance. A test-ordering protocol is a generic
specification of a clinical protocol for a particular patient
category. An individual patient will only be associated
with a patient test-ordering plan. Therefore, the main
requirements can be listed as follows: 1) A specification
language is needed for test-ordering protocols and patient
test-ordering plans; 2) Tools are needed for the
specification, storage, query and manipulation of
computerised test-ordering protocols; and 3) Tools are
also needed for the generation (from protocols), execution
and dynamic management of patient test-ordering plans.

3.2 The Specification Language and
Management System for Clinical Test-Ordering
Protocols

To fulfill previously raised requirements, two major
technical goals of this project are identified. First, a
generic modelling framework and a specification
language to assist clinical professionals to specify
automated clinical test protocols is to be developed.
Second, a management system is needed for creation,
storage, query, execution and dynamic manipulation to
assist clinical professionals to order correct and timely
clinical tests for their patients.

The first goal has been achieved and, a specification
framework and language, named PLAN, has been
developed based on the Event-Condition-Action
Mechanism. Section 4 outlines PLAN language and its
associated modeling concepts. A more detailed
description of PLAN has been given elsewhere [7].

The task for achieving the second goal is well under
way. An advanced database application system, named
TOPS, has been developed based on the active database
technology in a heterogeneous healthcare database
system. The implementation on the Oracle DBMS
platform is on-going. A high level architecture of the
Test-Ordering Protocol System (TOPS) is illustrated in
Figure 1.

It can be seen that TOPS architecture consists of five
main components: Patient Category Manager, Test
Ordering Protocol Manager, Test Ordering Plan Engine,
an active database and the External Communicator.

The Patient Category Manager deals with categorising
patients into proper clinical categories. The Test-Ordering
Protocol Manager permits the clinicians to edit, query and
manipulate test-ordering protocols. The Patient Test Plan
Manager performs the similar tasks as the Test-Ordering
Protocol Manager but with the targets as patient test
plans. The active DBMS serves the purpose of storing
test-ordering protocols, instantiated patient test plans and

the execution states of patient test plans. Its trigger
mechanism drives the execution of patient test plans.
Finally, the External Communicator provides the
interfacing services for communication with other
Healthcare Information System (HIS), such as Laboratory
Information System (LIS) and the EHCR Server
(Synapses [13). More detailed discussions on these
components are presented in Section 5 .

. , , , ,

Figure 1. General Architecture of the Test-ordering
Protocol System (TOPS)

Before moving into next sections, it may help to sum
up the main features of the authors' approach in general:
1) It places emphasis on issues of storing, executing,
querying and manipulating of specified protocols; 2) It
draws a clear line between the static test request protocols
and the dynamic patient test plans; 3) It allows not only
higher level management of generic test request protocols,
but also lower level management of test plans for
individual patients; and 4) It takes a database and ECA
rule approach.

4. Modelling and Specifying Clinical Test-
Ordering Protocols

This section first introduces some concepts and terms
of the PLAN language in Subsection 4.1, then in
Subsection 4.2 it presents a simplified version of the
generic framework for modeling test-ordering protocols
based on the ECA rule mechanism. Two examples of test-
ordering rules expressed in a simplified version of PLAN
are also presented.

4.1. Main concepts

A test-ordering protocol (or test protocol in short) is a
generic plan for ordering clinical tests for a particular
patient clinical category. It contains a set of base
schedules of test orders. Each base schedule covers test
orders for each variation in patient condition in a specified
patient category. A base schedule is expressed in terms of
ECA rules. A test protocol also contains a set ofprotocol
rules. A protocol rule is an ECA rule that dynamically
monitors a base schedule of clinical test orders and,

4

dynamically intervenes in reaction to appropriate clinical
situations that may affect test-ordering. In the test-
ordering domain, an event is an occurrence of something
of clinical interest in the care of a patient. Examples of
events include 1) test result arrival, 2) passage of time
points, 3) patient checks in or out and 4) changes in
patient status or condition. A condition is a logical
expression involving previous test results or other patient
attributes. An action is an operation that can be performed
by the system or by a human agent. The actions can be 1)
ordering a further test, 2) issuing an alarm, 3) monitoring
patient condition and 4) adding a new or, manipulating an
existing test-ordering schedule.

4.2 The PLAN model and declarative language

Based on the above defined core concepts, Figure 2
presents a high-level entity-relationship (ER) model for
modeling test-ordering protocols with active rules as the
basis for the modeling.

Figure 2. An entity-relationship (ER) model
for test ordering protocols

Patients are put into categories based on some clinical
indication for purposes of clinical test ordering. Each
patient category has a test-ordering protocol. From this
test-ordering protocol, a test plan is produced for each
individual patient. A test plan is generated and consists of
a single selected test schedule and all the protocol rules.
Global rules are applicable to all protocols and serve to
monitor and control executing test plans for all patients in
all categories; they represent institutional and hospital-
wide policies that govern test orders in general.

Based on this model, a declarative specification
language PLAN was developed to allow the specification
of a test ordering protocol. Figure 3 shows simplified
version of one base schedule rule in (a) and one protocol
rule in (b). For detailed discussion on PLAN, please refer
to [7].

RuleName: schedule-rule-1
RuleType: static
Rulestatus: active
StartTime: check-in-day
On day {-I, 0, 1, 2, 3, 4, 6, 8, 11, *3}
Do order-test { U & E}

(a) A base schedule rule
~ ~ ~

RuleName: protocol-rule-I
RuleType: protocol
Rulestatus: active
On test result {K}
IF K > 5.5 or K 3
Do order-test { U & E}

(b) A test-ordering protocol rule
Figure 3. Examples of test-ordering rules in PLAN

It can be seen that, in a base schedule rule, the
condition part is omitted, as it is always true. In a protocol
rule, based on the current available test result (K in the
example), a new test order can be added. Each rule has a
state. Some typical options for the state of a rule are
active, suspended, ready, or executed.

5. TOPS: a Computerised Clinical Test-
Ordering Protocol System

This section discusses the development of TOPS.
Based on the general descriptions on TOPS in Subsection
3.2, the execution flow of TOPS is described in
Subsection 5.1. The architecture design is then discussed
in Subsection 5.2. A special case of TOPS' application -
the management of patient test plans is discussed in
Subsection 5.3. Finally, Subsection 5.4 discusses the
implementation issues of TOPS.

5.1 The TOPS Execution Flow

TOPS has four main execution phases: speclfication,
customisation, installation and execution, as illustrated in
Figure 4. Please note that the numbers in parenthesis for
each phase refer to the numbers indicated in the TOPS
architecture diagram shown in Figure 5.

During the protocol speclfication phase (1)-(4), the
patient category and test ordering protocol are specified.
The resulting protocol specification is in the PLAN
language and is stored in a database as a set of tables that
can be queried and modified.

During the protocol customisation phase (5)-(7), the
protocol is customised to produce a patient test-ordering
plan. Data on the patient's clinical condition is used to
select the appropriate test ordering base schedule. A
complete test-ordering plan for the patient is composed
from the base schedule and the protocol rules.

5

During the test plan installation phase (8)-(14), the
patient test plan is interpreted and set up to produce an
instantiated patient test-ordering plan into the active
DBMS. The base schedule rules and protocol rules are
parsed and translated into a set of ECA rules (triggers)
with exact event, condition and action specifications that
can be monitored, evaluated and executed respectively.

During the test plan execution phase (1 5)-(23), the test
plan is executed. The test plan execution is driven by the
ECA rule mode of operation. When an event signal
occurs, the reactive mechanism goes on to determine if it
is a test plan event and, if it is, then its associated
condition is evaluated; if the condition is true, a signal is
generated to trigger the appropriate action.

Specification
Phase

Cotrgory
protocol rp<rfleonan

Pat,ent Clrmcal Customisation
b r a Phase Management

(quer?.ing 81
P"," ll, modification)

Installation
Phase

A

lnrranllored pu,,cnc

Tesr ord&x. alerts.
alarms. etc

Figure 4 Execution Flow of the Clinical Test-Ordering
Protocol System (TOPS)

The installation and execution phases are tightly
coupled with the former taking only a short instant, while
the later might take several days, weeks or months.

5.2. The TOPS Architecture

The Test Ordering Protocol System (TOPS) detailed
architecture is illustrated in Figure 5 . The TOPS
architecture consists of the five main components: 1) The
Patient Category Manager (PCaM); 2) The Test Ordering
Protocol Mananger (TOProM); 3) The Patient Test
Ordering Plan Manager (TOPlaM); 4) The Test Ordering
Plan ECA Rule Engine (TOPEng) - also acts as the
reactive wrapper to the underlying database system; and
5) The Test Ordering Protocol Database System - an
active DBMS with an event and trigger mechanism.

The Patient Category Manager (PCaM) allows the
creation, deletion and modification of patient categories
and the assignment of individual patients to these
categories for the purposes of test ordering. The
categories are symptom, disease or sub-disease based. The

PCaM also maintains the list of all patients assigned to
existing categories.

The Test Ordering Protocol Manager (TOProM)
permits the user to edit new test ordering protocol
specifications, query and modify existing test ordering
protocol specification components, and delete existing
protocol specifications.

I I

Figure 5. Architecture of the Test Ordering Protocol
System (TOPS)

The Patient Test Plan Manager (TOPlaM) allows the
user to obtain a categorised patient's test plan
specification from the test ordering protocol specification
through a protocol customisation process as already
described. The TOPlaM permits the user to edit the test
ordering plan specification, query and modify existing test
ordering plan specification components, and delete
existing plan specifications. The major hnction of the
TOPlaM is to allow the user to install, execute and
manage the patient test-ordering plan. The non-rule
components of the test plan are interpreted and organised
into execution state data. The TOPlaM also accesses the
patient's medical record through the Electronic Health
Care Record (EHCR) Server (Synapses [GBG+98]), sends
test orders and receives test results from the Laboratory
Information System (LIS).

The database serves the purpose of storing test-
ordering protocols, instantiated patient test plans and the
execution states of patient test plans. The trigger
mechanism drives the execution of patient test plans.

The External Communicator (ExCom) provides the
interfacing services for communication with other
healthcare information system (HIS) such as LIS and the
EHCR server.

The Test-Ordering Plan Engine (TOPEng) is the kernel
of the TOPS. The TOPEng consists of the three main

6

components and a timer: 1) The Test Ordering Plan Rule
Manager (TOPRuM) containing the ECA Rule processor
(EcaRProc) and the Event Manager (EvM); 2) The Action
Processor (AP); 3) The Event Detector (ED); and 4)The
Timer.

The TOPRuM handles mainly the event-condition part
of an ECA rule, while the AP handles the action part. The
ED assists the TOPRuM by generating signals that may
indicate the occurrence of a test plan event. The Timer
assists the ED by generating time event signals.

The TOPRuM accepts and manages the test plan’s
ECA rules. The TOPRuM may transform high-level rules
into low-level rules by the replacement of logical terms,
such as positive and negative test results, with test result
value ranges. The TOPRuM installs the triggers and
actions into the ED and the AP respectively. The

EcaRProc is responsible for the storage, scheduling,
termination management and installation of the test plan
rules. The EvM consists of the Event Processor (EP) and
the Event Queue Mananger (EQM). The EQM is
responsible for buffering event signals from the ED.
When event signals occur, the EP processes them
according to the installed or registered test plan events
and signals the EcaRProc of their occurrences. The AP
holds the action implementations, accepts rule action
signals from the TOPRuM and executes the appropriate
actions on receipt of the event triggering information. The
ED monitors the database (orders, results, test result
trends and summaries) for changes as required by the
TOPRuM. The ED signals the TOPRuM when the
changes happen.

Table 1. Protocol Management Operations

PROTOCOL MANAGEMENT OPERATIONS
C-Create, M-Modify, D-Delete, ADT-ActivatelDeactivatelTerminate, J - Defined, x - Undefined

5.3. Management of the patient test plan

There are many use cases that can be discussed for TOPS.
Table 1 indicates the main functionality of TOPS.
However, because of space limitation, this paper only
discusses issues of the management of the patient test
plans, which involves dynamic interactions among system
components and/or clinicians. The management of the
running patient test plan constitutes the following: 1) the
dynamic querying of the test plan definition; 2) the
dynamic querying of the test plan execution progress; 3)
the dynamic addition, deletion, modification and
replacement of the ECA rules making up the test plan’s
logic allowing dynamic adjustments and changes to be
made to the plan; and 4) the maintenance of dynamic
versions of the patient test plan.

5.3.1 Handling dynamic modification of patient
test plans in TOPS

When change is being made to a test plan, only the test
plan specification expressed in PLAN language is
affected. The change will have to be Propagated to the
running instance and to the protocol. The modified plan
specification is saved and the old version is archived for

historical or version maintenance. Another option is to
tightly couple rule changes with execution. Modification
is made to the running version of the plan. Changes
propagated to the test protocol are of the following types:
1) addition or deletion of base schedules, and 2)
modification, deletion, addition of rules. Modification
process has three phrases: a) the retrieval of the
component that need to be modified; b) the editing of
desired changes; and c) the installation of the changed
component

To edit changes to an executing test plan, one of the
following could be done: 1) Continue executing the older
plan while editing, then freeze it when propagating the
changes; 2) Freeze the execution and resume when
changes have been completely propagated. (Freezing a
plan or schedule means suspending its execution, which is
to be resumed after a dynamic management operation is
complete and effected. When a plan is frozen everything
else including the base schedule and protocol rules are
also frozen); and 3) Terminate the execution of the test
plan. Only the plan can be frozen. The plan’s individual
components are never frozen but are only terminated. The
plan is frozen only when the plan schedule is being added,
modified and deleted. Deleting a plan or its component

7

can be done only when the corresponding currently
executing plan is in a terminated (disabled) state.

running test plan needs to be stopped. In TOPS, these
three approaches are adopted depending on the size and
potential impact of the modification as well as the
modification operation being performed. Modifications

that affect the whole plan or base schedule are sizeable
enough to warrant either terniinating the plan or freezing

Whatever approach is taken there is a point where a the plan or schedule. The scenarios for dynamic
management of an executing test plan are summarised in
Table2.

Table 2. Scenarios for the dynamic management of test-ordering plans

Plan Schedule
Terminate current plan,
Move patient to new
category, Get new plan,
Set up new plan for
execution execution; Update plan

Terminate current; If new
schedule exist, then select new
schedule; Else create new
schedule; Set up schedule for

specification; If new schedule
update protocol specification
Freeze plan; Drop all static rules Terminate plan: Drop

Dynamic
Static Rule Dynamic Rule

Createledit new rule Createkdit new rule
Update schedule Update plan specification

Set up rule for monitoring specification
Set up rule for monitoring and execution
and execution

Terminate rule Terminate rule

Modify r plan components
schedule static rule
and dynamic rule)

I

static rules, Update plan
specification, Set up schedule for
execution, Unfreeze pian

and modify rule, Update
schedule specification, Set
up rule for monitoring and
execution execution

and modify, Updated plan
specification, Set up rule
for monitoring and

schedules and all rules
(See modification of

I Create or select another schedule
I Freeze plan; Retrieve and modify

I Drop rule
I Terminate current; Retrieve

I Drop rule
I Terminate current; Retrieve

5.4. Implementation of TOPS

TOPS is being implemented using Oracle on Windows
2000. The support for ECA rules (or triggers) in Oracle
reduces the complexity of the patient test plan engine. An
important requirement for the implementation is the
support for dynamic adaptation and management of ECA
rules, which enables the dynamic management of an
executing patient test plan. Currently, it seems that within
DBMSs there is a lack of comprehensive query and
dynamic management facilities to higher level objects
such as triggers. A TOPS chooses to implement the
management and execution at two different levels. The
management plane is outside the DBMS kernel to provide
the comprehensive query and manipulation facilities to
test-ordering protocols and patient test-ordering plans.
The execution plane co-operates with the internal trigger
mechanism, so as to dynamically perform the tasks
specified in patient test plans.

The Test Plan Manager (TOPlaM) and the Rule
Engine(T0PEcaREng): The plan rule engine is the
reactive wrapper that extends the ECA rule functionality
of the database system. Particularly, a component dealing
with the complicated temporal aspects of a test-ordering
protocol needs to be developed on top of the selected
DBMS as it seems that no strong support is provided by
active databases [6] . It would be really desirable if such
temporal services could also be provided as an integrated
part of DBMS triggers. This requirement has been
identified in other ECA technology application domains
such as network management and control systems,
leading to the suggestion for the integration of active and
temporal database concepts and technologies [SI [9] [101.

8

The Categoty Manager (PCaM) and Protocol manager
(TOProM): The PCaM and the TOProM together make
up an implementation of the static protocol specifications
expressed in PLAN language. The most important aspect
of these system modules is the functionality for mapping
protocol specifications in the PLAN language into a
database. Not too many high level difficulties are
expected here as the general mapping mechanisms for
automatically generating triggers from declarative
language have been well studied and practiced. However,
the organisation and manipulation of the generated test
protocol still pose technical challenges.

6. Summary, Discussion and Conclusion

This paper has described an on-going project, which
aims at developing an advanced active database
application system for a computerised clinical test-
ordering system (TOPS). A modelling framework and
specification language, PLAN, serving the specification
purpose, was briefed. The architecture of TOPS, its
execution flow, and a management scenario for patient
test-ordering plan were also discussed.

The main feature of the TOPS architecture is the
extension of reactive capability supported by an
underlying active database system in order to execute a
patient test-ordering plan following the ECA rule
paradigm. Special attention and emphasis is placed on the
requirement for performing dynamic management of the
ECA rules in order to adapt to the patient’s dynamic
clinical condition. Since the protocol specifications and
the test plan rules are stored in the database in the form of
relations, dynamic management, that is, querying,

insertion, deletion and update operations can be
performed at a high level. This will, in turn, greatly
enhance the clinical professionals’ ability to efficiently
and effectively manage, query and manipulate the
computerised clinical protocols. Therefore a better
healthcare service can be achieved. In the TOPS
architecture, there are some technical issues that may need
special attention.

Firstly, the management functionality of DBMSs on
high-level database objects needs enhancement. For
instance, although operations for creating, dropping or
replacing of a named trigger are provided, to select a
trigger based on its features seems not to be possible yet.
This is an important desired feature of an active DBMS, at
least to the project presented in this paper. The problem of
a lack administration tools for triggers has also been
raised from a different perspective in [111.

Secondly, although a trigger can be enabled or
disabled, it may not be enough to meet the requirements
that a test-ordering rule should ‘sleep’ for a period of time
and then ‘awaken’ itself later.

Thirdly, it seems that currently a user can only add a
trigger into the active DBMS manually. There is a need in
our application for a trigger to be dynamically
manipulated automatically within an application. For
example, a test-ordering rule may want to add in a new, or
even delete, a currently active test-ordering rule.

Finally, clinical protocols are not only event-driven,
but they are also time-driven in some cases. It would be
really desirable that an active database could also provide
a trigger with comprehensive temporal features. The
current TOPS approach is to have a temporal component
outside the DBMS, which checks the temporal events and
produces a temporal trigger. This is obviously not an ideal
situation.

Although the application of ECA rules in dealing with
the clinical test-ordering protocol is promising, this area is
only a special sector of a huge healthcare area. The
problem of how to deal with the general clinical protocols
and guidelines, rather than the special laboratory test-
ordering area (though still big enough to stand alone), still
needs much more attention. The AI people have been
working in this area for over two decades with strong
decision-support orientation. It may now be the time for
database people to contribute in dealing with the highly
challenging issues of management, query and
manipulation of the computerised healthcare information.

Acknowledgement

7. References

Crimson W, Berry D, Crimson J, Stephens G, Felton E,
Given P and O’Moore R (1 998). Federated healthcare
record server - the Synapses paradigm. International
Journal Medical Informatics, Elsevier Science, Vo1.52,

Gordan C, Herbert I , Johnson P, Nicklin P, Pitty D and
Reeves P (1997) Telematics for Clinical Guidelines: A
Conceptual Modelling Approach. Medical Informatics
Europe ‘97, 10s Press.
Miksch S (1999). Plan Management in the Medical
Domain. AI Communications, Vo1.4.
Musen M A (2000) Two decades of Models and
Components: Whv has Automation of Guideline-Directed
Care been so Drfficult? First European Workshop on
Clinical Practice Guidelines, EWGLP 2000, Leipzig,
Germany.
Widom J and Ceri S, (eds.) (1996). Active database
systems: Triggers and Rules for Advanced Database
Processing. San Francisco, California: Morgan-Kaufmann.
Ceri S, Cochrane R J and Widom J (2000) Practical
Applications of Triggers and Constraints: Successes and
Lingering Issues In proceedings of the 26 international
conference on very large data bases. Cairo, Egypt. pp254-
262.
Wu B and Dube K. (2001) PLAN: a Framework and
Specification Language with an Event-Condition-Action
(ECA) Mechanism for Clinical Test Reqiiest Protocols. In
Proceedings of the 34‘h Hawaii International Conference on
System Sciences: the Mini-Track in Information
Technology in Healthcare, Abstracts and CD-ROM of Full
Papers. IEEE Computer Society, Los Alamitos. California,
p.140
Dittrich KR and Gatziu (1993). Time issues in active
database systems. In: Snodgrass RT (ed) (l993),
Proceedings of the International Workshop on an
Infrastructure for Temporal Databases. Arlington, Texas,
June 1993.
Hasan MZ (1995). A n active temporal model for network
management databases. In: Proceedings of the IFIP/IEEE
4‘h International Symposium on Integrated network
Management, May 1995, Santa Barbara, California.
Chapman and Hall, London. 1995: pp.524-535.

pp.3-27.

[I O] Pamamritham K. Sivasankaran R, -Stankovic JA. l’owsley
DT and Xiong M (1996). Integrating temporal, realhime
and active databases. SIGMOD Record ACM Special
Interest Group on Management of Data, Vo1.25 No. 1 : p.8-
12, March 1996

[I I] Simon E and Kotz-Dittrich A (1995). Promises and
realities of active database systems. In: Proceedings of the
2 1 VLDB Conference. Zurich, Switzerland, 1995

The authors would like to give acknowledgment to the
Office of Postgraduate Studies and Research of the
Dublin Institute of Technology who are sponsoring this
work under the Strategic Research and Development
Project Code 7985 9678.

9

	Applying Event-Condition-Action Mechanism in Healthcare: A Computerised Clinical Test-Ordering Protocol System (TOPS)
	Recommended Citation

	tmp.1295701846.pdf.5lZFT

