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Summary 

To facilitate the investigations of HPV-16 late gene expression HPV-16 
reporter plasmids were generated using previously described sub-genomic 
HPV-16 plasmids, named pBEL and pBELM, that, similar to the full viral 
genome, produce primarily HPV-16 early mRNAs and very little, if any, late 
mRNAs in cervical cancer cells. The HPV-16 late L1 gene was replaced by 
the chloramphenicol acetyltransferase (CAT) reporter gene, or green 
fluorescent protein (GFP), preceded by the poliovirus internal ribosome entry 
site (IRES). Results show that the reporter genes mimic the expression of L1 
from these plasmids. For example, overexpression of adenovirus E4orf4 
protein (E4orf4), polypyrimidine tract binding protein (PTB), arginine/serine-
rich SRp30c protein (SRp30c) or alternative splicing factor/splicing factor 2 
(ASF/SF2) induced an increased expression of CAT or GFP. Stable cell lines 
with reporter plasmids pBELCAT and pBELMCAT were also generated. An 
induction of CAT was observed in HPV-16 reporter cell lines in the presence 
of the small molecule phorbol 12-myristate 13-acetate (TPA). Further 
experiments identified the TPA-inducible, hnRNP A2/B1 protein as a regulator 
of HPV-16 late gene expression. In conclusion, the HPV-16 reporter plasmids 
and reporter cell lines described herein can be used to identify small 
molecules and cellular factors that regulate HPV-16 gene expression.   
 

 

Key words: HPV-16, splicing, hnRNP A2/B1, TPA, ASF/SF2, SR proteins, 
novel reporter assay 
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1. Introduction 

 

Cervical cancer is the second leading cause of death by cancer in women 

worldwide after breast cancer (WHO, 2006). Persistence of human 

papillomaviruses (HPVs) infection is a prerequisite for development of cervical 

cancer or pre-malignant lesions that could progress to cancer (Lowy, 2001; 

Zur Hausen, 2002). HPVs are subdivided into high risk and low risk groups 

and HPV type 16 (HPV-16) is the most common high-risk type that is present 

in approximately 50% of all cervical cancers (Munoz et al., 2003). HPV-16 

gene expression is strictly dependent on cellular differentiation with late HPV-

16 genes expressed only in differentiating cells. HPV-16 late gene expression 

is not detected in cervical cancer cells containing HPV-16 DNA (Doorbar, 

2005; Longworth and Laimins, 2004; Ozbun et al., 2007). Late genes encode 

the highly immunogenic structural proteins, L1 and L2, and their production in 

the lower layers of the infected epithelium is strongly suppressed, possibly to 

prevent detection by the host immune system (Schwartz et al., 2007). It has 

been shown that processing of HPV-16 mRNAs is highly regulated (Graham, 

2008; Schwartz, 2008; Zheng and Baker, 2006). HPV-16 splice donor 

SD3632 and splice acceptor SA5639 (Fig. 1A-B) are used exclusively by the 

late mRNAs and splicing silencers suppress the use of these splice sites in 

cervical cancer cells (Rush et al., 2005; Zhao et al., 2007; 2004). HPV-16 late 

gene expression is also indirectly inhibited by RNA elements that stimulate 

early mRNA splicing (Rush et al., 2005) and polyadenylation (Oberg et al., 

2005; 2003; Terhune et al., 1999; Zhao et al., 2005). It was speculated that 

premature induction of HPV-16 late gene expression in the persistently 
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infected cells would alert the immune system of the presence of the virus and 

that this immune activation could clear the infection. It is therefore of interest 

to understand how HPV-16 late gene expression is regulated.  

 

In previous studies two subgenomic HPV-16 expression plasmids were 

described carrying the viral early and late genes, except E6 and E7, driven by 

the strong human cytomegalovirus (CMV) immediate early promoter, called 

pBEL and pBELM (Zhao et al., 2004) (Fig. 1B). When these plasmids are 

transfected into HeLa cells, they express HPV-16 early, but not late genes. It 

has been shown that overexpression of a number of viral and cellular 

proteins, such as adenovirus E4orf4 protein (E4orf4), cellular polypyrimidine 

tract binding protein (PTB) and members of the serine-arginine rich protein 

family, induce late gene expression in both pBEL and pBELM (Somberg et al., 

2011; 2009; 2008; Somberg and Schwartz, 2010).  

In order to facilitate the identification of cellular factors that regulate HPV-16 

late gene expression, pBEL-derived plasmids were generated by us 

containing easily detectable reporter genes, such as CAT and GFP, in place 

of HPV-16 L1 (Figs. 1C, 1D and 1E). Stable cell lines harbouring these 

plasmids were generated and characterised. As proof of concept, it was 

demonstrated that the small molecule TPA could activate CAT expression 

from these reporter cell lines, and hnRNP A2/B1 protein was identified as a 

novel regulator of HPV-16 late gene expression.   
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2. MATERIALS AND METHODS 

2.1 Plasmid construction 

pBEL, pBELM, have been described previously (Zhao et al., 2004). In order to 

construct the reporter plasmids pBELCAT and pBELMCAT, PCR was first 

performed with oligonucleotides IRESs and IRESa (Table 1) to amplify the 

IRES sequence of poliovirus 2A. The PCR fragment was subcloned into 

pCR2.1-TOPO (Invitrogen, Paisley, Scotland) and then transferred as a 

BamHI-XhoI fragment into pBEL and pBELM, generating pBEL-IRES and 

pBELM-IRES (Fig. 1C), respectively, with the IRES sequence replacing all but 

the first 514-nucleotides of the L1 sequence in pBEL and pBELM. The 

chloramphenicol acetyltransferase (CAT) sequence was first PCR amplified 

with primers CATs and CATa (Table 1) and cloned into pCR2.1-TOPO. The 

CAT sequence was excised with MluI and XhoI and inserted downstream the 

IRES sequence in pBEL-IRES and pBELM-IRES to generate pBELCAT and 

pBELMCAT (Fig. 1D). pBspliceCAT and pBspliceMCAT were generated by 

digestion of pBELCAT and pBELMCAT, respectively with BssHII-SalI followed 

by filling in of overhangs with T4 DNA polymerase and relegation (Fig. 4A). To 

construct pMT1sdCAT, a HindIII-ApaI fragment from plasmid pMT1sd 

(Somberg et al., 2008) was inserted into pBELMCAT (Fig. 4A). To generate 

pBSPtatLTRCAT and pBSPMtatLTRCAT a DNA sequence encoding a 

modified HIV-1 tat gene in which the 3′ -splice sites of rev and and nef exons 

4a, 4b, 4c and 5 had been mutationally inactivated, followed by the HIV-1 

HXB2R LTR sequence and a codon optimised GFP coding was purchased 

from GenScript (Piscataway, USA . The DNA sequence was delivered as a 

pUC57 plasmid with the ordered insert that was named pUC57/tat/LTR/GFP. 
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This sequence was inserted into pBspliceCAT and pBspliceMCAT using 

BssHII and XhoI. The GFP gene was replaced by CAT using MluI and XhoI, 

resulting in pBSPtatLTRCAT and pBSPMtatLTRCAT (Fig. 4A).  

The plasmid pCMVCAT was constructed by cleaving pBELCAT with SalI and 

BamHI, filling in of overhangs and religation. In order to construct pBELMGFP 

(Fig. 1E), the GFP sequence from pUC57/tat/LTR/GFP was transferred to 

pBELM-IRES as a MluI-XhoI fragment (Fig. 1E). Plasmids pCMVE4orf4 

(Somberg et al., 2009), pCMVPTB (Somberg et al., 2008), pASF/SF2 

(Somberg and Schwartz, 2010) and pCMVSRp30c (Somberg et al., 2011), 

have been described previously.  

 

2.2 Transfections and cell culture 

 HeLa cells were cultured in RPMI-1640 medium containing 10% fetal bovine 

calf serum, glutamine and penicillin-streptomycin. Transfections were carried 

out by using GeneJuice®Transfection reagent according to the protocol of the 

manufacturer (Novagen, Merck KGaA, Darmstadt, Germany). Cells were 

transfected with each plasmid in a minimum of three independent 

experiments. 

A second reporter vector, pCH110, (Amersham, Little Chalfont, UK) 

expressing the β-galactosidase gene under the control of an SV40 promoter, 

was included in transfection experiments as an internal control to normalise 

CAT levels. For transfections with pCMVGFP and pBELMGFP expression 

plasmids, cells were cultured on cover slips placed into the wells of 60-mm 

plates. 2x106 HeLa cells were plated in each well.  
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2.3 Establishment of stable cell lines 

1.5 µg of each of pBELCAT or pBELMCAT were cotransfected with 0.25 µg of 

pSV2NEO into HeLa cells and stable clones were selected in the presence of 

200 µg/ml of G418 (Roche Diagnostics, Sussex, UK). Individual clones were 

picked and plated in new cell culture dishes. To extract DNA from the clones, 

cells were lysed with a 25mM EDTA, 2% SDS solution and proteins were 

precipitated with 2.5M ammonium acetate solution. The DNA was precipitated 

with isopropanol and washed with 70% ethanol.  The DNA pellet was 

resuspended in TE buffer (10mM Tris-Cl pH8.0, 1mM EDTA) and subjected to 

PCR amplification with CATs and CATa primers (Table 1). 15 µl of each PCR 

product were analysed on 1% agarose gels.  

 

2.4 RNA extraction and reverse transcription (RT)-PCR 

Total RNA was isolated using the High pure RNA isolation kit according to the 

protocol of the manufacturer (Roche Diagnostics, Sussex, UK). Total RNA 

was then reverse transcribed at 42°C by using Superscript II and gene 

specific primers (Table 1) according to the manufacturer’s instructions 

(Invitrogen, Paisley, Scotland). 2 µl of cDNAs were PCR-amplified in a 25 µl 

reaction volume using oligonucleotides listed in Table 1. The DNA was 

denatured at 94°C and extended at 72°C in all PCR reactions, while 

annealing temperature differed. An annealing temperature of 55°C was used 

to PCR amplify cDNAs with 757s and E4a primers (Zhao et al., 2004), 

whereas an annealing temperature of 57°C was used with primers 757s and 

L1Ma primers (Zhao et al., 2005). cDNA synthesized with oligonucleotide 
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CATa was PCR amplified with an annealing temperature of 68°C with primers 

757s and CATa.  

 

2.5 CAT ELISA 

Cells were harvested 24 hours post-transfection and lysed in 1ml of lysis 

buffer, and the CAT levels were determined using a CAT ELISA assay 

according to the protocol of the manufacturer (Roche Diagnostics, Sussex, 

UK). Absorbance was measured at 405 nm using a 96-well microplate ELISA 

reader (Fisher Scientific, Loughborough, UK). 

 

2.6 GFP detection and quantitation 

For the analysis of pCMVGFP and pBELMGFP expression plasmids, cells 

were washed twice with PBS 24 hours post-transfection and the cover slips 

were removed from the wells and mounted on slides. GFP fluorescence 

intensities were detected and quantitated with a fluorescence microscope 

from the living cells (CELL^F software, Olympus, Hamburg, Germany).  

 

2.7 Western blot analysis 

Cells were harvested in 1 ml of lysis buffer. Equal amounts of protein were 

separated by SDS–PAGE and then transferred onto nitrocellulose membrane 

by electroblotting. The blots were probed with mouse hnRNP A2/B1 anti- 

hnRNP A2/B1 monoclonal antibody (Abcam, Cambridge, UK) diluted 1:1000. 

Mouse anti-β actin antibody was purchased from Sigma. Membranes were 

incubated with horseradish peroxidase-conjugated secondary antibodies 

against mouse (Sigma Aldrich, Wicklow, Ireland). Proteins were revealed with 
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an enhanced chemiluminescence kit (Thermo Scientific – Pierce, Dublin 

Ireland). 
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3. RESULTS 

3.1 Generation of subgenomic HPV-16 reporter plasmids pBELCAT, 

pBELMCAT and pBELMGFP 

In order to generate a simple and reliable bioassay to study HPV-16 late gene 

expression, two previously described plasmids named pBEL and pBELM 

(Zhao et al., 2004) were used (Fig. 1B). These subgenomic HPV-16 

constructs carry viral early and late genes, except that the E6 and E7 genes 

and the early and late promoters are replaced by the strong human 

cytomegalovirus (CMV) immediate early promoter (Fig. 1B). Similar to the 

HPV-16 genome, pBEL transfected into proliferating cells expresses high 

levels of the early genes, primarily E4 mRNAs, whereas expression of late 

genes L1 and L2 is barely detectable (Zhao et al., 2004). In the mutant 

version of pBEL, named pBELM, splicing silencers present in the L1 region 

have been inactivated by multiple point mutations (Fig. 1B), and late L1 

mRNAs are expressed in transfected cells, but at a relatively low level (Zhao 

et al., 2004).  

To replace part of the HPV-16 L1 gene in pBEL and pBELM with an easily 

detectable reporter gene, the poliovirus 2A internal ribosome entry site (IRES) 

was first inserted between BamHI at position 6150 in HPV-16 L1 and 

nucleotide position 7272 in the HPV-16 late UTR. This resulted in plasmids 

pBEL-IRES and pBELM-IRES (Fig. 1C). These plasmids retain SA5639 and 

the first 514-nucleotides of the L1 coding sequence that contain RNA 

elements that regulate splicing to SA5639 (Figs. 1B and 1C). The IRES 

sequence was followed by a short polylinker that allows insertion of various 

reporter genes downstream of IRES. The CAT gene was first inserted, 
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resulting in pBELCAT and pBELMCAT (Fig. 1D). CAT serves as a marker for 

L1 and L2 expression and can be monitored by CAT ELISA assay. pBELCAT 

and pBELMCAT were transfected into HeLa cells and CAT expression was 

monitored 24 hours post-transfection. pBELCAT produced barely detectable 

levels of CAT (0.13 CAT units) (Fig. 2A), whereas pBELMCAT showed higher 

CAT expression (29 CAT units) (Fig. 2A) as expected. pBELMCAT produced 

over 200-fold more CAT than pBELCAT (Fig. 2A). However, these levels of 

CAT were relatively low compared to CAT expression from the positive control 

plasmid CMVCAT, which produced 10,600 CAT units (Fig. 2A). These results 

demonstrated that only a minority of the mRNAs produced by pBELCAT and 

pBELMCAT were late mRNAs, suggesting that late gene expression was 

relatively inefficient from both plasmids. The multiple nucleotide substitutions 

in the first 514 nucleotides of L1 enhanced CAT expression in pBELMCAT as 

a result of the inactivation of splicing silencers as previously described (Zhao 

et al., 2004). These results demonstrated that the reporter plasmids pBELCAT 

and pBELMCAT were functional and expressed detectable levels of CAT 

protein in a manner that reflected the previously described production of HPV-

16 late mRNAs from the pBEL and pBELM plasmids. Plasmids pBELCAT and 

pBELMCAT could therefore be used to investigate HPV-16 gene expression. 

  

3.2 Adenovirus E4orf4, polypyrimidine tract binding protein, SRp30c and 

ASF/SF2 induce CAT expression from pBELCAT and pBELMCAT 

reporter plasmids  

HPV-16 late gene expression is regulated at the level of RNA processing 

(Graham, 2008; Schwartz, 2008; Zheng and Baker, 2006). It has been 
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previously shown by us that overexpression of some viral and cellular 

proteins, e. g. adenovirus E4orf4 protein (E4orf4), polypyrimidine tract binding 

protein (PTB), serine/arginine-rich protein (SRp30c) and alternative splicing 

factor/splicing factor 2 (ASF/SF2), can induce HPV-16 late gene expression 

from pBEL and pBELM (Somberg et al., 2011; 2009; 2008; Somberg and 

Schwartz, 2010). In order to validate the functionality of the novel reporter 

plasmids pBELCAT and pBELMCAT, each reporter plasmid was 

cotransfected with E4orf4, PTB, SRp30c or ASF/SF2 expression plasmids 

into HeLa cells. Overexpression of E4orf4, PTB, SRp30c or ASF/SF2 caused 

an increase in CAT expression from both pBELCAT and pBELMCAT (Fig. 

2B). E4orf4, which regulates the switch from early to late gene expression in 

the adenovirus life cycle (Akusjarvi and Stevenin, 2003), efficiently induced 

CAT production from both plasmids, but in particular from pBELCAT, resulting 

in a 300 fold induction of CAT (Fig. 2B). A titration of the E4orf4-, PTB-, 

SRp30c- or ASF/SF2-plasmids on each sub-genomic HPV-16 expression 

plasmid pBELCAT and pBELMCAT revealed that induction of CAT was 

dependent on the amount of transfected expression plasmid (Fig. 2C). While 

CAT induction caused by PTB and SRp30c increased with higher levels of 

PTB or SRp30c plasmid, the highest concentrations of E4orf4 plasmid 

inhibited CAT production, suggesting other effects of E4orf4 on the cells (Fig. 

2C). It has been previously shown by us that low levels of ASF/SF2 induced 

HPV-16 late gene expression whereas high levels did not (Somberg and 

Schwartz, 2010). Transfection of pBELMCAT with serially diluted ASF/SF2 

plasmid revealed a similar effect (Fig. 2C), further demonstrating that 

expression of the CAT reporter gene is a marker for HPV-16 late mRNA 
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production. It was concluded that E4orf4, PTB, SRp30c and ASF/SF2 induced 

CAT expression from pBELCAT and pBELMCAT in a plasmid-dose 

dependent manner. 

 

Next the CAT gene was replaced with a reporter gene that was easier and 

less expensive to detect. CAT was replaced with a humanized GFP ORF. It 

was reasoned that GFP levels produced from the pBEL-backbone would be 

too low to detect, and therefore only pBELMGFP was constructed (Fig. 1E). 

To investigate if pBELMGFP expresses detectable levels of GFP, pBELMGFP 

was transfected into HeLa cells in parallel with a positive control plasmid 

named pCMVGFP. Analysis of the transfected cells under fluorescence 

microscope revealed few or visible positive cells in the dishes transfected with 

pBELMGFP compared to the high number of GFP positive cells seen in the 

positive control and that the positive cells transfected with pBELMGFP 

fluoresced with a lower intensity that those transfected with pCMVGFP (Fig. 

3A). This is expected when considering that pBELMCAT produced 

approximately 365-fold lower CAT levels than the positive control plasmid 

pCMVCAT (Fig. 2A). Few positive cells were detected when pBELMGFP was 

cotransfected with E4orf4, SRp30c or PTB (Fig. 3A). Therefore the CELL^F 

software (Olympus Soft Imaging solutions GmbH) fluorescence microscope 

was used to monitor the intensity of fluorescence in 10 individual randomly 

chosen, positive cells in each transfection. These results revealed that GFP 

levels produced from pBELMGFP were approximately 200-fold lower than 

those produced by pCMVGFP (Fig. 3B). This is in line with the difference in 

CAT production between pBELMCAT and pCMVCAT (Fig. 2A). Co-
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transfection of pBELMGFP with E4orf4 showed little induction compared to 

cotransfections of pBELMGFP with PTB- or SRp30c-expression plasmids 

(Fig. 3C). PTB and SRp30c increased the levels of GFP by 6- and 30- fold, 

respectively (Fig. 3C). Taken together these results demonstrated that the 

pBELMGFP reporter plasmid is functional and that it could potentially be used 

for fast and easy identification of cellular factors that could induce HPV-16 late 

gene expression. While the sensitivity of the GFP reporter in transient 

transfection assays is low, we believe that a stable cell line generated with 

pBELMGFP would allow reliable and sensitive detection of factors influencing 

HPV16 late gene expression. 

 

3.3 The HPV-16 CAT reporter plasmids can be used to identify and 

characterise cis-acting regulatory RNA elements 

Two viral splice sites are used exclusively by HPV-16 late mRNAs: late 5′-

splice site SD3632 (located in the early region) and late 3′-splice site SA5639 

(located in the L1 coding region) (Fig. 1A). Both splice sites are suppressed 

by multiple splicing silencer elements (Schwartz, 2008). To investigate further 

how the reporter plasmids presented here could be used to study HPV-16 late 

gene expression, a set of simpler plasmids was generated containing the late 

region with the CAT reporter gene, but only the two splice sites SD3632 and 

SA5639. These plasmids were named pBspliceCAT and pBspliceMCAT (Fig. 

4A). Transfection of these plasmids into HeLa cells revealed that CAT levels 

produced from pBspliceCAT were undetectable, whereas pBspliceMCAT 

expressed low, but detectable levels of CAT (1.6 CAT units) (Fig. 4B). These 

results confirmed that SD3632 and SA5639 are efficiently suppressed in 



� � � � � � � �
cervical cancer cells. In addition, pAE may further suppress late gene 

expression from these plasmids. Transfection of pBspliceMCAT into HeLa 

cells in the presence of plasmids expressing E4orf4, PTB or SRp30c, resulted 

in an induction of CAT production (Fig. 4C), but this induction was lower than 

the induction of CAT from pBELMCAT by the same proteins. In addition 

deletion of a previously described sequence that suppressed SD3632 (Rush 

et al., 2005; Somberg et al., 2008) as in plasmid pMT1sdCAT (Fig. 4A), 

resulted in efficient production of high levels of CAT (155 CAT units) (Fig. 4B). 

These results demonstrated that this set of plasmids could be used to study 

cis-acting, splicing regulatory elements at the HPV-16 late splice sites.  

 

 

3.4 Plasmids that amplify the levels of HPV-16 late mRNAs 

Since expression of CAT from plasmids pBspliceCAT and pBspliceMCAT 

(Fig. 4A) was so low, especially from pBspliceCAT from which CAT 

expression was undetectable, a set of plasmids was generated based on 

pBspliceCAT and pBspliceMCAT on which late gene expression should be 

amplified to yield a CAT signal. To do this, the CAT segment in these two 

plasmids was replaced with a DNA segment encoding the HIV-1 tat gene, 

followed by the HIV-1 long terminal repeat (LTR), which contains the HIV-1 

polyadenylation signal (Harrich et al., 1989). However, this LTR also contains 

the full HIV-promoter followed by the CAT reporter gene and the late HPV-16 

polyadenylation signal. The new plasmids were named pBSPtatLTRCAT and 

pBSPMtatLTRCAT (Fig. 4A). Transcription from the HIV-1 LTR is totally 

dependent on the HIV-1 transcriptional activator tat (Sheridan et al., 1993). If 
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mRNAs are spliced into HPV-16 late splice site SA5639, the mRNAs are 

polyadenylated at the HIV-1 LTR and express HIV-1 tat protein from the 

poliovirus IRES. As tat is made, it activates the HIV-1 LTR promoter to 

produce CAT mRNA.  Activation of the HIV-1 LTR by HIV-1 tat is in the range 

of 200-fold and this additional step should therefore amplify the CAT signal 

that represents HPV-16 late mRNA splicing. Transfection of serially diluted 

pBSPtatLTRCAT and pBSPMtatLTRCAT plasmids into HeLa cells, revealed 

that CAT production was easily detectable from pBSPtatLTRCAT which 

contains two wild type HPV-16 splice sites (Fig. 4D), and does not produce 

detectable levels of CAT in the absence of that tat-based mRNA amplification. 

Plasmid pBSPMtatLTRCAT which contains mutations in L1 that destroyed 

splicing silencers produced substantially higher levels of CAT than its non-

amplified sister plasmid pBspliceMCAT (Fig. 4D). CAT expression from the 

two HIV-1 tat-amplified plasmids pBSPtatLTRCAT and pBSPMtatLTRCAT 

was dependent on the amount of transfected plasmid. Therefore plasmids 

pBSPtatLTRCAT and pBSPMtatLTRCAT, in which minute levels of late 

mRNAs are amplified to allow detection with CAT ELISA, could be used to 

study the regulation of HPV-16 late splice sites SD3632 and SA5639.  

 

3.5 Establishment of two novel HPV-16 reporter HeLa cell lines, named 

pBELCAT-67 and pBELMCAT-31, that can serve as tools to investigate 

regulation of HPV-16 gene expression 

To establish stable cell lines containing the reporter plasmids pBELCAT or 

pBELMCAT, these plasmids were separately introduced into HeLa cells in the 

presence of plasmid pSV2neo, which encodes the neomycin-resistant gene 
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under control of the SV40 promoter. As described in material and methods, 

cells were propagated in G418 to select for cells with integrated plasmid DNA. 

As shown in Figure 5, a number of clones were isolated and tested for CAT 

activity. CAT expression was barely detectable in pBELCAT cell lines (0.002-

0.3 CAT units). In contrast, significant levels of CAT were detected in 

pBELMCAT-derived cell lines (20-570 CAT units) (Fig. 5). The results 

revealed that stable cell lines carrying pBELCAT produced low or 

undetectable levels of CAT, whereas the pBELMCAT-derived cell lines 

produced higher levels of CAT, as expected. CAT levels in pBELCAT- and 

pBELMCAT-derived stable cell lines reflected the CAT levels produced by 

these plasmids in transient transfections.  

To confirm that the integrated pBELCAT and pBELMCAT plasmids produced 

the expected early and late mRNAs, RNA was extracted and subjected to RT-

PCR. Total RNA was extracted and cDNA synthesized using the three 

different gene specific primers E4a, L1Ma and CATa, (Table 1 and Fig. 6). 

RT-PCR on cDNA from two selected cell lines named pBELCAT-67 and 

pBELMCAT-31 with primers 757s and E4a (Table 1) yielded a single 190bp-

band in both cell lines, representing E4 mRNAs produced by splicing from 

SD880 to SA3358 (Figs. 6A and 6D), as expected. In contrast, different 

results were observed when cell lines pBELCAT-67 and pBELMCAT-31 were 

analysed for production of late mRNAs. RT-PCR performed on pBELCAT-67 

using 757s and L1a or 757s and CATa primers (Table 1), revealed that none 

of the late mRNAs could be detected, as expected (Fig. 6D). PCR on cDNA 

obtained from cell line pBELMCAT-31, using primers 757s and L1Ma (Table 

1), resulted in two spliced products; one 430bp cDNA representing the L1 
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mRNA that is spliced between SD880 and SA3358 and SD3632 and SA5639, 

and one 160bp cDNA representing the L1i mRNA that is spliced from SD880 

to SA5639 (Fig. 6B). This result was expected as the pBELMCAT-31 cell line 

produced relatively high levels of CAT protein. cDNA synthesized with CATa 

primer was PCR amplified with primers 757s and CATa primers (Table 1) 

yielding one major band of 2000bp representing a direct splice from SD880 to 

SA5639 (Fig. 6C). These results demonstrated that correctly spliced HPV-16 

early and late mRNAs were produced in an expected manner, corroborating 

the integrity of the reporter plasmids in the stable reporter cell lines. 

To evaluate the functionality of these two novel stable cell lines, they were 

transfected with plasmids expressing adenovirus E4orf4, PTB or SRp30c. In 

the presence of these viral or cellular proteins, an increase of CAT expression 

was observed in pBELCAT-67- and pBELMCAT-31-derived cells. The 

induction was 10-, 5- and 3.4-fold respectively for E4orf4, PTB and SRp30c in 

the pBELCAT-67 cell line (Fig. 7), and 1.7-, 1.6- and 1.5-fold respectively in 

the pBELMCAT-31 cell line (Fig. 7). Induction of CAT produced was lower 

compared to transient transfections, however the results demonstrate that 

stable reporter cell lines pBELCAT-67 and pBELMCAT-31 could be used to 

study cellular factors that regulate HPV-16 gene expression.  

 

3.6 Treatment of stable cell lines pBELCAT-67 and pBELMCAT-31 with 

phorbol 12-myristate 13-acetate (TPA) induces HPV-16 late gene 

expression 

To provide evidence for the utility of the stable HPV-16 reporter cell lines 

pBELCAT-67 and pBELMCAT-31, it was investigated if these cell lines could 
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be used to identify small molecules that can induce HPV-16 late gene 

expression. To this end cells were treated with TPA (phorbol 12-myristate 13-

acetate), a small substance that has been shown to induce HPV-31 late gene 

expression (Meyers et al., 1992). Treatment of stable cell lines pBELCAT-67 

and pBELMCAT-31 with TPA resulted in an increase of CAT expression in a 

TPA-dose-dependent manner in both cell lines (Fig. 8A, left panel). Highest 

induction was obtained with pBELCAT-67. To control for possible effects of 

TPA on cellular protein synthesis, a western blot for actin was performed and 

demonstrated that TPA had no effect on actin levels (Fig. 8A, right panel). In 

contrast, other small molecular drugs such as emetine and N-Hexanoyl-D-

sphingosine (ceramide), which have been shown to induce apoptosis by 

interfering with splicing (Boon-Unge et al., 2007) had no or an inhibitory effect 

on late gene expression in both cell lines (Fig. 8B). It was concluded that 

induction of CAT from pBELCAT-67 and pBELMCAT-31 was specific for the 

small molecule TPA and that the cell lines can be used to study the effect of 

small molecules and drugs on late gene expression. 

 

3.7 Identification of hnRNP A2/B1 as a regulator of HPV-16 late gene 

expression using the HPV-16-derived CAT reporter assay 

It has been demonstrated that TPA induces the expression of a number of 

genes that are involved in splicing in particular SC35 (serine/arginine-rich 

splicing factor 2) and hnRNP A2/B1 (Zheng et al., 2002). Western blot 

analysis confirmed an induction of hnRNP A2/B1 by TPA (Fig. 9A). However, 

hnRNP A2/B1 levels were unaffected by emetine and ceramide (Fig. 9A). It 

was investigated if overexpression of SC35 or hnRNP A2/B1 could induce 
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HPV-16 late gene expression. CMV promoter driven plasmids expressing 

SC35 or hnRNP A2/B1 were cotransfected with HPV-16-derived CAT reporter 

plasmids pBELCAT or pBELMCAT. As can be seen in Figure 9B, 

overexpression of hnRNP A2/B1 caused a robust induction of CAT in both 

reporter plasmids, whereas SC35 induced very little CAT, and only from 

pBELCAT (Fig. 9B). A two-fold serial dilution of hnRNP A2/B1 resulted in a 

dose-dependent induction of CAT from both reporter plasmids (Fig. 9C). High 

levels of hnRNP A2/B1 did not induce CAT expression whereas lower levels 

efficiently induced CAT in both pBELCAT and pBELMCAT (Fig. 9C). 

In conclusion, HPV-16 derived reporter plasmids pBELCAT and pBELMCAT 

and reporter cell lines pBELCAT-67 and pBELMCAT-31 could be used to 

identify novel factors that regulate HPV-16 late gene expression.  
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4. Discussion 

Late HPV gene expression is regulated at the transcriptional and post-

transcriptional levels (Schwartz, 2008; Zheng and Baker, 2006). Alternative 

splicing is necessary to produce L1 since the 3′ end of L2 and the 5′ end of L1 

overlap. It has been previously shown that the L1 sequence of HPV-16 

contains inhibitory RNA elements (Collier et al., 2002) and that late gene 

expression is also inhibited in mitotic cells because of a competition between 

early and late splice sites (Rush et al., 2005). In fact, inactivation of the E4 

enhancer and the L1 splicing silencers in a subgenomic HPV-16 plasmid 

showed production only of L1 mRNA (L1i), but not E4 mRNA (Rush et al., 

2005; Schwartz et al., 2007). Cellular RNA binding factors and viral RNA 

elements have shown to have a pivotal role in HPV-16 gene regulation 

(Johansson, 2011; Mole et al., 2006; Schwartz et al., 2007). 

The aim of this study was to generate a set of reporter constructs based on 

previously described plasmids, pBEL and pBELM, to aid in the investigation of 

HPV-16 late gene expression. This resulted in the production of pBELCAT 

and pBELMCAT. Evaluation of CAT expression levels from these plasmids 

revealed that pBELCAT, as expected, produced very little CAT, whereas 

pBELMCAT, in which mutations that reduce the negative regulation of splicing 

are present, efficiently expressed CAT. These results confirmed that splice 

site SA5639 has a pivotal role in regulation of late gene expression. In the 

presence of E4orf4, PTB, SRp30c and ASF/SF2, CAT was induced from both 

reporter plasmids. In particular Ad E4orf4, which regulates the switch from 

early to late gene expression in Adenovirus (Akusjarvi and Stevenin, 2003), 
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showed a higher induction of CAT expression in pBELCAT when compared to 

the pBELMCAT plasmid. This difference is probably due to the high CAT 

levels produced by pBELMCAT in the absence of inducer plasmids. In 

addition, it has been shown that Ad E4orf4 overcomes the negative effect of 

splicing silencers present in the L1 region (Somberg et al., 2009). Since in 

pBELMCAT, these inhibitory elements had been inactivated by multiple point 

mutations, the viral protein can no longer target them and positively influence 

late gene expression as strongly as it is observed in pBELCAT. When the 

inducers of CAT expression were cotransfected with pBELMCAT, higher 

levels of CAT were observed with the higher concentration of PTB and 

SRp30c, respectively. In contrast, E4orf4 decreased CAT expression at 

higher concentrations; a result that might be correlated to other studies where 

adenovirus E4orf4 had shown to induce apoptosis (Kleinberger, 2000; 

Kornitzer et al., 2001; Roopchand et al., 2001). Taken together, these data 

clearly show that induction of CAT expression is dependent on the levels of 

regulatory proteins. By identifying hnRNP A2/B1 as a novel regulator of HPV-

16 late gene expression, the functionality of the novel HPV-16 derived 

reporter plasmids described herein in identifying proteins that regulate HPV-

16 late gene expression was demonstrated. Using the constructs discussed 

above only HPV-16 sequences were analysed. The reporters could be easily 

modified to examine other HPV types by replacing a SalI – BamHI from the 

reporters (containing the HPV-16 sequences) with the same sequences from 

other HPV types. 

The reporters were also constructed using the luciferase gene and proved 

equally sensitive in transient transfections. The CAT assay used in this study 
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benefits from the fact that it is based on an ELISA and unlike the luciferase 

assay is not based on function. It is therefore not influenced by external 

factors such as freeze thawing that can significantly affect assays based on 

function. Since the CAT assay was sensitive and reliable and suitable for 

large scale screening, this reporter was chosen for the generation of the 

stable cell lines and continued study.  

Identification and characterisation of viral cis-acting RNA elements will also be 

facilitated using HPV-16 reporter plasmids. First, the difference in CAT 

expression between pBELCAT and pBELMCAT demonstrating that the assay 

detects mutated inactivation of splicing silencers in HPV-16 L1. Second, the 

difference in CAT expression between pMT1sdCAT and pBspliceMCAT was 

95-fold. This difference was due to the deletion of splicing silencer upstream 

of SD3632, and demonstrated that pBspliceMCAT can be used to study these 

inhibitory sequences further. Therefore these plasmids could easily be used to 

identify and characterise cis-acting regulatory RNAs elements in HPV-16 

genome.  

 

In order to ensure reproducible, long-term and defined gene expression of the 

reporter plasmids, stable cell lines with pBELCAT and pBELMCAT integrated 

in their cellular genome were generated, named pBELCAT-67 and 

pBELMCAT-31. CAT expression could be induced from these cell lines by 

transient transfections of plasmids expressing viral and cellular proteins. 

However, CAT induction levels were lower compared to the induction levels 

obtained when CAT reporter plasmids were cotransfected with plasmids 

expressing proteins. Treatment of pBELCAT- and pBELMCAT-derived cell 
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lines with TPA showed an increase of CAT levels in both cell lines, 

demonstrating that it will be possible to use these reporter cell lines to identify 

small molecules that can induce HPV-16 late gene expression. It was 

concluded that cell line pBELCAT-67 was particularly interesting as it primarily 

produces HPV-16 E4 mRNA, whereas late mRNAs were undetected, unless 

cells were transfected with TPA (Fig. 10). For that reason, these reporter cell 

lines may be more suitable to identify small molecules that effect HPV-16 late 

gene expression. 

In conclusion, IRES-driven CAT and GFP genes in place of the late L1 gene 

in subgenomic HPV-16 plasmids proved to be functional surrogate markers 

for HPV-16 late gene expression in HeLa cells. Furthermore, functional stable 

cell lines with these plasmids were established that will be useful for the 

identification of cellular proteins, small molecules or microRNAs that regulate 

HPV-16 gene expression (Fig. 10). Such substances could potentially be used 

as antiviral drugs to treat persistent HPV infections. 
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Table 1 Sequences of oligonucleotides used in this study 
 

Oligonucleotide Sequence (5’-3’) 

IRESs                                     GGGATCCTTAAAACAGCTCTGGGGTTG    

IRESa   CCTCGAGTTAACACGCGTAGGTAATTCCAATAGGTGTGAGTG 

CATs GACGCGTACCATGAGTAAAGGAGAAGAACTTTTCACTGGA 

CATa CCTCGAGCTATTTGTATAGTTCATCCATGCC 

757s GTCGACGGTATCGATCGGTTGTGCGTACAAAGCACACACG 

E4a CCGCGCGCTGCCTAATAATTTCAGGAGAGG 

L1a  CCGTGCTTACAACCTTAGATACTGGGACAG 

L1Ma  CGCTGGGCAGCCACAGGC 
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Figures legend 

 
 
Fig. 1 (A) Schematic representation of the HPV-16 genome and (B, C, D, E) 
the subgenomic HPV-16 reporter plasmids used to study late gene 
expression. The early and late viral promoters, p97 and p670, and the early 
and late polyadenylation signals pAE and pAL are shown. The position of the 
human cytomegalovirus immediate early (CMV) promoter in the reporter 
plasmids is shown. Boxes indicate protein-coding regions. Black circles 
indicate splice donors (5’ splice sites) and white circles indicate splice 
acceptor (3’ splice sites). Numbers refer to nucleotide positions in the HPV-16 
sequence. Major potential mRNAs that can be produced are shown.  
M indicates previously described mutations that inactivate splicing silencers 
downstream of SA5639 (Zhao, et al., 2004). IRES: poliovirus 2A internal 
ribosome entry site. CAT: chloramphenicol acetyltransferase. GFP: 
humanised green fluorescent protein. 
 
 
Fig. 2 (A) CAT levels in HeLa cells transiently transfected with pBELCAT, 
pBELMCAT or CMVCAT. The graph has a logarithmic scale. (B) 
Cotransfection of CAT reporter plasmids, pBELCAT or pBELMCAT, with 
E4orf4, PTB, SRp30c or ASF/SF2 expression vectors. (C) Two-fold titration of 
1µg of E4orf4, PTB, SRp30c or ASF/SF2 expression plasmids cotransfected 
with pBELMCAT reporter plasmid. CAT unit was defined as absorbance in 
CAT ELISA times the dilution factor of the tested cell extracted. Cells were 
transfected with each plasmid in a minimum of three independent 
experiments. (p-value<0.05). 
 
 
Fig. 3 (A) HeLa cells were transfected with pCMVGFP, pBELMGFP, 
pBELMGFP + E4orf4, pBELMGFP + PTB or pBELMGFP + SRp30c. 
Untransfected cells are shown as a comparison. (B) Determination of GFP 
levels in individual cells in transient transfections with pCMVGFP or 
pBELMGFP expression plasmid. Note the logarithmic scale. (C) Quantitation 
of GFP expression in pBELMGFP in the absence or presence of E4orf4, PTB 
and SRp30c. GFP fluorescence intensities were detected and quantitated in 
10 randomly chosen cells as described in Material and Methods. Cells were 
transfected with each plasmid in a minimum of three independent 
experiments. (p-value<0.05). 
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Fig. 4 (A) Schematic representation of subgenomic expression plasmids 
pBspliceCAT, pBspliceMCAT, pMT1sdCAT and pBSPtatLTRCAT. Black 
circles indicate splice donors (5’ splice sites) and white circles indicate splice 
acceptor (3’ splice sites). Numbers refer to nucleotide positions in the HPV-16 
sequence. The early and late HPV-16 polyadenylation signals pAE and pAL 
are indicated. Major potential mRNAs produced by pBspliceMCAT, 
pMT1sdCAT and pBSPtatLTRCAT are indicated below the plasmids. E4* 
refers to a short mRNA encoding E4 and E5 that is unspliced due to the 
absence of SD880. (B) CAT levels produced in HeLa cells transfected with 
pBspliceCAT, pBspliceMCAT or pMT1sdCAT. (C) Fold induction of CAT from 
pBspliceMCAT transfected in the absence or presence of E4orf4, PTB or 
SRp30c plasmids. Transfections were carried out in triplicate. (p-value<0.05). 
(D) CAT levels produced by transfected serial dilutions of plasmids 
pBSPtatLTRCAT or pBSPMtatLTRCAT in HeLa cells. 
 
Fig. 5 (A) Determination of CAT levels in HeLa cell clones stably transfected 
with pBELCAT or pBELMCAT. CAT levels were determined by CAT ELISA. 
CAT levels in the graph are displayed with a logarithmic scale.  
 
Fig. 6 Analysis of mRNAs produced by stable cell lines pBELMCAT-31 and 
pBELCAT-67. RT-PCR amplification of (A) the early CMV―> E4 region with 
757s-E4a primers in pBELMCAT-31 and (D) pBELCAT-67, (B) the late region 
CMV―>L1 with 757s-L1Ma primers and (C) CMV―>CAT with 757s-CATa 
primers in pBELMCAT-31 and (D) pBELCAT-67.  
 
Fig. 7 Induction of CAT expression by transfection of plasmids expressing 
E4orf4, PTB or SRp30c into cell lines pBELCAT-67 or pBELMCAT-31. The 
graph shows average values obtained from a minimum of three independent 
transfection experiments. (p-value<0.05). 
 
Fig. 8 (A, left panel) Analysis of CAT expression in pBELCAT-67 and 
pBELMCAT-31 stable cell lines in the absence or presence of TPA; (A, right 
panel) actin levels on pBELCAT-67. (B) Determination of CAT levels in 
pBELCAT-67 or pBELMCAT-31 treated with emetine dihydrochloride hydrate 
or N-Hexanoyl-D-sphingosine (ceramide). A control of 0.5 µl DMSO was 
included. Transfections were carried out in triplicates.  
 
Fig. 9 (A) Western blot analysis of levels of hnRNP A2/B1 on pBELCAT-67 
stable cell line in the absence or presence of emetine, ceramide or TPA. (B) 
Induction of CAT levels in HeLa cells transiently transfected with pBELCAT 
and pBELMCAT in the absence or presence of plasmids expressing SC35 or 
hnRNP A2/B1. Transfections were carried out in triplicates. (p-value<0.05). 
(C) Two-fold serial dilution of 2µg of hnRNP A2/B1 expression plasmid was 
cotransfected with pBELCAT or pBELMCAT. CAT levels were determined and 
plotted in the graphs.  
 
Fig. 10 Schematic representation of the major potential mRNAs produced by 
pBELCAT-67 stable cell line in the absence or presence of TPA, Ad E4orf4, 
PTB or SRp30c. 
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