
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers Digital Media Centre

2003-12

Viewer-based Directional Querying for Mobile Applications Viewer-based Directional Querying for Mobile Applications

Keith Gardiner
Technological University Dublin, keith.gardiner@tudublin.ie

James Carswell
Technological University Dublin, james.carswell@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/dmccon

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gardiner, K. & Carswell, J. (2003) Viewer-based directional querying for mobile applications. International
Workshop on Web & Wireless Geographical Information Systems (W2GIS2003), IEEE CS Press. Rome,
Italy. 13 December.

This Conference Paper is brought to you for free and open access by the Digital Media Centre at ARROW@TU
Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/dmccon
https://arrow.tudublin.ie/dmc
https://arrow.tudublin.ie/dmccon?utm_source=arrow.tudublin.ie%2Fdmccon%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fdmccon%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Dublin Institute of Technology
ARROW@DIT

Articles Digital Media Centre

2003-12-01

Viewer-based directional querying for mobile
applications
Keith Gardiner
Dublin Institute of Technology, keith.gardiner@dit.ie

James D. Carswell
Dublin Institute of Technology, jcarswell@dit.ie

This Conference Paper is brought to you for free and open access by the
Digital Media Centre at ARROW@DIT. It has been accepted for inclusion
in Articles by an authorized administrator of ARROW@DIT. For more
information, please contact yvonne.desmond@dit.ie, arrow.admin@dit.ie.

Recommended Citation
Gardiner, Keith and James D. Carswell:Viewer-based directional querying for mobile applications. International Workshop on Web &
Wireless Geographical Information Systems (W2GIS2003); IEEE CS Press; Rome, Italy; December, 2003

http://arrow.dit.ie
http://arrow.dit.ie/dmcart
http://arrow.dit.ie/dmc
mailto:yvonne.desmond@dit.ie, arrow.admin@dit.ie

 1

Viewer-Based Directional Querying for Mobile Applications

Keith Gardiner, James D. Carswell

Digital Media Centre, Dublin Institute of Technology, Ireland
{keith.gardiner, jcarswell}@dit.ie

Abstract
With the steady and fast advancements in the
integration of geographic information systems and
mobile location-based services, interest in exploiting
this technology for Cultural Heritage (CH) data
sharing has become apparent. In this area there has
been an increasing need to integrate positional
information with non-positional data and add a
spatial dimension to the definition of a users
“context”. In this paper we describe an
implementation of a viewer-based directional query
processor that operates on an Oracle Spatial
database. The spatial position and orientation are
taken from the viewer’s perspective. Using this
frame of reference a view-port is defined in real time
as the viewer progresses through the space and used
as the primary filter to query an R-tree spatial index.
Finally, an experimental implementation shows how
the query processor performs within a VRML model
of Dublin linked to a spatially enabled CH dataset.

1. Introduction

 The approach of using direction to query
spatial data is the focus of substantial research
efforts within the spatial database community
[6,9,10,12,13,18,19,20]. Direction relations therefore
represent an important class of user queries in spatial
databases and their applications to geographic
information systems. To make sense of direction, a
reference frame must first be established, where in
general there are three possible options:

• Intrinsic, where the reference frame is in respect

to the orientation of an object, e.g. front or back,
left or right of a building;

• Deictic, where the reference frame is relative to
each individual looking at the scene, e.g. what is
“in front” for me might be “to the left of”
someone else and;

• Extrinsic, where the reference frame is
established independently of the orientation of
the features or the observers, e.g. north, south,
east, west.

 For configurations of spatial objects, in a GIS
or digital image, that represent real positions and
orientations of the environment, it has been
customary to use extrinsic reference systems [6].
However, although in [19] the direction from fixed
objects in 2D space has a profound but highly static
affect on the objects relevance in a context-aware

environment, for our purposes, where each
individual has their own personal line-of-sight and
therefore dynamic, personalised search space, a
deictic reference frame is what we consider.
 For example, when working within an
intrinsic reference frame, queries like “Are there any
CH artefacts in front of the post office?” can be
answered, where the post office is the Object. In
contrast, an example of a query within our viewer-
based or deictic reference frame would be “Are there
any CH artefacts contained within my view-port in
the direction that I am facing?”, i.e. a view-port
virtually constructed along my line-of-sight.
 Therefore, for our purposes the direction that
the viewer is facing will be used as the selection
condition for queries to a spatial database. In this
paper we show how the position of the viewer
combined with the direction of his/her line-of-sight
is used to develop a viewer-based directional query
processor that utilises an oriented, bounded object
together with standard Oracle Spatial topological
and metric operations. Our approach uses the line-
of-sight direction vector to represent orientation and
constructs a view-port of varying, user-defined
dimensions as the primary filter when querying the
database. As the direction of the user changes, the
view-port is reconstructed in real time to reflect the
users new line-of-sight search space. This method of
querying the database is similar to a standard range
query except that the shape of the view-port window
is user defined and has orientation. This approach
does not include new indexing data structures or
access methods, instead utilises the already well-
known R-tree index data-structure and existing
Oracle Spatial operators to perform the spatial
queries [7,17]. Therefore, the focus of this paper
describes a method that integrates currently
available technologies in the area of Location-Based
Services. We demonstrate user-based queries in a
mobile/spatial environment where the relevance of
the resulting data is paramount not necessarily the
efficiency of the query processor, thus allowing for
significant scope for performance enhancement.

2. Non-Directional Queries

 A traditional, non-directional range query is
the recognized standard operation to query our
database for any Cultural Heritage artefacts that are
present in the location of the query window. The
window is of a specified width and height centred on
the user’s location and is represented in Oracle

 2

Spatial as an optimised rectangle that is defined by a
minimum of two points p1 and p2. An advantage of
using an optimised rectangle (or any shape) is that it
does not have to be inserted into an Oracle table
before it can be used as a query window (Figure 1).
The following code excerpt shows how the
sdo_relate operator is used to achieve this:

SELECT A.ID, STREET, BUILDING
FROM CHI.CHI_CONTENT_BUFFER A
WHERE SDO_RELATE (A.POSITION,
 MDSYS.SDO_GEOMETRY (2003,NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY (1,1003,3),

MDSYS.SDO_ORDINATE_ARRAY (X1,Y1,
X2,Y2)), 'mask = anyinteract querytype=window') =
'TRUE' ORDER BY ID";

 This example shows the sdo_relate operator
being used to compare the query window with the
CH dataset to determine weather they interact in any
way. The sdo_relate operator accepts three
parameters, an sdo_geometry column in a table that
must be spatially indexed, the query window
sdo_geometry and a param list that determines the
behaviour of the operator. The query window
geometry is defined in the SQL statement string and
contains two arrays. The sdo_elem_info_array
contains the values that define the type of geometry
that is to be queried against the dataset. In this
instance it is an optimised rectangle that is defined
by a triplet value (1 (offset), 1003 (outer polygon), 3
(optimised rectangle)). The sdo_ordinate_array
contains the coordinate values of the rectangle. The
mask is set to “anyinteract” which means if any of
the topological Boolean predicates return true (or
interact) then adds the geometry to the resultset.
 This SQL string is used to query the spatial
database for interaction between the query geometry
and the CH data geometries. The query is processed
every 5 seconds. If the user is on the move and the
position of the user is the same or less than 5m away
from the position that the last query was processed,
the query will not be run again. When the user’s
position is outside this threshold, the query is run
again. This significantly reduces the computational
cost of redundant queries to the database.

Figure 1: Optimised Rectangle (Window) Query

 Each CH data point in the database
represents a CH artefact and is surrounded by a
buffer (the extents of which are also explicitly stored
by Oracle Spatial) of varied radius depending on the
size and/or significance of the artefact. Taken
together the data point and surrounding buffer
represent a data area. Justification for placing a
buffer around the individual data points rather than
around the viewer’s dynamic location in space was
one of maximising query optimisation as one of the
most important aspects of the query process is the
speed at which it is executed. If instead the circular
buffer (or indeed any other complex shape) were
dynamically generated around the mobile user, the
points needed to specify the buffer extents would
have to be recalculated each time the user’s context
changes in either time or space. An optimised
rectangle therefore is the most favourable geometry
to query the database against.
 When the user’s query window intersects a
data area in any way, e.g. touch, overlap, etc., the
relevant data is placed into a resultset and displayed
to the user in the form of text, images, audio, and
video files. In the initial implementation it was
sufficient to collect data in this manner. The
problem here is that the orientation or direction that
the viewer is facing is not taken into account when
formulating the query.
 An enhanced implementation extends the
initial attempt by adding functionality that allows the
query window to be of any required shape. Unlike
the initial approach of using an optimised rectangle,
the users position shifts to point p1 and it is now
required that all the points required to construct the
shape-query are specified. Therefore, each point that
makes up the optimised shape is now calculated
relative to point p1, also called his viewpoint.
 Although this adds flexibility to the
dimensions of the users relevant query space, the
problem with this approach is that the query
window’s orientation is static, i.e. by changing the
orientation of the viewer, simply by rotating about
the z-axis, the query window’s position is not
affected. This is not an optimal condition as the user
is receiving information about data that may be
behind them and not what is in their direct field-of-
view, i.e. along their line-of-sight.

3. Directional Queries

 In the enhanced implementation, the method
of querying the Cultural Heritage database is more
sophisticated. In this approach orientation is a
necessary parameter so that the users view-port can
be dynamically constructed, resulting in only data
contained within the viewers field-of-view (FOV)
being returned. This makes querying the data more
adaptive; as the user progresses through the VRML
world their view-port is being continuously updated
with respect to the direction they are facing. The

Optimised
Rectangle

Query
Window

p2

Users
Position

Data
Point

 1m

p1
 1m

Data
Area

 3

query that is formulated in this manner is similar to a
standard range query with an optimal shape. As with
the standard range query described previously, the
query window is compared to an R-tree index. If the
query window comes in contact with any of the
Minimum Bounding Rectangles (MBRs) of the data
areas, the data is said to be intersecting in some way.
 In our Directional Query Model there are
three points defining the triangular query window
representing the extents of the user’s field-of-view.
The user’s viewpoint p1 is always one of the vertices
of the triangle. The points p3 & p4 are calculated by
first attaining the azimuth from the 0º North
direction to the line-of-sight (LoS) of the user, i.e. to
point p2. (Figure 2)

Figure 2: Directional Query

 The azimuth of the line-of-sight (Lv) could be
obtained either from a VRML browser (as is our
case) or from a digital compass embedded within a
spatially enabled PDA. To determine the azimuths
to points p3 and p4 a specified fraction of an angular
FOV value is subtracted from the user’s azimuth Lv
to get the azimuth to point p3 and by adding the
same fraction of the FOV value to Lv to get the
azimuth to point p4. These FOV extents (L1 & L2)
are then used to calculate the positions of vertices p3
and p4 on a query buffer of specified radius thus
giving the view-port a finite distance. Together, the
three vertices are used to produce an optimised
spatial query shape that will only select data that is
inside a triangle oriented in the same direction as the
users line-of-sight.
 The orientation and position coordinates that
are delivered to the java application are obtained by
using the External Authoring Interface (EAI) Java
Application Programming Interface (API). The EAI
is a programming interface for communication
between VRML and external programs and allows
the developer to register some of the VRML events
and properties to the Java programming environment
[5,21].

 The location of the user's viewpoint, while
navigating within the VRML model, is used to
simulate the user's position in the real-world streets
of Dublin. The virtual 3D coordinates (x,y,z) are
transformed into geographic coordinates (φ,λ), the
initial interest of the context-based query to the
spatial database. In addition to the position, the
orientation of the user’s line-of-sight can also be
obtained in the same way. The orientation field
values provide a rotation axis about which to rotate
the viewpoint and a rotation angle specifying the
amount by which to rotate around that axis. The first
three values in the field specify the X, Y and Z
components of the 3D direction vector. The fourth
value in the orientation field specifies the positive or
negative rotation angle measured in radians [1].
 The java class that constructs the query
window accepts five parameters and returns three
points, those used to implement the window. The
five values are those obtained from the EAI. The
pseudo-code for the CreateWindow operation is
described as Algorithm 1.

Algorithm 1: Construct Oriented Query Window

Input: X, Y is the position of the user.
Ox, Oy, Oz is the components of the
3D direction vector.
Or is the rotation angle around the
vector measured in radians.

Output: Three points p1, p2, p3.

Class CreateWindow {

CreateWindow (X, Y, Ox, Oy, Oz, Or){

Angle a = 30;
Radius r = 50;
toDegrees(Or);
//adjustment for reference frame
Vector L1 angle = ((Or - a) - 90);
//adjustment for reference frame
Vector L2 angle = ((Or + a) - 90);
Point p1= X, Y;
Point p2 = CalcIntersection (L1,r);
Point p3 = CalcIntersection (L2,r);
Return p1, p2, p3;

}
CalcIntersction (angle, radius){

 Return point;
}

}

 The three points returned from the algorithm
are passed into the SQL query string used to query
the spatial database. In this example the
sdo_elem_info_array is modified to represent a
polygon, i.e. the query window.

360/0º

90º270º

180º

P2
P3

P4

L1

L2

Lv

Viewpoint

Data Points

P1

 4

SELECT A.ID, STREET, BUILDING
FROM CHI.CHI_CONTENT_DATA A
WHERE SDO_RELATE (A.POSITION,

MDSYS.SDO_GEOMETRY (2003, NULL, NULL,
MDSYS.SDO_ELEM_INFO_ARAY (1,1003,1),
MDSYS.SDO_ORDINATE_ARRAY (X1, Y1, X2,
Y2, X3, Y3, X1, Y1)),'mask=anyinteract
querytype=window') = 'TRUE';

 The sdo_elem_info_array contains the values
that define the type of geometry that is to be queried
against the dataset. In this instance it is a polygon
that is defined by a triplet value (1 (offset), 1003
(outer polygon), 1 (points are connected by straight
lines)). In the sdo_ordinate_array the 3 points are
specified and the first again to close the polygon.

3.1. Line-of-Sight

 The next objective was to investigate and
develop a line-of-sight algorithm to determine if data
contained within the view-port is actually in the
viewers line-of-sight. This problem is illustrated in
Figure 3. The large triangular area in the diagram
represents the user’s view-port in 2 dimensions. The
brick filled shapes B1, B2, B3, and B4 represent
building blocks and D1, D2, D3, and D4 represent
CH data points. The enclosed white space in the
diagram highlights the desired shape that the line-of-
sight algorithm should identify as the query area.
The light grey sections represent the areas that
should be excluded from the query space, as they are
not visible from the user’s viewpoint.

Figure 3: Optimised View-Port

 When the CH database is queried using an
oriented view-port, the query simply checks to
determine weather any of the CH dataset is in
contact with the larger triangular shaped view-port.

If there is any topological relationship detected the
data is returned to a resultset and subsequently
displayed to the user. This querying of the database
does not take into account the fact that the triangular
query window is also interacting with other layers in
the database (e.g. the building layer).
 In reality, if the user is standing on the
outside looking into a building, they cannot see what
is inside. In our initial implementation of the query
model, if the user is standing on the outside they
indeed could retrieve data that is unseen to them. As
a primary filter this condition is unacceptable when
in fact the user only wishes to receive data about
objects that they can actually see. Therefore, an
option was added that checks to determine if the
view-port interacts with any of the building blocks
in the block layer of the database. If so, the sub-area
of the triangular shaped view-port that overlaps the
building polygon should be removed from the query
window. This is illustrated in Figure 4 where the
shape of the triangular query window has been
reduced to the enclosed white and grey space only.
 The information obtained by performing this
check eliminates the building blocks from the view-
port while at the same time gives us data on what
buildings the view-port is actually intersecting with.
This data can then be used to determine if the
building blocks involved in the intersection are in
the users line-of-sight to other data points in the
resultset.
 Additionally, in comparison with the CH
layer, the building block layer also contains attribute
information about the individual polygon objects
stored in the layer. In the case of the block layer
therefore, attributes like the name, address, purpose
and associated history of the building are linked to
each building object. As such this metadata may be
as useful to the user as any other CH artefact and so
the line-of-sight algorithm must be applied to the
building block layer as well.
 The solutions to these two problems however
are slightly different. In the case of the CH layer, the
solution to LoS determination is relatively less
complicated than LoS determination of the block
layer because the LoS between a viewpoint and a
data point requires querying against only a single
line. The LoS between the viewpoint and a polygon
is more complicated to determine because the
number of intersection possibilities are far greater.
 To determine the LoS for both the CH and
block layer a combination of Oracle Spatial
operators and a LoS algorithm is required. Our
solution was to take a well-known algorithm in
Computer Graphics and apply it to the area of
Spatial Databases. The scanline algorithm was
chosen because the topological and Boolean
operations needed to process the algorithm are
already inherent in the Oracle database schema.

B1 B3

D2

D3

D4

D1

Viewpoint

B2

FOV
Line-of-Sight

Obstructed
Line-of-Sight

B4

 5

• Scanline Algorithm – The algorithm works by
making a progressive scan of the area in question
(field-of-view) to determine weather there are
any objects in the scan line path. If so the point at
which the scan line intersects the object is
recorded. A series of scans is carried out. The
end product is the coordinates of a polygon
object that represents the search space minus the
surrounding building object geometries.

 Implementing the scanline algorithm for the
CH layer is accomplished using Algorithm 2 and the
sdo_intersection operator in Oracle. First, a series of
lines are created between the viewpoint of the user
and each data point present inside the view-port. For
the CH layer, these lines are considered as the
scanlines. In turn each of the scanlines are used as
the input parameters to Algorithm 2, to determine if
they interact with any of the objects in the block
layer. If there is any interaction between any of the
objects in the block layer and the scanline, the CH
artefact is not visible to the user from that viewpoint
and it will not be placed in the LoS resultset. If there
are no interactions between the CH data point and
the block layer along that scanline, the data point is
considered to be visible and is placed in the LoS
resultset.
 Implementing the scanline algorithm for the
block layer is more computationally expensive than
the CH data layer. The LoS between a point and a
polygon has to be determined, in which case there
may be many possible LoS and until there is a
positive LoS detected every possibility has to be
checked. The process involves initially testing if the
view-port interacts with one or more of the building
objects in the block layer by using the
sdo_intersection operator. If so, the IDs of the
objects are put into an array. Oracle’s sdo_difference
operator is then used to compute the (spatial)
difference between the view-port and the
intersecting block object. The sdo_difference
operator returns an sdo_geometry object that
represents the difference polygon between the two
geometries. If there are multiple intersecting objects,
the next block object in the array is compared with
the result of the previous sdo_difference operation to
determine the new difference polygon. This
procedure continues until all objects in the array
have been processed. The result of this procedure is
the view-port in Figure 4 with building blocks B1,
B2, B3 and B4 removed, i.e. the shape of the
enclosed white and grey space only.
 The next step in the LoS algorithm is to
connect each point of the resulting query space
polygon object (each having an associated
intersecting object ID) to the viewpoint. In turn each
of these scanlines are tested until at least one scan
proves negative for intersection with any other
object, if so it is evident that there is indeed an
unobstructed line-of-sight to that block object and

therefore the processing of the remaining points
relating to that particular object is stopped, the ID of
the object is placed in the LoS resultset, and the next
object is tested. The information on that block
therefore is added to the list of objects in the users
line-of-sight.
 In the case where no points of an intersecting
object are in the users LoS an additional scan test of
the object has to be made to determine for sure that
the object is not currently in the user’s FOV. A
series of points (e.g. 1m apart) around the perimeter
of the block object are calculated. Each point is
connected to the viewpoint with a straight line. A
scan is run with each of these scanlines to determine
if there is any that has no intersection with any other
block object, if they all intersect with other objects
the block object is clearly not in visible to the user.
If there is one scan that doesn’t intersect other block
objects, the building object is said to be in view and
is added to the users LoS resultset.
 Only after all the data points and block
objects are checked for LoS can the list of objects in
the users line-of-sight be supplied to the narrative
engine of the system for metadata processing, to
create a hyperlinked, digital story based on the
events surrounding what the user can see [4]

 Algorithm 2: Scan Line Algorithm

Input: Scanline 1 to N
 Buildings 1 to N

Output: Points of intersection

Class ScanLine{

For (each Scanline){

CheckIntersection(scanline, layer);
}

CheckIntersection(vector scanline, layer lay){

If(scanline interacts with polygon){
return point of intersection

} else{
return initial point

}}}

4. 3 Dimensional Queries

 Adding orientation and LoS (Line of Sight)
functionality to the query greatly increases the
relevance of the data being returned to the user.
Even though this greatly increases the accuracy of
the query to the database, the fact that it is still a 2D
horizontal query leaves room for enhancement with
regards to what the user can actually see in their
vertical field-of-view.
 At present the data that is contained in the
CH database has two coordinates associated with it,
x and y. This is sufficient because the queries that
are being generated only require a 2D point set to

 6

query the data. This means that any data that is
present within the query view-port will be passed
back in the resultset regardless of the height of the
users vertical field-of-view.
 The human Field-of-View (FOV) (Figure 4)
spans approximately 200º horizontally taking into
account for both eyes and 135º vertically [2]. This
limits the amount of data that can be seen at any one
time. The normal binocular field-of-view is 120º
with and extra 70º of monocular vision (35º each
side). The default angle in the our query model is
60º. The user can modify this value interactively as
well as the viewing distance to whatever distance
they want. The human field-of-view also has an
angle of 60º above the direct line of sight and 75º
below it. This means that the height of data in the
model has to be taken into account as well as the
vertical area that is being searched.
 This can be partially achieved by adding an
additional coordinate to each data point in the
database giving it height. The z-value is then used as
a clause in the spatial query to determine what data
is to be subtracted from the initial result set. The
view-port can also have on offset height value off the
ground ensuring that the space being searched is a
true 3 dimensional volume. Adding depth allows
queries like “Are there any cultural heritage artefacts
contained within the view-port in front of the viewer
up to a height of 10 meters off the ground?” and in
the second example where the view-port has a height
offset, queries like “Are there any cultural heritage
artefacts contained within the view-port in front of
the viewer that are between 10 and 15 meters off the
ground?”

Figure 4: Human Field-of-View [2]

 An example of the query space is shown in
Figure 5. Point’s p1, p3 and p4 make up the view-

port. The height h is the height of the query space
and is specified by the user. It has a min value for
the height offset and a max value for the height
extents of the query space.

Figure 5: 3D Query Block

 This approach extends the query model by
adding the ability to construct essentially a 3D
viewer-based directional query to the search space.
The data is then searched by using only topological
and metric operations to do so [17]. A second order
constraint is then applied to check for height and
further reduce the resultset to only the data that
satisfies the constraint.

4.1. View-port Query Control

 To give the users control of the desired view-
port angle, radius and direction a View-port Query
Control was developed (Figure 6). This small frame
developed in java gives the user total control of
view-port dimensions. The user has the option to
change the FOV angle at which the view-port can
expand and also the radius it can be extended. The
option to modify the orientation of the view-port
with reference to the users orientation is also
available. Useful while walking down a street but
with (query) “eyes” in the back or side of your head
for example.

Figure 6: View-port Query Control

 It was realised during the development that
even though a pie shape view-port is useful it might
not always be the preferred option for the user. For

P1

P4

P3

h

60º
75º

Binocular Field
120º

Monocular
 Field 35º

Blind Area
170º

Monocular
 Field 35º

 7

example a user might want to query all around them
and not just in the field-of-view.
 To cater for this need a series of tabs were
added to the View-port Control. One of these tabs is
the buffer tab. There are two spinner controls on this
tab that adjust the radius of the view-port to the
desired size and the height. (Figure 7)

 Figure 7: Buffer Control

 The next tab to be added to the view-port was
a static selection control that allows the user to
change the orientation of the view-port in relation to
the orientation of the user (Figure 8). On this tab the
user has a selection of different fields of vision. The
default is a human field of view at a height of 2m
but a cat (.3m), dog (.5m) or rabbit (.2m) could also
be selected to experience these other FOV realities.

Figure 8: Select Control

 The Query Control gives the user the choice
to query the CH dataset in three different distinctive
ways. Depending on the users personal choice the
dataset can be queried over a large area or the query
can be narrowed down to a very small sub-region.

5. Implementation

 An overview of the Cultural Heritage
Interface (CHI) workflow, developed by the Digital
Media Centre of the Dublin Institute of Technology,
is illustrated in Figure 9.

Figure 9: Conceptual Overview of CHI System

 The main technical components are
implemented in a three-tier web-based architecture
typical of spatially enabled enterprise applications
[3], i.e. it comprises three layers, namely the Client
Layer, the Application Server Layer, and the
Database Layer. All communications between the
client layer and the database are conducted through
the application server layer. The application, in our
case the query building and query results formatting,
is executed on the application server. The client
communicates with the application server using the
existing HTTP networking protocols.

5.1. Client Layer

 The client layer consists of spatially enabled
mobile devices (Figure 10) that are used to display
spatially/semantically relevant CH data about
Dublin’s City Centre. Initially, the user's location in
space combined with the particular mobile device
employed determines the user's context. The purpose
therefore of this implementation is to automatically
push relevant data from the database layer to the
client layer based on this limited contextual view.
 For CHI, there is a series of three mobile
devices simulated within the web browser, plus the
web browser that both display to and interact with
the user. Choosing to simulate the mobile devices,
or user agents, instead of actually implementing on
the physical device allow for the accuracy and
capabilities of these devices or context sensors to be
emulated easily.
 The devices emulated are a GSM mobile
phone, a spatially enabled WAP phone and a
spatially enabled PDA.

(φ,λ)

Virtual Dublin Spatial CH Database

Spatially
Enabled
PDA

Web Browser

 8

Figure 10 – Client Layer Display Devices – Cell
Phone, WAP Phone, PDA, and Web Browser

5.2. Database Layer

 The database implemented for the CHI
project (Oracle 9i) provides spatial object type
storage, SQL access, spatial operations, and
indexing as well as map projections and coordinate
systems support [15]. Through this functionality,
spatial queries are efficiently executed without the
additional overhead of maintaining coordinate
information separate from the attribute data. This is
accomplished by defining the attribute information
(CH hypermedia) as a spatial data type (which
implies associated coordinate data). In the example
below the position field is the spatial data type:

CREATE TABLE CHI_CONTENT_DATA (
 ID NUMBER (20) PRIMARY KEY NOT NULL,
 POSITION MDSYS.SDO_GEOMETRY NOT NULL,
 STREET VARCHAR2 (20) NOT NULL,
 BUILDING VARCHAR2 (20) NOT NULL);

 The spatial extension to SQL allows us to use
this syntax to create the above table with a spatial
data type of type sdo_geometry. It also allows us to
insert positional data into the table as follows:

INSERT INTO CHI_CONTENT_DATA VALUES (4,
 MDSYS.SDO_GEOMETRY (2,NULL, NULL,
 MDSYS.SDO_GEOMETRY (2001, NULL,

MDSYS.SDO_POINT_TYPE (919.0, 513.0), NULL,
NULL),‘OCONNELL’, 'GPO');

 The above code excerpt identifies the object
geometry as a 2D Point “2001”, 2 meaning 2D and
1 meaning a point datatype. The coordinates of the
point are then specified in the sdo_point_type array.
The data in the table is then indexed using the R-tree
index data structure that is implemented using the
extensible indexing framework of Oracle Spatial
[14].

 One advantage of spatial data types is that
subsequent queries can be restricted to a pre-defined
geographical area, e.g. within a 10m radius of a
given location. By exploiting the spatial indexing
mechanisms inherent to Oracle 9i, which essentially
organises the information within the database tables
according to their geographic location, all location
relevant data is retrieved most efficiently.
 The hypermedia CH objects stored in the CHI
project database (together with their spatial
component) comprise an "historic walking tour of
Dublin". Such a tour can begin and end at specific
times and places and pass specific landmarks along
the way. As each of the landmarks is encountered in
turn, a particular "story object" will be retrieved
about its historical significance. It is the text of this
"story" that will comprise the bulk of the data stored
in the CHI database layer. A challenging aspect to
this research is the investigation of the
methodologies for retrieving these story objects both
automatically and coherently as their positions in
space are approached. To accomplish this task
successfully, the causality of the localised series of
events is considered [4].

(a)

(b)
Figure 11: Comparison of Query Methods

 A B

 C D

1 2

3 4

CH Data

 Window
 (Non-Oriented)

 A B

 C D
3

4

2 1

Window
(Oriented)

CH Data

 9

 A simple experiment illustrates the
performance of the classical range query strategy
compared to the view-port directional query strategy
(Figure 11).
 Figure 11(a) illustrates how the CHI spatial
database was organised previously and how the data
was queried using a range query. Objects A, B, C
and D represent street building blocks in the system.
The points surrounded by circles represent cultural
heritage artefacts (CH data) within the database,
each of which are represented by a 2 dimensional
point with a buffer. If the Query window interacts
with any of the buffers the resulting data set is
extracted from the database and presented to the
user. A problem with this method is as follows: if
the query window is situated in data area 3 and the
orientation of the user is northwest the returned data
is data point 3, when the actual data should be data
point 1. Similarly if the user is facing east the
returned data is data 3 when it should be data 4.
 Our novel solution to this problem is
illustrated in figure 11(b). In this example the query
window is an oriented and dynamically generated
triangle and a 3D point represents each CH data
point. The buffers around the data points are no
longer necessary because the oriented view-port is
being used. If the user’s viewpoint is situated in the
same position as the previous example and is also
facing northwest, the data that is returned is data
point 1 together with Building A metadata (if any)
and if the orientation is changed to be east, data
point 4 is returned (if visible) plus Building D
metadata.
 The next test considered how accurate the
queries would be when querying for height along
with horizontal intersection. The SQL query tested
for data that was contained within the view-port
window and had a height of less than 20m and
greater than 10m. This addition to the system means
that layers of data can be added to the database with
the same X and Y coordinates but a different Z
coordinate to distinguish it from data positioned, for
example, on different floors of the same building.

6. Conclusion

 We have introduced a directional method of
querying a spatial database system that considers the
user’s line-of-sight in the context of cultural heritage
information retrieval. Tests show the enhanced
demonstrator performs as expected, with the
relevance of the data greatly improved compared to
the initial non-directional querying prototype.
 The determination of the line-of-sight of the
user is only a small step in the direction of
realistically querying the spatial database. The
approach of utilising a scan line intersection
algorithm delivers the desired results needed to
determine the line of sight but a limitation is that it is
specific to 2 dimensional data.

The cost of the queries in the revised
demonstrator is slightly more than that of the initial
prototype due to the first approach using an
optimised rectangle to query the data. In the
enhanced system the query window is constructed in
real-time every five seconds if the viewpoint differs
more than 5m in position or more than 30° in
direction from the last query processed. The user’s
FOV is adjustable in horizontal angle, height and
range to accompany many varied points of view

The paper introduces a method of developing
mobile applications that integrate current
technologies thus allowing user-based directional
queries to be processed. The specification of a
directional data model would greatly improve the
synergy of these technologies.

7. Future Work

 The next phase of the research is to
implement a perspective query frustum (view-
pyramid) that will mimic the human field-of-view
more accurately, i.e. in 3 dimensions. Determining
the line-of-sight of the user in 3 dimensions involves
using 3D spatial indexes on 3D objects to determine
if 3D data points lie inside the objects. To achieve
this, Voxels and Octrees will be considered for
indexing the 3D Objects [8,16].
 We plan therefore to develop a perspective
query [11] processor that will use a proper 3D view-
pyramid to query the data taking into account the
vertical FOV angle. This approach introduces the
concept of querying the CH dataset based on the
idea of a “birds-eye-view” of the data. (Figure 12)
Achieving this in the VRML world will be relatively
straightforward as the viewers direction rotations
about the 3 axis are known, however in reality it will
need to wait for tilt sensors imbedded in next
generation PDA’s.

Figure 12: Perspective Query Frustum

 The approach will consider retrieving all data
interacting with the projected footprint of the
“floor+base” of the frustum up to any height as a
primary filter and then further processing this

 10

resultset against a 3D polygonal sweep of specified
dimensions from left to right to complete the query
and effectively build the view-pyramid in real-time.
 On the subject of network performance,
future work will focus more on reducing the high
communication costs between the client and
application server due to continuous querying. This
might involve reducing the number of queries to the
spatial engine or the introduction of predictive
querying techniques.

Acknowledgements

Support for this research from Enterprise Ireland
through the Informatics Programme 2001 on Digital
Media is gratefully acknowledged.

 11

References

[1] Ames, A. L., Nadeau, D. R., and Moreland,
J.L.: “VRML 2.0 Sourcebook”: 1997: John
Wiley and Sons, Inc. pp. 519-531

[2] Barfield, W., Hendrix, C., Bjorneseth, O.,
Kaczmarek, K. A., and Lotens, W.:
"Comparison of human sensory capabilities
with technical specifications of virtual
environment equipment," Presence:
Teleoperators and Virtual Environments, 1995.

[3] Bertolotto, M., Carswell, J. D., McGeown, L.,
and McMahon, J., "iSmart+iSIS: Deploying
Integrated Web-Based Spatial Applications
Within an Oracle Database Environment",
International Workshop on Web Geographical
Information Systems (WGIS2001), IEEE CS
Press, Kyoto, Japan. 2001.

[4] Carswell, J. D., Eustace, A., Gardiner, K.,
Kilfeather, E., and Neumann, M.: “An
Environment for Mobile Context-Based
Hypermedia Retrieval.” DEXA Workshops
2002: 532-536.

[5] Diehl, S.: Distributed virtual worlds:
foundations and implementation techniques
using VRML, Java, and CORBA. Berlin. New
York: Springer, 2001.

[6] Goyal, K. G., and Egenhofer, M. J.:
“Similarity of Cardinal Diractions” in: Jensen,
C., Schneider, B. S., Seeger. B., Tsotras, V.
(eds.): Seventh International Symposium on
Spatial and Temporal Databases Lecture notes
in Computer Science Vol. 2121, Springer-
Verlag, pp. 36-55, July 2001

[7] Guting, R.H.: “An Introduction to Spatial
Database Systems”: 1994: VLDB, 3:357-399.

[8] Jackins, C., Tanimoto, S. L.: "Oct-Trees and
Their Use in Representing Three-Dimensional
Objects," CGIP, 14(3), November 1980, 249—
270.

[9] Liu, X., Shekhar, S., and Chawla, S.: “Object-
based Directional Query Processing in Spatial
Databases” accepted to IEEE Transactions of
Knowledge and Data Engineering

[10] Liu, X., Shekhar, S., and Chawla, S.:
“Processing Object-orientation-based
Direction Queries” in the proceeding of the
Eighth International Symposium on Advances
in Geographic Information Systems, 69-76,
Washington D.C., November 2000.

[11] Li, J., Jing, N., and Sun, M.: “Spatial Database
Techniques Oriented to Visualisation in 3D
GIS.” School of Electronic Science and
Engineering, National University of Defense

Technology.http://www.digitalearth.ca/html_p
apers/DE_A_064.htm

[12] Papadias, D., Theodoridis, Y., and Sellis, T.:
The Retrieval of Direction Relations Using R-
trees. Proc. 5th Int'l Conference on Database
and Expert Systems Applications, DEXA'94,
Athens, Greece, September 1994. Springer -
Verlag LNCS #856.

[13] Pfoser, D., Jensen, C. S., and Theodoridis, Y.:
“Novel Approaches in Query Processing of
Moving Objects.” In proc. Intl. Conf. on Very
Large Databases (VLDB), 2000.

[14] Ravi, K. V. K., Ravada, S., Abugov, D.:
“Quadtree and R-tree Indexes in Oracle
Spatial: A Comparison using GIS Data”: 2002:
Proceedings of the 2002 ACM SIGMOD
international conference on Management of
data: Pages: 546 – 557.

[15] Rigaux, P., Scholl, M., and Voisard, A.,
"Spatial Databases": 2002: Academic Press,
Morgan Kaufmann Publishers. pp. 352-360

[16] Samet H., "Application of Spatial Data
Structures". Addison-Wesley, 1990.

[17] Shekhar, S., and Chawla, S.: “Spatial
Databases: A Tour”: 2003: Prentice Hall
Publishers: pp. 28.

[18] Shekhar, S., Chawla, S., Ravada, S., Fetterer,
A., X. Lui, and Lu, C.T: “Spatial Databases:
Accomplishments and Research Needs”: 1999:
IEEE Trans. on Knowledge and Data
Engineering.

[19] Shekhar, S., Liu, X., and Chawla, S.: “An
Object Model of Direction And Its
Implications”: 1999: GeoInformatica, 3(4),
357-379, Kluwer Academic Publishers.

[20] Theodoridis, Y., Papadias, D., and Stefanakis,
E.: “Supporting Direction Relations in Spatial
Database Systems.” Proc. 7th Int'l Symposium
on Spatial Data Handling, SDH'96, Delft, The
Netherlands, August 1996.

[21] VRML Consortium: http://www.vrml.org/

http://www.vrml.org/

	Viewer-based Directional Querying for Mobile Applications
	Recommended Citation

	Recommended Citation
	Dublin Institute of Technology
	ARROW@DIT
	2003-12-01

	Viewer-based directional querying for mobile applications
	Keith Gardiner
	James D. Carswell

	Introduction
	Non-Directional Queries
	Directional Queries
	Line-of-Sight

	3 Dimensional Queries
	View-port Query Control

	Implementation
	Client Layer
	Database Layer

	Conclusion
	Future Work
	Acknowledgements
	References

