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Viewer-Based Directional Querying for Mobile Applications 
 

Keith Gardiner, James D. Carswell 
  

Digital Media Centre, Dublin Institute of Technology, Ireland 
{keith.gardiner, jcarswell}@dit.ie

Abstract 
With the steady and fast advancements in the 
integration of geographic information systems and 
mobile location-based services, interest in exploiting 
this technology for Cultural Heritage (CH) data 
sharing has become apparent.  In this area there has 
been an increasing need to integrate positional 
information with non-positional data and add a 
spatial dimension to the definition of a users 
“context”. In this paper we describe an 
implementation of a viewer-based directional query 
processor that operates on an Oracle Spatial 
database.  The spatial position and orientation are 
taken from the viewer’s perspective.  Using this 
frame of reference a view-port is defined in real time 
as the viewer progresses through the space and used 
as the primary filter to query an R-tree spatial index. 
Finally, an experimental implementation shows how 
the query processor performs within a VRML model 
of Dublin linked to a spatially enabled CH dataset.   

1. Introduction 

 The approach of using direction to query 
spatial data is the focus of substantial research 
efforts within the spatial database community 
[6,9,10,12,13,18,19,20]. Direction relations therefore 
represent an important class of user queries in spatial 
databases and their applications to geographic 
information systems. To make sense of direction, a 
reference frame must first be established, where in 
general there are three possible options:  
 
• Intrinsic, where the reference frame is in respect 

to the orientation of an object, e.g. front or back, 
left or right of a building;  

• Deictic, where the reference frame is relative to 
each individual looking at the scene, e.g. what is 
“in front” for me might be “to the left of” 
someone else and;  

• Extrinsic, where the reference frame is 
established independently of the orientation of 
the features or the observers, e.g. north, south, 
east, west.   

  
 For configurations of spatial objects, in a GIS 
or digital image, that represent real positions and 
orientations of the environment, it has been 
customary to use extrinsic reference systems [6].  
However, although in [19] the direction from fixed 
objects in 2D space has a profound but highly static 
affect on the objects relevance in a context-aware 

environment, for our purposes, where each 
individual has their own personal line-of-sight and 
therefore dynamic, personalised search space, a 
deictic reference frame is what we consider. 
 For example, when working within an 
intrinsic reference frame, queries like “Are there any 
CH artefacts in front of the post office?” can be 
answered, where the post office is the Object. In 
contrast, an example of a query within our viewer-
based or deictic reference frame would be “Are there 
any CH artefacts contained within my view-port in 
the direction that I am facing?”, i.e. a view-port 
virtually constructed along my line-of-sight. 
 Therefore, for our purposes the direction that 
the viewer is facing will be used as the selection 
condition for queries to a spatial database. In this 
paper we show how the position of the viewer 
combined with the direction of his/her line-of-sight 
is used to develop a viewer-based directional query 
processor that utilises an oriented, bounded object 
together with standard Oracle Spatial topological 
and metric operations. Our approach uses the line-
of-sight direction vector to represent orientation and 
constructs a view-port of varying, user-defined 
dimensions as the primary filter when querying the 
database. As the direction of the user changes, the 
view-port is reconstructed in real time to reflect the 
users new line-of-sight search space. This method of 
querying the database is similar to a standard range 
query except that the shape of the view-port window 
is user defined and has orientation. This approach 
does not include new indexing data structures or 
access methods, instead utilises the already well-
known R-tree index data-structure and existing 
Oracle Spatial operators to perform the spatial 
queries [7,17]. Therefore, the focus of this paper 
describes a method that integrates currently 
available technologies in the area of Location-Based 
Services. We demonstrate user-based queries in a 
mobile/spatial environment where the relevance of 
the resulting data is paramount not necessarily the 
efficiency of the query processor, thus allowing for 
significant scope for performance enhancement. 

2. Non-Directional Queries 

 A traditional, non-directional range query is 
the recognized standard operation to query our 
database for any Cultural Heritage artefacts that are 
present in the location of the query window. The 
window is of a specified width and height centred on 
the user’s location and is represented in Oracle 
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Spatial as an optimised rectangle that is defined by a 
minimum of two points p1 and p2.  An advantage of 
using an optimised rectangle (or any shape) is that it 
does not have to be inserted into an Oracle table 
before it can be used as a query window (Figure 1). 
The following code excerpt shows how the 
sdo_relate operator is used to achieve this: 

 
SELECT  A.ID, STREET, BUILDING  
FROM   CHI.CHI_CONTENT_BUFFER A  
WHERE  SDO_RELATE (A.POSITION,  
  MDSYS.SDO_GEOMETRY (2003,NULL, NULL, 
  MDSYS.SDO_ELEM_INFO_ARRAY (1,1003,3), 

MDSYS.SDO_ORDINATE_ARRAY (X1,Y1, 
X2,Y2)), 'mask = anyinteract querytype=window') = 
'TRUE' ORDER BY ID"; 

 
 This example shows the sdo_relate operator 
being used to compare the query window with the 
CH dataset to determine weather they interact in any 
way. The sdo_relate operator accepts three 
parameters, an sdo_geometry column in a table that 
must be spatially indexed, the query window 
sdo_geometry and a param list that determines the 
behaviour of the operator. The query window 
geometry is defined in the SQL statement string and 
contains two arrays. The sdo_elem_info_array 
contains the values that define the type of geometry 
that is to be queried against the dataset. In this 
instance it is an optimised rectangle that is defined 
by a triplet value (1 (offset), 1003 (outer polygon), 3 
(optimised rectangle)). The sdo_ordinate_array 
contains the coordinate values of the rectangle. The 
mask is set to “anyinteract” which means if any of 
the topological Boolean predicates return true (or 
interact) then adds the geometry to the resultset. 
 This SQL string is used to query the spatial 
database for interaction between the query geometry 
and the CH data geometries. The query is processed 
every 5 seconds.  If the user is on the move and the 
position of the user is the same or less than 5m away 
from the position that the last query was processed, 
the query will not be run again. When the user’s 
position is outside this threshold, the query is run 
again. This significantly reduces the computational 
cost of redundant queries to the database. 
 

 

 

 

 

 

 

 

Figure 1: Optimised Rectangle (Window) Query 

 Each CH data point in the database 
represents a CH artefact and is surrounded by a 
buffer (the extents of which are also explicitly stored 
by Oracle Spatial) of varied radius depending on the 
size and/or significance of the artefact.  Taken 
together the data point and surrounding buffer 
represent a data area. Justification for placing a 
buffer around the individual data points rather than 
around the viewer’s dynamic location in space was 
one of maximising query optimisation as one of the 
most important aspects of the query process is the 
speed at which it is executed.  If instead the circular 
buffer (or indeed any other complex shape) were 
dynamically generated around the mobile user, the 
points needed to specify the buffer extents would 
have to be recalculated each time the user’s context 
changes in either time or space.  An optimised 
rectangle therefore is the most favourable geometry 
to query the database against.    
 When the user’s query window intersects a 
data area in any way, e.g. touch, overlap, etc., the 
relevant data is placed into a resultset and displayed 
to the user in the form of text, images, audio, and 
video files.  In the initial implementation it was 
sufficient to collect data in this manner.  The 
problem here is that the orientation or direction that 
the viewer is facing is not taken into account when 
formulating the query. 
 An enhanced implementation extends the 
initial attempt by adding functionality that allows the 
query window to be of any required shape.  Unlike 
the initial approach of using an optimised rectangle, 
the users position shifts to point p1 and it is now 
required that all the points required to construct the 
shape-query are specified. Therefore, each point that 
makes up the optimised shape is now calculated 
relative to point p1, also called his viewpoint. 
 Although this adds flexibility to the 
dimensions of the users relevant query space, the 
problem with this approach is that the query 
window’s orientation is static, i.e. by changing the 
orientation of the viewer, simply by rotating about 
the z-axis, the query window’s position is not 
affected. This is not an optimal condition as the user 
is receiving information about data that may be 
behind them and not what is in their direct field-of-
view, i.e. along their line-of-sight. 

3. Directional Queries 

 In the enhanced implementation, the method 
of querying the Cultural Heritage database is more 
sophisticated.  In this approach orientation is a 
necessary parameter so that the users view-port can 
be dynamically constructed, resulting in only data 
contained within the viewers field-of-view (FOV) 
being returned.  This makes querying the data more 
adaptive; as the user progresses through the VRML 
world their view-port is being continuously updated 
with respect to the direction they are facing.  The 
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query that is formulated in this manner is similar to a 
standard range query with an optimal shape. As with 
the standard range query described previously, the 
query window is compared to an R-tree index. If the 
query window comes in contact with any of the 
Minimum Bounding Rectangles (MBRs) of the data 
areas, the data is said to be intersecting in some way.   
 In our Directional Query Model there are 
three points defining the triangular query window 
representing the extents of the user’s field-of-view. 
The user’s viewpoint p1 is always one of the vertices 
of the triangle. The points p3 & p4 are calculated by 
first attaining the azimuth from the 0º North 
direction to the line-of-sight (LoS) of the user, i.e. to 
point p2. (Figure 2) 
 

 
 

 

 

 

 

 

 

Figure 2: Directional Query 

 The azimuth of the line-of-sight (Lv) could be 
obtained either from a VRML browser (as is our 
case) or from a digital compass embedded within a 
spatially enabled PDA.  To determine the azimuths 
to points p3 and p4 a specified fraction of an angular 
FOV value is subtracted from the user’s azimuth Lv 
to get the azimuth to point p3 and by adding the 
same fraction of the FOV value to Lv to get the 
azimuth to point p4. These FOV extents (L1 & L2) 
are then used to calculate the positions of vertices p3 
and p4 on a query buffer of specified radius thus 
giving the view-port a finite distance. Together, the 
three vertices are used to produce an optimised 
spatial query shape that will only select data that is 
inside a triangle oriented in the same direction as the 
users line-of-sight. 
 The orientation and position coordinates that 
are delivered to the java application are obtained by 
using the External Authoring Interface (EAI) Java 
Application Programming Interface (API). The EAI 
is a programming interface for communication 
between VRML and external programs and allows 
the developer to register some of the VRML events 
and properties to the Java programming environment 
[5,21]. 

 The location of the user's viewpoint, while 
navigating within the VRML model, is used to 
simulate the user's position in the real-world streets 
of Dublin.  The virtual 3D coordinates (x,y,z) are 
transformed into geographic coordinates (φ,λ), the 
initial interest of the context-based query to the 
spatial database. In addition to the position, the 
orientation of the user’s line-of-sight can also be 
obtained in the same way. The orientation field 
values provide a rotation axis about which to rotate 
the viewpoint and a rotation angle specifying the 
amount by which to rotate around that axis. The first 
three values in the field specify the X, Y and Z 
components of the 3D direction vector. The fourth 
value in the orientation field specifies the positive or 
negative rotation angle measured in radians [1].  
 The java class that constructs the query 
window accepts five parameters and returns three 
points, those used to implement the window. The 
five values are those obtained from the EAI. The 
pseudo-code for the CreateWindow operation is 
described as Algorithm 1. 
 
 
Algorithm 1: Construct Oriented Query Window 
 

Input:    X, Y is the position of the user. 
Ox, Oy, Oz is the components of the 
3D direction vector. 
Or is the rotation angle around the 
vector measured in radians. 

Output: Three points p1, p2, p3. 
 
Class CreateWindow { 

 
CreateWindow (X, Y, Ox, Oy, Oz, Or){ 

Angle a = 30; 
Radius r  = 50; 
toDegrees(Or);  
//adjustment for reference frame 
Vector L1 angle = ((Or - a) - 90); 
//adjustment for reference frame 
Vector L2 angle = ((Or + a) - 90); 
Point p1= X, Y; 
Point p2 = CalcIntersection (L1,r); 
Point p3 = CalcIntersection (L2,r); 
Return p1, p2, p3; 

} 
CalcIntersction (angle, radius){ 

  Return point; 
} 

} 
 

 
 The three points returned from the algorithm 
are passed into the SQL query string used to query 
the spatial database. In this example the 
sdo_elem_info_array is modified to represent a 
polygon, i.e. the query window. 
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SELECT  A.ID, STREET, BUILDING  
FROM  CHI.CHI_CONTENT_DATA A  
WHERE  SDO_RELATE (A.POSITION, 

MDSYS.SDO_GEOMETRY (2003, NULL, NULL, 
MDSYS.SDO_ELEM_INFO_ARAY (1,1003,1), 
MDSYS.SDO_ORDINATE_ARRAY (X1, Y1, X2, 
Y2, X3, Y3, X1, Y1)),'mask=anyinteract 
querytype=window') = 'TRUE';  

 
 The sdo_elem_info_array contains the values 
that define the type of geometry that is to be queried 
against the dataset. In this instance it is a polygon 
that is defined by a triplet value (1 (offset), 1003 
(outer polygon), 1 (points are connected by straight 
lines)). In the sdo_ordinate_array the 3 points are 
specified and the first again to close the polygon.  

3.1. Line-of-Sight 

 The next objective was to investigate and 
develop a line-of-sight algorithm to determine if data 
contained within the view-port is actually in the 
viewers line-of-sight. This problem is illustrated in 
Figure 3. The large triangular area in the diagram 
represents the user’s view-port in 2 dimensions.  The 
brick filled shapes B1, B2, B3, and B4 represent 
building blocks and D1, D2, D3, and D4 represent 
CH data points. The enclosed white space in the 
diagram highlights the desired shape that the line-of-
sight algorithm should identify as the query area. 
The light grey sections represent the areas that 
should be excluded from the query space, as they are 
not visible from the user’s viewpoint.     
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 3: Optimised View-Port 

 When the CH database is queried using an 
oriented view-port, the query simply checks to 
determine weather any of the CH dataset is in 
contact with the larger triangular shaped view-port. 

If there is any topological relationship detected the 
data is returned to a resultset and subsequently 
displayed to the user. This querying of the database 
does not take into account the fact that the triangular 
query window is also interacting with other layers in 
the database (e.g. the building layer).  
 In reality, if the user is standing on the 
outside looking into a building, they cannot see what 
is inside. In our initial implementation of the query 
model, if the user is standing on the outside they 
indeed could retrieve data that is unseen to them.  As 
a primary filter this condition is unacceptable when 
in fact the user only wishes to receive data about 
objects that they can actually see. Therefore, an 
option was added that checks to determine if the 
view-port interacts with any of the building blocks 
in the block layer of the database. If so, the sub-area 
of the triangular shaped view-port that overlaps the 
building polygon should be removed from the query 
window. This is illustrated in Figure 4 where the 
shape of the triangular query window has been 
reduced to the enclosed white and grey space only. 
 The information obtained by performing this 
check eliminates the building blocks from the view-
port while at the same time gives us data on what 
buildings the view-port is actually intersecting with. 
This data can then be used to determine if the 
building blocks involved in the intersection are in 
the users line-of-sight to other data points in the 
resultset. 
   Additionally, in comparison with the CH 
layer, the building block layer also contains attribute 
information about the individual polygon objects 
stored in the layer. In the case of the block layer 
therefore, attributes like the name, address, purpose 
and associated history of the building are linked to 
each building object. As such this metadata may be 
as useful to the user as any other CH artefact and so 
the line-of-sight algorithm must be applied to the 
building block layer as well. 
 The solutions to these two problems however 
are slightly different. In the case of the CH layer, the 
solution to LoS determination is relatively less 
complicated than LoS determination of the block 
layer because the LoS between a viewpoint and a 
data point requires querying against only a single 
line. The LoS between the viewpoint and a polygon 
is more complicated to determine because the 
number of intersection possibilities are far greater. 
 To determine the LoS for both the CH and 
block layer a combination of Oracle Spatial 
operators and a LoS algorithm is required.  Our 
solution was to take a well-known algorithm in 
Computer Graphics and apply it to the area of 
Spatial Databases. The scanline algorithm was 
chosen because the topological and Boolean 
operations needed to process the algorithm are 
already inherent in the Oracle database schema. 
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• Scanline Algorithm – The algorithm works by 
making a progressive scan of the area in question 
(field-of-view) to determine weather there are 
any objects in the scan line path. If so the point at 
which the scan line intersects the object is 
recorded. A series of scans is carried out. The 
end product is the coordinates of a polygon 
object that represents the search space minus the 
surrounding building object geometries.  

  
 Implementing the scanline algorithm for the 
CH layer is accomplished using Algorithm 2 and the 
sdo_intersection operator in Oracle. First, a series of 
lines are created between the viewpoint of the user 
and each data point present inside the view-port. For 
the CH layer, these lines are considered as the 
scanlines. In turn each of the scanlines are used as 
the input parameters to Algorithm 2, to determine if 
they interact with any of the objects in the block 
layer. If there is any interaction between any of the 
objects in the block layer and the scanline, the CH 
artefact is not visible to the user from that viewpoint 
and it will not be placed in the LoS resultset. If there 
are no interactions between the CH data point and 
the block layer along that scanline, the data point is 
considered to be visible and is placed in the LoS 
resultset. 
 Implementing the scanline algorithm for the 
block layer is more computationally expensive than 
the CH data layer.  The LoS between a point and a 
polygon has to be determined, in which case there 
may be many possible LoS and until there is a 
positive LoS detected every possibility has to be 
checked. The process involves initially testing if the 
view-port interacts with one or more of the building 
objects in the block layer by using the 
sdo_intersection operator. If so, the IDs of the 
objects are put into an array. Oracle’s sdo_difference 
operator is then used to compute the (spatial) 
difference between the view-port and the 
intersecting block object. The sdo_difference 
operator returns an sdo_geometry object that 
represents the difference polygon between the two 
geometries. If there are multiple intersecting objects, 
the next block object in the array is compared with 
the result of the previous sdo_difference operation to 
determine the new difference polygon. This 
procedure continues until all objects in the array 
have been processed. The result of this procedure is 
the view-port in Figure 4 with building blocks B1, 
B2, B3 and B4 removed, i.e. the shape of the 
enclosed white and grey space only. 
 The next step in the LoS algorithm is to 
connect each point of the resulting query space 
polygon object (each having an associated 
intersecting object ID) to the viewpoint. In turn each 
of these scanlines are tested until at least one scan 
proves negative for intersection with any other 
object, if so it is evident that there is indeed an 
unobstructed line-of-sight to that block object and 

therefore the processing of the remaining points 
relating to that particular object is stopped, the ID of 
the object is placed in the LoS resultset, and the next 
object is tested. The information on that block 
therefore is added to the list of objects in the users 
line-of-sight. 
 In the case where no points of an intersecting 
object are in the users LoS an additional scan test of 
the object has to be made to determine for sure that 
the object is not currently in the user’s FOV. A 
series of points (e.g. 1m apart) around the perimeter 
of the block object are calculated. Each point is 
connected to the viewpoint with a straight line. A 
scan is run with each of these scanlines to determine 
if there is any that has no intersection with any other 
block object, if they all intersect with other objects 
the block object is clearly not in visible to the user. 
If there is one scan that doesn’t intersect other block 
objects, the building object is said to be in view and 
is added to the users LoS resultset. 
 Only after all the data points and block 
objects are checked for LoS can the list of objects in 
the users line-of-sight be supplied to the narrative 
engine of the system for metadata processing, to 
create a hyperlinked, digital story based on the 
events surrounding what the user can see [4]     
 
     Algorithm 2: Scan Line Algorithm 
  
Input:   Scanline 1 to N 
 Buildings 1 to N 
 
Output: Points of intersection 
 
Class ScanLine{ 
 
For (each Scanline){ 

CheckIntersection(scanline, layer); 
} 
 
CheckIntersection(vector scanline, layer lay){ 

If(scanline interacts with polygon){ 
return point of intersection 

} else{ 
return initial point 

}}} 
 

4. 3 Dimensional Queries 

 Adding orientation and LoS (Line of Sight) 
functionality to the query greatly increases the 
relevance of the data being returned to the user. 
Even though this greatly increases the accuracy of 
the query to the database, the fact that it is still a 2D 
horizontal query leaves room for enhancement with 
regards to what the user can actually see in their 
vertical field-of-view.   
 At present the data that is contained in the 
CH database has two coordinates associated with it, 
x and y. This is sufficient because the queries that 
are being generated only require a 2D point set to 
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query the data. This means that any data that is 
present within the query view-port will be passed 
back in the resultset regardless of the height of the 
users vertical field-of-view.  
 The human Field-of-View (FOV) (Figure 4) 
spans approximately 200º horizontally taking into 
account for both eyes and 135º vertically [2]. This 
limits the amount of data that can be seen at any one 
time. The normal binocular field-of-view is 120º 
with and extra 70º of monocular vision (35º each 
side). The default angle in the our query model is 
60º. The user can modify this value interactively as 
well as the viewing distance to whatever distance 
they want. The human field-of-view also has an 
angle of 60º above the direct line of sight and 75º 
below it. This means that the height of data in the 
model has to be taken into account as well as the 
vertical area that is being searched. 
 This can be partially achieved by adding an 
additional coordinate to each data point in the 
database giving it height. The z-value is then used as 
a clause in the spatial query to determine what data 
is to be subtracted from the initial result set. The 
view-port can also have on offset height value off the 
ground ensuring that the space being searched is a 
true 3 dimensional volume.  Adding depth allows 
queries like “Are there any cultural heritage artefacts 
contained within the view-port in front of the viewer 
up to a height of 10 meters off the ground?” and in 
the second example where the view-port has a height 
offset, queries like “Are there any cultural heritage 
artefacts contained within the view-port in front of 
the viewer that are between 10 and 15 meters off the 
ground?”  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Human Field-of-View [2] 

 An example of the query space is shown in 
Figure 5. Point’s p1, p3 and p4 make up the view-

port. The height h is the height of the query space 
and is specified by the user. It has a min value for 
the height offset and a max value for the height 
extents of the query space. 
 
 

 
 
 
 
 
 
 

Figure 5: 3D Query Block 

 This approach extends the query model by 
adding the ability to construct essentially a 3D 
viewer-based directional query to the search space. 
The data is then searched by using only topological 
and metric operations to do so [17]. A second order 
constraint is then applied to check for height and 
further reduce the resultset to only the data that 
satisfies the constraint. 

4.1. View-port Query Control 

 To give the users control of the desired view-
port angle, radius and direction a View-port Query 
Control was developed (Figure 6). This small frame 
developed in java gives the user total control of 
view-port dimensions. The user has the option to 
change the FOV angle at which the view-port can 
expand and also the radius it can be extended. The 
option to modify the orientation of the view-port 
with reference to the users orientation is also 
available. Useful while walking down a street but 
with (query) “eyes” in the back or side of your head 
for example. 
  

 

Figure 6: View-port Query Control 

 It was realised during the development that 
even though a pie shape view-port is useful it might 
not always be the preferred option for the user. For 
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example a user might want to query all around them 
and not just in the field-of-view. 
 To cater for this need a series of tabs were 
added to the View-port Control. One of these tabs is 
the buffer tab. There are two spinner controls on this 
tab that adjust the radius of the view-port to the 
desired size and the height. (Figure 7) 
 

 

 Figure 7: Buffer Control 

 The next tab to be added to the view-port was 
a static selection control that allows the user to 
change the orientation of the view-port in relation to 
the orientation of the user (Figure 8). On this tab the 
user has a selection of different fields of vision. The 
default is a human field of view at a height of 2m 
but a cat (.3m), dog (.5m) or rabbit (.2m) could also 
be selected to experience these other FOV realities. 

 

 

Figure 8: Select Control 

 The Query Control gives the user the choice 
to query the CH dataset in three different distinctive 
ways. Depending on the users personal choice the 
dataset can be queried over a large area or the query 
can be narrowed down to a very small sub-region. 

5. Implementation 

 An overview of the Cultural Heritage 
Interface (CHI) workflow, developed by the Digital 
Media Centre of the Dublin Institute of Technology, 
is illustrated in Figure 9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Conceptual Overview of CHI System 
  
 The main technical components are 
implemented in a three-tier web-based architecture 
typical of spatially enabled enterprise applications 
[3], i.e. it comprises three layers, namely the Client 
Layer, the Application Server Layer, and the 
Database Layer. All communications between the 
client layer and the database are conducted through 
the application server layer. The application, in our 
case the query building and query results formatting, 
is executed on the application server.  The client 
communicates with the application server using the 
existing HTTP networking protocols. 

5.1. Client Layer 

 The client layer consists of spatially enabled 
mobile devices (Figure 10) that are used to display 
spatially/semantically relevant CH data about 
Dublin’s City Centre. Initially, the user's location in 
space combined with the particular mobile device 
employed determines the user's context. The purpose 
therefore of this implementation is to automatically 
push relevant data from the database layer to the 
client layer based on this limited contextual view.  
 For CHI, there is a series of three mobile 
devices simulated within the web browser, plus the 
web browser that both display to and interact with 
the user.  Choosing to simulate the mobile devices, 
or user agents, instead of actually implementing on 
the physical device allow for the accuracy and 
capabilities of these devices or context sensors to be 
emulated easily. 
 The devices emulated are a GSM mobile 
phone, a spatially enabled WAP phone and a 
spatially enabled PDA.  
 
 

(φ,λ)

Virtual Dublin Spatial CH Database 

Spatially 
Enabled 
PDA

Web Browser
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Figure 10 – Client Layer Display Devices – Cell 
Phone, WAP Phone, PDA, and Web Browser 

5.2. Database Layer 

 The database implemented for the CHI 
project (Oracle 9i) provides spatial object type 
storage, SQL access, spatial operations, and 
indexing as well as map projections and coordinate 
systems support [15].  Through this functionality, 
spatial queries are efficiently executed without the 
additional overhead of maintaining coordinate 
information separate from the attribute data.  This is 
accomplished by defining the attribute information 
(CH hypermedia) as a spatial data type (which 
implies associated coordinate data). In the example 
below the position field is the spatial data type: 
 
CREATE  TABLE CHI_CONTENT_DATA ( 
  ID NUMBER (20) PRIMARY KEY NOT NULL, 
  POSITION MDSYS.SDO_GEOMETRY NOT NULL, 
  STREET  VARCHAR2 (20) NOT NULL, 
  BUILDING VARCHAR2 (20) NOT NULL); 
   
 The spatial extension to SQL allows us to use 
this syntax to create the above table with a spatial 
data type of type sdo_geometry. It also allows us to 
insert positional data into the table as follows: 
 
INSERT  INTO CHI_CONTENT_DATA VALUES (4,  
  MDSYS.SDO_GEOMETRY (2,NULL, NULL,  
  MDSYS.SDO_GEOMETRY (2001, NULL,  

MDSYS.SDO_POINT_TYPE (919.0, 513.0), NULL, 
NULL),‘OCONNELL’, 'GPO'); 
 

 The above code excerpt identifies the object 
geometry as a 2D Point  “2001”, 2 meaning 2D and 
1 meaning a point datatype. The coordinates of the 
point are then specified in the sdo_point_type array. 
The data in the table is then indexed using the R-tree 
index data structure that is implemented using the 
extensible indexing framework of Oracle Spatial 
[14].  

 One advantage of spatial data types is that 
subsequent queries can be restricted to a pre-defined 
geographical area, e.g. within a 10m radius of a 
given location.  By exploiting the spatial indexing 
mechanisms inherent to Oracle 9i, which essentially 
organises the information within the database tables 
according to their geographic location, all location 
relevant data is retrieved most efficiently. 
 The hypermedia CH objects stored in the CHI 
project database (together with their spatial 
component) comprise an  "historic walking tour of 
Dublin". Such a tour can begin and end at specific 
times and places and pass specific landmarks along 
the way.  As each of the landmarks is encountered in 
turn, a particular "story object" will be retrieved 
about its historical significance.  It is the text of this 
"story" that will comprise the bulk of the data stored 
in the CHI database layer.  A challenging aspect to 
this research is the investigation of the 
methodologies for retrieving these story objects both 
automatically and coherently as their positions in 
space are approached.  To accomplish this task 
successfully, the causality of the localised series of 
events is considered [4]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 

 
 
 
 
 
 
 
 
 
 

 

(b) 
Figure 11: Comparison of Query Methods 
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 A simple experiment illustrates the 
performance of the classical range query strategy 
compared to the view-port directional query strategy 
(Figure 11). 
 Figure 11(a) illustrates how the CHI spatial 
database was organised previously and how the data 
was queried using a range query. Objects A, B, C 
and D represent street building blocks in the system. 
The points surrounded by circles represent cultural 
heritage artefacts (CH data) within the database, 
each of which are represented by a 2 dimensional 
point with a buffer. If the Query window interacts 
with any of the buffers the resulting data set is 
extracted from the database and presented to the 
user. A problem with this method is as follows: if 
the query window is situated in data area 3 and the 
orientation of the user is northwest the returned data 
is data point 3, when the actual data should be data 
point 1. Similarly if the user is facing east the 
returned data is data 3 when it should be data 4. 
 Our novel solution to this problem is 
illustrated in figure 11(b). In this example the query 
window is an oriented and dynamically generated 
triangle and a 3D point represents each CH data 
point. The buffers around the data points are no 
longer necessary because the oriented view-port is 
being used.  If the user’s viewpoint is situated in the 
same position as the previous example and is also 
facing northwest, the data that is returned is data 
point 1 together with Building A metadata (if any) 
and if the orientation is changed to be east, data 
point 4 is returned (if visible) plus Building D 
metadata. 
 The next test considered how accurate the 
queries would be when querying for height along 
with horizontal intersection. The SQL query tested 
for data that was contained within the view-port 
window and had a height of less than 20m and 
greater than 10m.  This addition to the system means 
that layers of data can be added to the database with 
the same X and Y coordinates but a different Z 
coordinate to distinguish it from data positioned, for 
example, on different floors of the same building.   

6. Conclusion 

 We have introduced a directional method of 
querying a spatial database system that considers the 
user’s line-of-sight in the context of cultural heritage 
information retrieval. Tests show the enhanced 
demonstrator performs as expected, with the 
relevance of the data greatly improved compared to 
the initial non-directional querying prototype. 
 The determination of the line-of-sight of the 
user is only a small step in the direction of 
realistically querying the spatial database. The 
approach of utilising a scan line intersection 
algorithm delivers the desired results needed to 
determine the line of sight but a limitation is that it is 
specific to 2 dimensional data.   

The cost of the queries in the revised 
demonstrator is slightly more than that of the initial 
prototype due to the first approach using an 
optimised rectangle to query the data. In the 
enhanced system the query window is constructed in 
real-time every five seconds if the viewpoint differs 
more than 5m in position or more than 30° in 
direction from the last query processed.  The user’s 
FOV is adjustable in horizontal angle, height and 
range to accompany many varied points of view  

The paper introduces a method of developing 
mobile applications that integrate current 
technologies thus allowing user-based directional 
queries to be processed. The specification of a 
directional data model would greatly improve the 
synergy of these technologies. 

7. Future Work 

 The next phase of the research is to 
implement a perspective query frustum (view-
pyramid) that will mimic the human field-of-view 
more accurately, i.e. in 3 dimensions.  Determining 
the line-of-sight of the user in 3 dimensions involves 
using 3D spatial indexes on 3D objects to determine 
if 3D data points lie inside the objects. To achieve 
this, Voxels and Octrees will be considered for 
indexing the 3D Objects [8,16].    
 We plan therefore to develop a perspective 
query [11] processor that will use a proper 3D view-
pyramid to query the data taking into account the 
vertical FOV angle. This approach introduces the 
concept of querying the CH dataset based on the 
idea of a “birds-eye-view” of the data. (Figure 12) 
Achieving this in the VRML world will be relatively 
straightforward as the viewers direction rotations 
about the 3 axis are known, however in reality it will 
need to wait for tilt sensors imbedded in next 
generation PDA’s. 
  
 
 
 
 
 
 
 
 
 

 

 

Figure 12: Perspective Query Frustum 

 The approach will consider retrieving all data 
interacting with the projected footprint of the 
“floor+base” of the frustum up to any height as a 
primary filter and then further processing this 
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resultset against a 3D polygonal sweep of specified 
dimensions from left to right to complete the query 
and effectively build the view-pyramid in real-time. 
 On the subject of network performance, 
future work will focus more on reducing the high 
communication costs between the client and 
application server due to continuous querying. This 
might involve reducing the number of queries to the 
spatial engine or the introduction of predictive 
querying techniques.   
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