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Abstract

An Inverse Scattering Method is developed for the Camassa-Holm
equation. As an illustration of our approach the solutions correspond-
ing to the reflectionless potentials are constructed in terms of the scat-
tering data. The main difference with respect to the standard Inverse
Scattering Transform lies in the fact that we have a weighted spectral
problem. We therefore have to develop different asymptotic expan-
sions.

MSC: 35P25, 35Q15, 35Q35, 35Q51, 35Q53
Key Words: Hamiltonian systems, Integrable Systems, Lax Pair,

Riemann-Hilbert Problem, Solitons.

1 Introduction

In this introductory section some well known facts about the Camassa-Holm
(CH) equation and the related spectral problem will be highlighted. The
CH equation [5]

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, (1)

where ω is a real constant, gained popularity as a model describing the
unidirectional propagation of shallow water waves over a flat bottom [5, 25,

1Present address: School of Mathematical Sciences, DIT Kevin Street, Dublin 8, Ire-
land
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27] as well as that of axially symmetric waves in a hyperelastic rod [16, 18].
It firstly appeared in [20] as an equation with a bi-hamiltonian structure.
CH is a completely integrable equation [5, 6, 1, 14, 9, 29, 21], describing
permanent and breaking waves [10, 8]. Its solitary waves are stable solitons
if ω > 0 [2, 15, 17, 26] or peakons if ω = 0 [5, 6]. CH arises also as an equation
of the geodesic flow for the H1 right-invariant metrics on the Bott-Virasoro
group (if ω > 0) and on the diffeomorphism group (if ω = 0) [34, 13, 8, 12].

The bi-Hamiltonian form of (1) is [5, 20]:

mt = −(∂ − ∂3)
δH2[m]

δm
= −(2ω∂ +m∂ + ∂m)

δH1[m]

δm
. (2)

where

m = u− uxx (3)

and the Hamiltonians are

H1[m] =
1

2

∫
mudx (4)

H2[m] =
1

2

∫
(u3 + uu2x + 2ωu2)dx. (5)

The integration is from −∞ to ∞ in the case of Schwartz class functions,
and over one period in the periodic case.

There exists an infinite sequence of conservation laws (multi-Hamiltonian
structure) Hn[m], n = 0,±1,±2, . . ., such that [19, 40, 30, 24]

−(∂ − ∂3)
δHn[m]

δm
= −(2ω∂ +m∂ + ∂m)

δHn−1[m]

δm
. (6)

The equation (1) admits a Lax pair [5, 9]

Ψxx =
(1
4
+ λ(m+ ω)

)
Ψ (7)

Ψt =
( 1

2λ
− u

)
Ψx +

ux
2
Ψ + γΨ (8)

where γ is an arbitrary constant. We will use this freedom for a proper
normalization of the eigenfunctions.

In our further considerations m will be a Schwartz class function, ω > 0
and m(x, 0) + ω > 0. Then m(x, t) + ω > 0 for all t [9]. For a discussion of
the periodic case we refer to [14] and [7]. Let k2 = −1

4 − λω, i.e.

λ(k) = − 1

ω

(
k2 +

1

4

)
. (9)
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The spectrum of the problem (7) under these conditions is described in
[9]. The continuous spectrum in terms of k corresponds to k – real. The
discrete spectrum (in the upper half plane) consists of finitely many points
kn = iκn, n = 1, . . . , N where κn is real and 0 < κn < 1/2.

For all real k ̸= 0 a basis in the space of solutions of (7) can be introduced,
fixed by its asymptotic when x→ ∞ [9]:

ψ1(x, k) = e−ikx + o(1), x→ ∞; (10)

ψ2(x, k) = eikx + o(1), x→ ∞. (11)

Another basis can be introduced, fixed by its asymptotic when x→ −∞:

φ1(x, k) = e−ikx + o(1), x→ −∞; (12)

φ2(x, k) = eikx + o(1), x→ −∞. (13)

For all real k ̸= 0 if Ψ(x, k) is a solution of (7), then Ψ(x,−k) is also a
solution, thus

φ1(x, k) = φ2(x,−k), ψ1(x, k) = ψ2(x,−k). (14)

Due to the reality of m in (7) for any k we have

φ1(x, k) = φ̄2(x, k̄), ψ1(x, k) = ψ̄2(x, k̄) (15)

The vectors of each of the bases are a linear combination of the vectors
of the other basis:

φi(x, k) =
∑
l=1,2

Til(k)ψl(x, k) (16)

where the matrix T (k) defined above is called the scattering matrix. For
real k ̸= 0, instead of φ1(x, k), φ2(x, k), ψ1(x, k), ψ2(x, k) due to (15), for
simplicity we can write correspondingly φ(x, k), φ̄(x, k), ψ(x, k), ψ̄(x, k).
Thus T (k) has the form

T (k) =

(
a(k) b(k)
b̄(k) ā(k)

)
(17)

and clearly

φ(x, k) = a(k)ψ(x, k) + b(k)ψ̄(x, k). (18)
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The Wronskian W (f1, f2) ≡ f1∂xf2 − f2∂xf1 of any pair of solutions of (7)
does not depend on x. Therefore

W (φ(x, k), φ̄(x, k)) =W (ψ(x, k), ψ̄(x, k)) = 2ik (19)

From (18) and (19) it follows that

|a(k)|2 − |b(k)|2 = 1, (20)

i.e. det(T (k)) = 1.
In analogy with the spectral problem for the KdV equation [35], one

can see that the quantities T (k) = a−1(k) and R(k) = b(k)/a(k) represent
themselves the transmission and reflection coefficients respectively [9, 11].
From (20) it follows that the scattering is unitary, i.e.

|T (k)|2 + |R(k)|2 = 1. (21)

The entire information about T (k) (17) is provided by R(k) for k > 0 only
[11]. It is sufficient to know R(k) only on the half line k > 0, since from
(14) and (18), ā(k) = a(−k), b̄(k) = b(−k) and thus R(−k) = R̄(k).

At the points of the discrete spectrum, a(k) has simple zeroes [9], there-
fore φ and ψ̄ are linearly dependent (18):

φ(x, iκn) = bnψ̄(x,−iκn). (22)

In other words, the discrete spectrum is simple, there is only one (real)
eigenfunction φ(n)(x), corresponding to each eigenvalue iκn, and we can
take this eigenfunction to be

φ(n)(x) ≡ φ(x, iκn) (23)

The asymptotic of φ(n), according to (12), (11), (22) is

φ(n)(x) = eκnx + o(eκnx), x→ −∞; (24)

φ(n)(x) = bne
−κnx + o(e−κnx), x→ ∞. (25)

The sign of bn obviously depends on the number of the zeroes of φ(n). Sup-
pose that

0 < κ1 < κ2 < . . . < κN < 1/2. (26)
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Then from the oscillation theorem for the Sturm-Liouville problem [4], φ(n)

has exactly n− 1 zeroes. Therefore

bn = (−1)n−1|bn|. (27)

The set

S ≡ {R(k) (k > 0), κn, |bn|, n = 1, . . . N} (28)

is called scattering data. The Hamiltonians for the CH equation in terms of
the scattering data are presented in [11].

The time evolution of the scattering data can be easily obtained as fol-
lows. From (18) with x→ ∞ one has

φ(x, k) = a(k)e−ikx + b(k)eikx + o(1). (29)

The substitution of φ(x, k) into (8) with x→ ∞ gives

φt =
1

2λ
φx + γφ (30)

From (29), (30) with the choice γ = ik/2λ for the eigenfunction φ(x, k) we
obtain

ȧ(k, t) = 0, (31)

ḃ(k, t) =
ik

λ
b(k, t), (32)

where the dot stands for derivative with respect to t. Thus

a(k, t) = a(k, 0), b(k, t) = b(k, 0)e
ik
λ
t; (33)

T (k, t) = T (k, 0), R(k, t) = R(k, 0)e
ik
λ
t. (34)

In other words, a(k) is independent on t and will serve as a generating
function of the conservation laws.

The time evolution of the data on the discrete spectrum is found as
follows. iκn are zeroes of a(k), which does not depend on t, and therefore
κ̇n = 0. From (8) with γ = ik/2λ; k = iκn and (25) one can obtain

ḃn =
4ωκn

1− 4κ2n
bn. (35)
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The Poisson brackets for the scattering data of the Camassa-Holm equa-
tion are computed in [11] where also the action-angle variables are expressed
in terms of the scattering data.

In Section 2 we compute the asymptotics for large k of the scattering
data and the eigenfunctions, which we use in Section 3 to develop the In-
verse Scattering Transform for the CH equation. A number of recent papers
[9, 26, 31, 32] used a Liouville transformation to reduce the weighted spec-
tral problem (7) to a standard problem. Our approach is more direct, and
provides, we believe, more transparent formulas. The special case of reflec-
tionless potentials (R(k) = 0 for all k) which corresponds to the important
class of solutions, namely the multi-soliton solutions is separately studied in
Section 4. A formula for the N -soliton solution is obtained.

2 Analytic solutions and Riemann-Hilbert Prob-
lem

For the application of the Inverse Scattering Method it will be necessary the
asymptotics for large k of a(k) and the Jost solutions to be found. Firstly
we compute the asymptotic of a(k).

The solution of (7) can be represented in the form

φ(x, k) = exp
(
− ikx+

∫ x

−∞
χ(y, k)dy

)
. (36)

For Im k > 0 and x→ ∞, φ(x, k)eikx = a(k), i.e.

ln a(k) =

∫ ∞

−∞
χ(x, k)dx, Im k > 0. (37)

Since a(k) does not depend on t, the expressions
∫∞
−∞ χ(x, k)dx represent

integrals of motion for all k. The equation for χ(x, k) follows from (7) and
(36)

χx(x, k) + χ2 − 2ikχ = − 1

ω

(
k2 +

1

4

)
m(x) (38)

and admits a solution with the asymptotic expansion

χ(x, k) = p1k + p0 +

∞∑
n=1

p−n

kn
. (39)

The substitution of (39) into (38) gives the following quadratic equation for
p1:

p21 − 2ip1 +
m

ω
= 0, (40)
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with solutions

p1 = i
(
1±

√
1 +

m

ω

)
(41)

Since
∫∞
−∞ p1(x)dx is an integral of the CH equation, presumably finite, we

take the minus sign in (41). One can easily see that p0 and all p−2n are total
derivatives [24] and thus we have the expansion

ln a(k) = −iαk +
∞∑
n=1

I−n

kn
, (42)

where α is a positive constant (integral of motion):

α =

∫ ∞

−∞

(√
1 +

m(x)

ω
− 1

)
dx, (43)

and I−n =
∫∞
−∞ p−n are the other integrals, whose densities, p−n can be

obtained reccurently from (38), (39) [24, 11].
In terms of the scattering data α can be expressed as [11]

α =
N∑

n=1

ln
(1 + 2κn
1− 2κn

)2
− 8

π

∫ ∞

0

ln |a(k̃)|
4k̃2 + 1

dk̃. (44)

The asymptotic of a(k) for Im k > 0 and |k| → ∞ from (42) is a(k) →
e−iαk, or

eiαka(k) → 1, Im k > 0, |k| → ∞. (45)

When k is in the upper half plane the following expression is valid [11]

ln a(k) = −iαk +
N∑

n=1

ln
k − iκn
k + iκn

+
1

πi

∫ ∞

−∞

ln |a(k′)|
k′ − k

dk′. (46)

Let us now consider the asymptotic of the Jost solutions, starting for
example from ψ(x, k), (10). One can check that the asymtotic for |k| → ∞
has the form

ψ(x, k) = e−ikx+kG(x)η(x, k)

η(x, k) = X0(x) +
X1(x)

k
+
X2(x)

k2
+ . . . , (47)

where, due to (10), G(x) → 0 and η(x, k) → 1 for x→ ∞. The substitution
of (47) into (7) gives explicitly G(x), X0, X1, . . .:

ψ(x, k) = e−ikx+ik
∫ x
∞(1−

√
m(y)+ω

ω
)dy

[( ω

m(x) + ω

)1/4
+
X1(x)

k
+ . . .

]
. (48)
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Introducing the function

ξ(x) = exp
[
x+

∫ x

∞
(

√
m(y) + ω

ω
− 1)dy

]
, (49)

which looks like a deformation of the ordinary exponent, (48) can be written
as

ψ(x, k) = [ξ(x)]−ik
[( ξ(x)
ξ′(x)

)1/2
+
X1(x)

k
+
X2(x)

k2
+ . . .

]
. (50)

Furthermore, the function χ(x, k) ≡ ψ(x, k)eikx is analytic for Im k < 0,
[9]. This follows from the representation

χ(x, k) = 1− λ

k

∫ ∞

x

e2ik(x−x′) − 1

2i
m(x′)χ(x′, k)dx′. (51)

Notice that
∫ x
∞

(√
m(y)+ω

ω − 1
)
dy is bounded for all values of x. Indeed,

∣∣∣ ∫ x

∞

(√m(y) + ω

ω
− 1

)
dy

∣∣∣ = ∣∣∣ ∫ ∞

x

m(y)dy

ω
(
1 +

√
m(y)+ω

ω

)∣∣∣ ≤ ∫ ∞

−∞

|m(y)|
ω

dy <∞

since m(x) is a Schwartz class function. Therefore the function

ψ(x, k) ≡ ψ(x, k)[ξ(x)]ik (52)

is also analytic for Im k < 0.
Similarly,

φ(x, k) ≡ φ(x, k) exp
{
ik
[
x+

∫ x

−∞

(√m(y) + ω

ω
− 1

)
dy

]}
=

( ξ(x)
ξ′(x)

)1/2
+
X̃1(x)

k
+
X̃2(x)

k2
+ . . . (53)

is analytic for Im k > 0.
Multiplying (18) by ξ(x)/a(k) and using (43), (52) and (53) we obtain

φ(x, k)

eikαa(k)
= ψ(x, k) +R(k)ψ̄(x, k)[ξ(x)]2ik. (54)

The function φ(x, k)/(eikαa(k)) is analytic for Im k > 0, ψ(x, k) is analytic
for Im k < 0. Thus, (54) represents an additive Riemann-Hilbert Problem
with a jump on the real line, given by R(k)ψ̄(x, k)[ξ(x)]2ik.
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Figure 1: The contours Γ±
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3 Integration of the CH equation by the Inverse
Scattering Method

Let us take an arbitrary k from the lower half plane (Im k < 0). Then using
the Residue Theorem, (43) and (22) we can compute the integral

1

2πi

∮
C+

φ(x, k′)

eik′αa(k′)

dk′

k′ − k
=

N∑
n=1

φ(x, iκn)

(iκn − k)e−κnαa′(iκn)

=

N∑
n=1

bn[ξ(x)]
−2κnψ(x,−iκn)

a′(iκn)(iκn − k)
, (55)

where C+ is the closed contour in the upper half plane (Fig.1). On the other
hand, due to (54) the same integral can be computed directly as

9



1

2πi

∮
C+

φ(x, k′)

eik′αa(k′)

dk′

k′ − k

=
1

2πi

∫ ∞

−∞

(
ψ(x, k′) +R(k′)ψ̄(x, k′)[ξ(x)]2ik

′
) dk′

k′ − k

+
1

2πi

∫
Γ+

φ(x, k′)

eik′αa(k′)

dk′

k′ − k
, (56)

where Γ+ is the infinite semicircle in the upper half plane (Fig.1). Using the
expansion (53) and (45), it is straightforward to compute that the integral
over Γ+ is simply (1/2)(ξ(x)/ξ′(x))1/2.

Similarly,

−ψ(x, k) =
1

2πi

∮
C−

ψ(x, k′)
dk′

k′ − k

=
1

2πi

∫ ∞

−∞
ψ(x, k′)

dk′

k′ − k
+

1

2πi

∫
Γ−

ψ(x, k′)
dk′

k′ − k
, (57)

where C− is the closed contour in the lower half plane, Γ− is the infinite
semicircle in the lower half plane (Fig.1). Due to (50), (52) the integral over
Γ− is (1/2)(ξ(x)/ξ′(x))1/2.

Now, from (55) – (57) it follows that for Im k < 0,

ψ(x, k) =
( ξ(x)
ξ′(x)

)1/2
+

∫ ∞

−∞
R(k′)ψ̄(x, k′)[ξ(x)]2ik

′ dk′

k′ − k

+
N∑

n=1

bn[ξ(x)]
−2κnψ(x,−iκn)

a′(iκn)(k − iκn)
. (58)

The expression (58), taken at k = −iκp, p = 1, . . . , N gives

ψ(x,−iκp) =
( ξ(x)
ξ′(x)

)1/2
+

∫ ∞

−∞
R(k′)ψ̄(x, k′)[ξ(x)]2ik

′ dk′

k′ + iκp

+i

N∑
n=1

bn[ξ(x)]
−2κnψ(x,−iκn)

a′(iκn)(κp + κn)
. (59)

The equations (58) – (59) represent a linear system, from which ψ(x, k)
(for real k) and ψ(x,−iκn) can be expressed through ξ, which, indeed is yet
an unknown function.

Let us now recall that λ(−i/2) = 0. Since ψ(x, k) does not depend on m
for λ = 0 and since ψ(x, k) is defined by its asymptotics at −∞, it follows
that ψ(x,−i/2) = e−x/2. Thus, for k = −i/2, (58) gives

10



e−x/2[ξ(x)]1/2 =
( ξ(x)
ξ′(x)

)1/2
+

∫ ∞

−∞
R(k′)ψ̄(x, k′)[ξ(x)]2ik

′ dk′

k′ + i/2

+i

N∑
n=1

bn[ξ(x)]
−2κnψ(x,−iκn)

a′(iκn)(κn + 1/2)
. (60)

Since ψ(x, k) and ψ(x,−iκn) are known from (58) – (59), the equation
(60) is a first order differential equation for ξ, which can be directly inte-
grated to give ξ(x). In other words, (58) – (60) represent a system of singular
integral equations for ψ(x, k), ψ(x,−iκn) and ξ(x).

Since the time evolution of the scattering data is known (35), the depen-
dence on t, i.e. ξ(x, t) is also known, expressed by the scattering data. Thus
the set S, (28) uniquely determines the potential: from (35) one obtains

m(x, t) = ω
[(ξx(x, t)

ξ(x, t)

)2
− 1

]
. (61)

4 Reflectionless potentials

The inverse scattering is simplified in the important case of the so-called
reflectionless potentials, when the scattering data is confined to the case
R(k) = 0 for all real k. This class of potentials corresponds to the N -
soliton solutions of the CH equation. In this case b(k) = 0 and |a(k)| = 1
(21) and from (46), (44) one can easily find that ia′(iκp) is real:

ia′(iκp) =
1

2κp
eακp

∏
n̸=p

κp − κn
κp + κn

, (62)

where

α =

N∑
n=1

ln
(1 + 2κn
1− 2κn

)2
. (63)

Thus, ia′(iκp) has the same sign as bn, (27) and therefore

cn ≡ bn
ia′(iκp)

> 0. (64)

The time evolution of cn due to (35) is

cn(t) = cn(0) exp
[ 4ωκn
1− 4κ2n

t
]
. (65)

The equation (59) represents a linear system of equations for the quan-
tities ψ(x,−iκp):

11



ψ(x,−iκp) +
N∑

n=1

cn[ξ(x)]
−2κn

κp + κn
ψ(x,−iκn) =

( ξ(x)
ξ′(x)

)1/2
, p = 1, . . . , N. (66)

or

ψ(x,−iκn) =
( ξ(x)
ξ′(x)

)1/2[
A−1B

]
n
, (67)

where

Apn[ξ, t] ≡ δpn +
cn(t)ξ

−2κn

κp + κn
, B ≡ [1, 1, . . . , 1︸ ︷︷ ︸

N

]t, (68)

i.e., finally

ψ(x,−iκn, t) =
( ξ(x, t)
ξx(x, t)

)1/2
N∑
p=1

A−1
np [ξ, t], n = 1, . . . , N. (69)

Now (60) gives (note that from (49) ξ(−∞, t) = 0)

x = X(ξ, t) ≡ ln

∫ ξ

0

(
1−

∑
n,p

cn(t)ξ
−2κn

κn + 1/2
A−1

np [ξ, t]
)−2

dξ, (70)

the time evolution of cn is known (65). This represents an implicit relation
from which ξ can be expressed as a function of x and t. Thus, in this case the
scattering data uniquely determine ξ = ξ(x, t) and therefore the potential
m(x, t) (61).

Using (70) and (61) we obtain the N -soliton solution. Indeed, for fixed
coordinates x0, t0, since x is a monotonically increasing function of ξ there
is a unique ξ0 > 0 (which is treated as a parameter from now on), such that
x0 = X(ξ0, t0). Furthermore, we have

ξx = X−1
ξ (ξ, t), (71)

and from here and (61)

m(x0, t0) ≡ m(X(ξ0, t0), t0) = ω
[(
ξ0Xξ(ξ0, t0)

)−2
− 1

]
; (72)
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u(x0, t0) ≡ u(X(ξ0, t0), t0)

=
1

2

∫ ∞

0
e−|X(ξ0,t0)−X(ξ,t0)|m(X(ξ, t0), t0)Xξ(ξ, t0)dξ

=
ω

2

∫ ∞

0
e−|x0−X(ξ,t0)|ξ−2X−1

ξ (ξ, t0)dξ − ω.

Finally, the N -soliton solution is

u(x, t) =
ω

2

∫ ∞

0
e−|x−X(ξ,t)|ξ−2X−1

ξ (ξ, t)dξ − ω. (73)

Note that X(ξ, t) is an explicitly defined function (70) in terms of the scat-
tering data. Thus, the solution (73) does not depend on any additional
parameter.

For example, for the one-soliton solution the function X(ξ, t) is:

X(ξ, t) = ln

∫ ξ

0

[ 1 + 1
2κ1

c1(t)ξ
−2κ1

1 + ( 1
2κ1

− 1
κ1+1/2)c1(t)ξ

−2κ1

]2
dξ. (74)

Note that since 1
2κ1

− 1
κ1+1/2 > 0 [cf. (26)] and c1(t) > 0 [cf. (64)], both the

nominator and the denominator in (74) are always positive and singularities
do not appear.

5 Conclusions

In this paper the Inverse Scattering Method for the CH equation is outlined
in the case when the solutions are confined to be functions in the Schwartz
class, ω > 0 and m(x, 0) + ω > 0. The N -soliton solution is explicitly
constructed. The inverse scattering based on a Liouville transform, which
leads to a spectral problem of the standard form −Ψyy +Q(y)Ψ = µΨ (the
Schrödinger equation) is developed in series of works [9, 26, 31, 32]. In this
case Q and m are related through the Ermakov-Pinney ordinary differential
equation. The construction of the soliton solutions based on the bilinear rep-
resentation of the CH equation (Hirota’s method) is presented in [36, 37, 38],
see also [33] for a parametric representation of the N -soliton solution. The
situation when the condition m(x, 0) + ω > 0 on the initial data does not
hold is more complicated and requires separate analysis [28, 3]. Ifm(x, 0)+ω
changes sign there are infinitely many positive eigenvalues accumulating at
infinity, and singularities can appear in finite time in the form of wave break-
ing (infx∈R{ux} → −∞, while u stays uniformly bounded), cf. [9, 10]. The
inverse scattering for multi-peakon solutions (for their existence we must
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have ω = 0) is reported in [1, 2]. For the periodic solutions see [7, 14, 21] (in
this setting a scaling transform shows that there are no qualitative differ-
ences between the cases ω = 0 and ω ̸= 0). The traveling-wave solutions of
the CH equation (ω = 0) are classified in [39]. The Darboux transform for
the CH equation is obtained in [41]. The construction of multi-soliton and
multi-positon solutions using the Darboux/Bäcklund transform is presented
in [22, 23].

Acknowledgements

A.C. acknowledges funding from the Science Foundation Ireland, Grant
04/BR6/M0042. V.S.G. acknowledges funding from the Bulgarian National
Science Foundation, Grant 1410, R.I.I. acknowledges funding from the Irish
Research Council for Science, Engineering and Technology. The authors are
grateful to both referees for useful comments and suggestions.

References

[1] Beals, R., Sattinger, D. and Szmigielski, J.: Acoustic scattering and
the extended Korteweg-de Vries hierarchy. Adv. Math. 140, 190–206
(1998)

[2] Beals, R., Sattinger, D. and Szmigielski, J.: Multi-peakons and a the-
orem of Stieltjes. Inv. Problems 15, L1-L4 (1999)

[3] Bennewitz, C.: On the spectral problem associated with the Camassa-
Holm equation. J. Nonlinear Math. Phys. 11, 422–434 (2004)

[4] Birkhoff, G. and Rota, G.-C.: Ordinary differential equations.
Waltham: Blaisdell Publishing Company, 1969

[5] Camassa, R. and Holm, D.: An integrable shallow water equation with
peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

[6] Camassa, R., Holm, D. and Hyman, J.: A new integrable shallow water
equation. Adv. Appl. Mech. 31, (1994)

[7] Constantin, A.: On the inverse spectral problem for the Camassa-Holm
equation. J. Funct. Anal. 155, 352–363 (1998)

[8] Constantin, A.: Existence of permanent and breaking waves for a shal-
low water equation: a geometric approach. Ann. Inst. Fourier (Greno-
ble) 50, 321–362 (2000)

[9] Constantin, A.: On the scattering problem for the Camassa-Holm equa-
tion. Proc. R. Soc. Lond. A457, 953–970 (2001)

14



[10] Constantin, A. and Escher, J.: Wave breaking for nonlinear nonlocal
shallow water equations. Acta Mathematica 181, 229–243 (1998)

[11] Constantin, A. and Ivanov, R.: Poisson structure and Action-Angle
variables for the Camassa-Holm equation, Lett. Math. Phys. 76, 93–
108 (2006); nlin.SI/0602049

[12] Constantin, A., Kappeler, T., Kolev, B. and Topalov, P.: On geodesic
exponential maps of the Virasoro group, Preprint No 13-2004, Institute
of Mathematics, University of Zurich (2004)

[13] Constantin, A. and Kolev, B.: Geodesic flow on the diffeomorphism
group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

[14] Constantin, A. and McKean, H.P.: A shallow water equation on the
circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

[15] Constantin, A. and Strauss, W.: Stability of peakons. Commun. Pure
Appl. Math. 53, 603–610 (2000)

[16] Constantin, A. and Strauss, W.: Stability of a class of solitary waves
in compressible elastic rods. Phys. Lett. A 270, 140–148 (2000)

[17] Constantin, A. and Strauss, W.: Stability of the Camassa-Holm soli-
tons. J. Nonlin. Sci. 12, 415-422 (2002)

[18] Dai, H.-H.: Model equations for nonlinear dispersive waves in a com-
pressible Mooney-Rivlin rod. Acta Mech. 127, 193–207 (1998)

[19] Fisher, M. and Shiff, J.: The Camassa Holm equation: conserved quan-
tities and the initial value problem. Phys. Lett. A 259, 371–376 (1999)

[20] Fokas, A. and Fuchssteiner, B.: Symplectic structures, their Bäcklund
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