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Abstract. The amount and availability of high-quality geo-spatial im-

age data, such as digital satellite and aerial photographs, is increasing

dramatically. Task-based management of such visual information and

associated knowledge is a central concern for organisations that rely on

digital imagery. We are developing geo-spatial knowledge management

techniques that employ case-based reasoning as the core methodology. In

order to provide e�ective retrieval of task-based experiences that center

around geo-spatial imagery, we need to forward novel similarity metrics

for directly comparing the image components of experience cases. Based

on work in geo-spatial image database retrieval, we are building an ef-

fective similarity metric for geo-spatial imagery that makes comparisons

based on derived image features, their shapes, and the spatial relations

between them. This paper gives an overview of the geo-spatial knowledge

management context, describes our image similarity metric, and provides

an initial evaluation of the work.

1 Introduction

Advances in sensor/scanner technology have resulted in the constantly increas-

ing volume and availability of geo-spatial datasets, such as collections of digital

satellite and aerial photographs. Moreover, the available imagery is becoming

more complex, depicting characteristics of the earth surface and topography that

are only visible in the near-infrared or microwave spectrum. The geosciences

and spatial information engineering have been greatly a�ected by this infor-

mation explosion. Geo-spatial information systems, in particular, have become

crucial for addressing the problem of visual information overload by delivering

on-point geographic image data combined with relevant associated information,

and they play a key role in supporting the overarching task-based needs of or-

ganisations that rely on such information. Moreover, as geo-spatial information

systems are used to address speci�c tasks, the expert interactions, analyses, and

conclusions|based on relevant visual information|come to represent a substan-

tial organizational knowledge asset.

For example, a company that uses geo-spatial data for architectural devel-

opment projects may employ such a system to assist in selecting the optimal



location for a new hanger at a major airport. From a task-based standpoint, the

most relevant work product lies not merely in the applicable visual data, but

in descriptions of why and how the information has been collected and to what

ends it has been successfully (or unsuccessfully) employed. A clear advantage is

provided by capturing and leveraging not only essential underlying information

but also a measure of the human expertise involved in seeking out, distilling,

and applying the information required for organisational tasks. This serves both

to facilitate workow by providing access to best-practice examples, as well as

to grow a repository of task-based experience as a resource for support, training,

and minimizing organisational knowledge-loss as a result of workforce uctua-

tions.

As part of an overall e�ort in intelligent geo-spatial information systems,

we are developing case-based knowledge management support for libraries of

geo-spatial imagery. The research draws on a substantial body of work in case-

based knowledge management [39, 35, 18, 46, 6, 7, 32]. Our approach addresses

task-based geo-spatial knowledge management by providing:

{ digital image libraries for e�ective data organisation and eÆcient transmis-

sion to distributed clients
{ sketch-based user interaction to provide a more natural mode of interaction

in describing the context for retrieval
{ a exible task environment to support analysis and elucidation of relevant

geo-spatial image information that can easily be integrated as part of existing

workow
{ case-based tools to support intelligent capture and re-use of encapsulated

task-based interactions and context

The challenges in the work are to integrate and tailor existing case-based meth-

ods to address speci�c needs for geo-spatial image information management, as

well as to develop hybrid similarity measures that seamlessly integrate very dif-

ferent types of contextual knowledge a�orded by query sketches, result images

and metadata, image annotations, textual rationale, and other potential resource

annotations (e.g., user voice/video recordings).

In order to provide e�ective retrieval of task-based experiences that center

around geo-spatial imagery, we need to forward similarity metrics for directly

comparing query sketches and image components of experience cases. Thus, in

the �rst stage of the work, we are adapting and re�ning techniques developed for

geo-spatial image database retrieval for use in the case-based components of the

overall system. This paper describes our initial case-based similarity metric for

geo-spatial imagery, which makes comparisons based on derived image features,

their shapes, and the spatial relations between them. It is a straightforward

derivation of work developed for image database retrieval [9, 2, 5]. Section 2 pro-

vides background on geo-spatial imagery, image retrieval, and integrations of

CBR with imagery and GIS, and section 3 gives an overview of the task-based

image retrieval context. Section 4 describes our approach to image indexing,

while sections 5 and 6 respectively describe shape-based and relational compo-

nents of image similarity. The paper goes on to describe the combined image



similarity metric with a working example image query, and it concludes with

brief discussion of future directions.

2 Background

This research draws on background in geo-spatial imagery, general approaches

to image retrieval, and integrations of CBR with imagery and GIS.

2.1 Geo-spatial Imagery

Geo-spatial information represents the location, shape of, and relationships among

geographic features and associated artifacts, including map and remotely sensed

data. Two di�erent formats are generally used to represent geo-spatial informa-

tion: raster (digital images, with spatial position implicit in pixel ordering) and

vector (layered coordinate representations with topographic and associated in-

formation, such as geographic maps and digital terrain models). In this research,

we focus on managing the large quantities of geo-spatial information available

in raster format, primarily digital aerial photos, satellite images, and raster car-

tography. Geo-spatial imagery is employed in a wide range of applications, such

as intelligence operations, recreational and professional mapping, urban and in-

dustrial planning, and touristic systems. Typically, geo-spatial imagery will also

include metadata information, such as: date and time of image acquisition; date

and time of introduction to system; scale/resolution; location of the image, ex-

pressed in hierarchically arranged geographic entities (e.g., state, country, city);

sensor information; and imagery type (e.g., black & white, colour, infrared).

2.2 Image Retrieval

Substantial research e�orts within the computer vision community have been

focused on retrieving speci�c images from a large database by querying the prop-

erties of these images [10, 25, 37, 41, 45]. Some notable prototypes for intelligent

image retrieval have been developed, including [8, 17, 16, 19, 42, 47]. Most of these

e�orts address the problem in the context of general-use applications, where

the images stored in the database display substantial di�erences in their low-

level properties, such as: colour (histogram matching), texture (image coarseness

and contrast matching), and composition (dividing an image into homogeneous

colour/texture regions and analysing the relative positions of those regions).

An inherent characteristic with geo-spatial images, however, is that they are

usually very similar in terms of general low-level properties. Thus in geo-spatial

applications, image retrieval approaches based on low-level properties are not

very e�ective. In geo-spatial applications, images are better distinguished by

the shape and spatial con�guration of the objects they contain. Consequently, a

better approach to measuring similarity in geo-spatial datasets relies on the use

of queries based on these higher-level properties.



2.3 Case-Based Reasoning

A number of research e�orts have investigated case-based reasoning as applied

to tasks involving imagery, such as medical diagnosis [36, 22, 44], face recogni-

tion [40], architectural support [11], protein crystallization [29], and remotely

sensed data [48]. Previous research in case-based reasoning has examined image

recognition [38] and segmentation [43]. For an overview of the issues involved

in integrating imagery with case-based reasoning, see [20]. Case-based reasoning

has also been applied in sketch-based retrieval of architectural data [12, 23], as

well as for prediction in GIS applications [31, 30, 33, 27, 26].

Many of these case-based approaches rely on low-level image properties that

are not appropriate for geo-spatial imagery. The spatial component in our do-

main also implies that there should not been any processing applied to the

imagery (e.g., Fast Fourier Transforms) that transforms the raster image into

the frequency domain before further operations begin. Closest in spirit to our

work is [28], in which edge-image representations are used to index satellite im-

agery. While we plan to integrate some of the general techniques described in

previous CBR research where applicable, we have chosen to base our image sim-

ilarity metric on established work that de�nes measures tailored for geo-spatial

imagery [9, 2, 5].

3 Task-Based Image Retrieval & Knowledge Management

A typical task-based query to our image repository is a straightforward request to

a geo-spatial image database, and it could consist of speci�ed metadata, semantic

information, and a sketched con�guration of image-objects [3, 4]. The metadata

criterion would include such information on image scale or location, while the

semantic criterion would match against previously entered annotations (if any)

about the type (purpose, etc.) of objects that should be contained within images

of interest. The sketch would include information on desired image-objects and

their con�guration. For example, if the user decided to retrieve all images with

airplanes, airplane hangers, and runways that match to a particular con�gura-

tion, the query would:

{ Process the metadata to retrieve all images that match to the speci�ed cri-

teria (e.g., images from Dublin).
{ From this subset of images, use any available semantic information (e.g.,

airplanes, terminal) to further constrain the result set.
{ From this subset of images, select imagery indexed by object-features that

best match the user sketch.
{ Process the spatial relations of the sketch scene on the last image subset and

return a prioritized list of imagery as the query result.

The task-based image retrieval tools under development are an e�ective

means for locating geo-spatial image information, and they provide the core

of the overall system. Alongside, we are developing tools for direct image ma-

nipulation, such as �lters, transformations, highlighting, sketching, and post-it



type annotations. These will allow the user to identify regions of interest that

can be linked to clari�cations, rationale, and other types of annotations (e.g.,

multimedia). The manipulations and annotations will not alter the underlying

images or geo-spatial information, rather they will be layered to provide a task-

speci�c view. This enables the capture and re�nement of more general task-based

ideas and rationale. A typical interaction with the system, then, can capture the

sketch and geo-spatial query or queries posed by the user, the results that were

found to be useful, as well as the user's annotations of the results. All of the

contextual knowledge required to address the task goal can thus be captured as

an experience case, enabling an increasingly powerful cycle of proactive support,

with case-based suggestions based on task context.

As part of case-based retrieval of task experiences, we need to de�ne a mea-

sure of similarity for directly comparing image components of experience cases,

one which works in conjunction with the task-based image retrieval system. In

doing so, we focus on the last two steps of the task-based retrieval.

4 Image Indexing

Image metadata and semantic information are used as part of the overall image

indexing scheme, but from the standpoint of computing image-level similarity

there are two main indexing dimensions: the edge-image representation and the

feature library representation [9].

4.1 Image Pre-processing

Upon insertion into the image library, images are pre-processed automatically

by �rst applying a high-pass edge enhancement �lter and then applying a binary

threshold to the resulting image, such that only black or white pixels remain.

Spurious edges (of insigni�cant length) are also then removed by an additional

�ltering step. This process produces the edge-image representation (of a given

raw image) on which shape similarity is computed. The edge-image (e.g., Fig-

ure 1b) thus contains only the boundary outlines of image-objects inherent to

its corresponding raw image (e.g., Figure 1a). The original raw image is then

stored along with its corresponding edge representation image.

4.2 Image Feature Library

The image feature library is a hierarchical arrangement of distinct feature out-

lines (i.e. image-object shapes) with links to image �les where such features

appear. It can be likened to an inverted term index in collaborative �ltering. At

the task-based level of retrieval, the feature library is used to reduce the search

space of a query from the entirety of a large image library to a substantially

reduced image set containing an abridged group of object-features.

From the standpoint of image-level similarity, the feature library de�nes a

reduced vocabulary of canonical image-objects, subsets of which are used as



(a) (b)

Fig. 1. Raw and Edge Representation Images.

image indices. This index is used as a proxy for the actual image in computing

image-level similarity. The individual feature outlines that comprise the library

are smaller edge-images representing individual features of interest. They are

derived through interaction with the system, either from user query sketches

or explicitly identi�ed image regions of interest. The feature library is itself an

internal case-based component [34], but a full description is beyond the scope of

this paper.

When a new image is inserted into the image library, all of the features in

the feature library are matched (using the similarity metric de�ned in section 7)

against the new image to see if and where they match. If a feature-to-imagematch

is above a system threshold, a link from this feature to this image (and vice versa)

is established along with its location (i.e. the coordinates of the feature centroid

within the image), and the coordinates of the minimum bounding rectangle

(MBR) of this feature within the image.

When a new query feature is added to the feature library, it is matched

against the entire image library to establish indexing links. Because the index-

ing process can be computationally expensive, index maintenance is an o�-line

process.

5 Matching Image-Objects: Ssh

An image is composed of spatial objects and their relations with the similarity

between scenes described as a function of object similarity plus relation similarity

[21]. Our similarity metric is based on a measure of object shape similarity (Ssh)
and three measures of relational similarity: topology (Stop), orientation (Sor),
and distance (Sdist).



The method we employ to match image-object features is derived from least-

squares \area-based" matching [1], which involves the extraction and matching

of conjugate patches of pixels according to a correlation of summed squared pixel

gray-level density di�erences [24]. In essence, the query patch slides across the

library image (translating, rotating, and scaling), until a best-matching position

is found.

In contrast to the gray-level matching in traditional least-squares methods,

we reduce the comparison to essential shape information content by considering

only those pixels that carry image-object information (i.e., image-object edges).

This is facilitated by the binary edge-image representation and provides for good

shape matching at a substantially reduced computational cost.

In our similarity metric, individual query image-objects are matched against

a library image, and the results are combined in the overall image-level similarity

measure. Given an image-object query (from a user sketch or the feature library),

its number of rows and columns are noted along with the total number of pixels

representing edges. The centroid of the image feature is calculated using the

center of mass. The coordinates of the centroid pixel are then used as the origin

for translation, rotation, and scaling during matching.

In order to account for local maxima, the library image is divided into a

parameterized number (9 in practice) of disjoint regions, of equal or larger size

to the query patch. The query patch is then matched within each of these regions

in turn. In order to account for a feature being split across these regions, the

query patch is also matched within each of the (16) overlap regions between the

original divisions.

In matching a region, the query patch is divided into quadrants by its cen-

troid. Each quadrant, then, measures the degree of match to its current location

in the library image region by the extent of overlap in edge-pixels. Each edge-

pixel in the quadrant contributes a vote either to stay (if it is already overlaps

an image edge) or to move a certain distance in one of the cardinal directions (if

it does not overlap). Move distance and direction are determined by the closest

image edge. The individual pixel votes for direction and distance are summed,

with higher weights given to shorter distances, to determine an overall shift for

each quadrant.

From analysis of the edge pixel voting patterns, a decision is made to trans-

late (quadrant votes in the same direction), scale (opposite quadrants vote in

opposite directions), or rotate (quadrant votes follow a circular pattern) the

query patch within the image region in order to acquire a better match. Typical

distance values range from 0 to 10s of pixels in any direction with the maximum

distance allowed being half the dimension of the query patch itself. Thus initial

approximations for positioning the patch within the region are not required; if

the patch is not in a suitable position within the image region, it will automati-

cally move to the image content. This method also allows for occlusions of up to

half of the query patch to be detected, as the patch can shift its origin (centroid

pixel) right up to the border of the edge-image.



Once the patch is shifted into a new position, the process is repeated. Sim-

ilar to the traditional least-squares approach, the solution is obtained after a

set of iterations with parameterized boundary conditions on goodness of match

(number of votes to stay exceed votes to move) and number of iterations (e.g.,

20). The best-matched position for each library image region is recorded and

the overall is used as the �nal matching position and percentage for the query

patch in the library edge-image. When the query patch has settled on a match,

its accuracy is determined by its matching percentage (i.e., by how many of its

pixels continue to vote to stay put compared to the total number of pixels that

constitute its edges).

6 Matching Image-Object Scenes

When query image-objects are matched to an image, their centroid coordinates

within the image are recorded as well as the top left and bottom right coordinates

of the query feature's minimum bounding rectangle, after scaling and rotation

have taken place. Similarity for spatial relations on the image are determined

through the use of the matched query features MBRs.

6.1 Matching Topology: Stop

Perhaps the most important of all spatial relations from a user's perspective is

topology [14]. It is often more important, in composing a spatial query sketch, for

a user to show that objects are positioned correctly relative to each other (dis-

joint, touching, overlapping, etc.) than to show their relative sizes or distances.

It has been shown that topological relations can be derived automatically be-

tween pairs of simply connected regions (i.e., regions without holes, by determin-

ing their 4 intersection relations between their respective borders and interiors)

[13]. More speci�cally, a 2x2 matrix is generated through the determination of

whether the border b or interior i of region A intersects either the border or

interior of region B. Taking into consideration the inconsistent relations, we are

left with only 8 possible relations, shown in Figure 2. The 4 intersection method

can be extended to describe a scene of n objects by building a nxn connectiv-

ity matrix whose elements consist of the relations between individual pairs of

objects in the scene [15]. The result of such an operation gives a mathematical

description of the topology of a scene that can be queried against for similarity.

In de�ning our similarity measure, the degree of topological match is computed

as a function of the number of steps between topological relation types (e.g.,

disjoint!meets is one step).

6.2 Matching Orientation: Sor

To overcome the lack of exterior orientation information in the query and image

scenes, we use an intrinsic reference frame where the query/image-object orien-

tation is in respect to left-of or right-of the features themselves. To do this, a



Fig. 2. Binary Topological Relations for Simply Connected Regions.

A B C D

AB 0 0 1 1

AC 0 -1 0 0

AD 0 -1 -1 0

BC 1 0 0 1

BD 1 0 -1 0

CD 1 1 0 0

Fig. 3. Example Image Scene and Corresponding Position Relation Matrix.

position relation matrix is built for each query/image scene. Since a scene com-

prised of two (or less) objects is trivial to discern (i.e., a scene could be rotated

to suit any orientation), our approach assumes three (or more) scene objects. To

build the position relation matrix for the scene depicted in Figure 3, an imag-

inary line connecting the centroid of Feature A to the centroid of Feature B is

drawn. Feature A is arbitrarily considered as the top feature and Feature B the

bottom feature. For every other feature (C through n) in the scene it is deter-

mined whether they lie left-of or right-of this line. Fixing the same features in

both the query and image scenes to be either top or bottom renders any rotations

in the scenes immaterial. The calculation of left-of or right-of is straightforward,

given that we know (from the shape matching algorithm) the pixel coordinates

of each feature's MBR in the image scene and each features actual boundary

outline in the query scene. For example, if the MBR of Feature C in the image

scene lies left-of this line, a value of -1 is placed in the position relation matrix.

If Feature C's MBR lies right-of this line, a value of 1 is entered in the matrix

and if Feature C's MBR lies somewhere along this extended line, a 0 is placed

in the matrix.

After the remaining features of the scene are likewise added to the matrix, the

imaginary line between Feature A and Feature B is deleted and redrawn between

Feature A and Feature C with the process of determining left-of and right-of for



AB AC BC

AB 1 1.74 2.3

AC .57 1 1.32

BC .44 .76 1

Fig. 4. Example Image Scene and Corresponding Distance Ratio Matrix.

the remaining features in the scene repeated. This entire procedure is repeated for

every combination of features in the scene, i.e. there are n(n�1)=2 combinations
of extended, imaginary lines that need to be tested against. For example, in

the image scene of Figure 2, with 4 image-objects, there are 6 combinations of

imaginary lines to be tested against, resulting in a 6x4 position relation matrix.

A position relation matrix is constructed for the query scene and image scene.

A normalized correlation coeÆcient for the query/image scene is then calculated

using Equation 1, to describe their respective similarities. This coeÆcient is

scaled between 0 and 1 to give a total scene position matching percentage be-

tween the query and image-object con�guration, independent of any arbitrary

scene rotations.

NC =

P
((I � I) � (Q�Q))qP
(I � I)2 �

P
(Q�Q)2

(1)

I and Q are the position relation matrices for the image and query scenes respec-

tively. Similar to the extrinsic reference frame approach, distance is also required

in order to distinguish properly between these con�gurations of spatial entities.

6.3 Matching Relative Distance: Sdist

Where no scale information on the query/image scene is provided a-priori, it

is necessary to analyze the relative distances between image-objects. A square

matrix of rank n(n�1)=2 (where n is the number of objects in the scene) can be

built for every query/image scene. Each combination of image-object connection

is set to a distance of 1 unit, and the distances to the other objects in the

scene determined relative to this unit distance. Assuming an example scene of 3

objects, a 3x3 distance ratio matrix would be built (Figure 4).

The ratio approach to calculating the relative distances between objects does

not require absolute scale information and is possible of course because the

pixel coordinates of the image-object centroids are returned from the shape

matching algorithm. The similarity between various query and image scenes,

or more speci�cally their respective distance ratio matrices, is then determined

through analysis of their normalized correlation coeÆcients (Equation 1) scaled

between 0 and 1.



7 A Similarity Metric for Image Scenes

Our image-level similarity metric combines similarity measures for individual ob-

ject shapes, as well as the topological, orientation, and relative distance relations

between them [2]. We de�ne a similarity function S that assesses the similarity

between an image query scene Q and an image scene I in the image library as

follows:

S(Q; I) = Ssh(Q; I) � wsh + Stop(Q; I) � wtop + (2)

Sor(Q; I) � wor + Sdist(Q; I) � wdist

where:

{ Ssh measures the degree of shape similarity between objects in Q and the

corresponding objects in I . For example, assuming that obj1: : :objn are the

objects in Q,

Ssh(Q; I) =

P
n

i=1
match%(obji)

n
(3)

where match%(obji) is the matching percentage between object obji in Q
and the corresponding object in I . We might further constrain the match by

imposing that for each i = 1: : :n match%(obji) > �, with a given threshold

�;
{ Stop measures the degree of similarity between the set of topological relations

characterizing objects in Q and the topological relations among correspond-

ing objects in I ;
{ Sor measures the degree of similarity between the set of orientation relations

characterizing objects in Q and the orientation relations among correspond-

ing objects in I ;
{ Sdist measures the degree of similarity between the set of distance relations

characterizing objects in Q and the distance relations among corresponding

objects in I ;
{ wsh, wtop, wor, and wdist are positive weights that establish the relative

importance of the individual similarity criteria; their sum must equal 1.

7.1 A Working Example

In this section we show an example of how four di�erent query scenes (Figure 5),

sketched by the user, match to a given image I (Figure 6). The query scenes

comprise di�ering con�gurations of the same three object shapes; i.e. an outline

of an airplane (obj1), airplane hanger (obj2), and runway (obj3). A summary of

the results of the similarity metric calculations for this example can be found in

Table 1. For each of the four query scenes, Q1, Q2, Q3, Q4, we calculate the

value of S using Equation 2.

From these results it can be seen that Query Scene 2 is the best-matched

con�guration for the given image. This agrees with what a human observer would



Q1 Q2 Q3 Q4

Fig. 5. Four Query Scenes.

Fig. 6. Edge-Image with Superimposed MBRs.

choose as the best matched con�guration since Query Scene 2 is plainly a rotation

of the image, sketched at a signi�cantly reduced scale. This demonstrates the

ability of our approach to di�erentiate between arbitrary rotations and scaling

of varying query/image scenes in addition to the capacity to distinguish between

con�gurations and shapes of individual image-objects.

Query Scene

1 2 3 4

Ssh 82.3 82.3 82.3 82.3

Stop 100 100 100 66.7

Sor .5 100 79 81

Sdist 81.2 86.7 33.7 35

S 66 92.3 73.8 66.3

Table 1. Similarity Results for the Four Query Scenes



8 Conclusion

We have introduced a case-based reasoning approach to knowledge manage-

ment in the context of task-based geo-spatial imagery retrieval. As a foundation

for the building the overall case-based knowledge management component, we

have derived an e�ective image-level similarity metric for directly comparing

the image components of experience cases. The similarity metric operates in the

raster/spatial domain and uses the shape of single image-object features together

with their topological, orientation, and distance relations as matching primitives.

We went on to present a working example as a practical illustration of how the

similarity metric evaluates four query scenes for a given image.

While our �rst priority is to fully realize case-based support at the geo-spatial

task-based level, our long-term goals include an extension of the image-matching

technique for temporal analysis. By relaxing object/relation constraints and ana-

lyzing matching percentages, we expect to develop the temporal change detection

in areas such as: object elimination, changes in object shape, and change in loca-

tion. With the increasing use of geo-spatial information both in professional and

recreational contexts, we expect that case-based approaches will prove invaluable

in ameliorating problems of visual information overload.
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