
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computer Science

2011-9

Model-Driven Productivity Evaluation for Self-Adaptive Context-Model-Driven Productivity Evaluation for Self-Adaptive Context-

Oriented Software Development Oriented Software Development

Basel Magableh
Technological University Dublin, 453543@tudublin.ie

Stephen Barrett
Trinity College, Stephen.Barrett@tcd.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Magableh, B., Barrett, S.:, “Model-Driven Productivity Evaluation for self-Adaptive Context- Oriented
Software Development ,” 5th International Conference and Exhibition on Next Generation Mobile
Applications, Services, and Technologies (NGMAST’11), vol. 1, Cardiff, Wales, United Kingdom, Sept.
2011. doi: 10.21427/zhwa-td51

This Article is brought to you for free and open access by the School of Computer Science at ARROW@TU Dublin. It
has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomart%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Model-Driven Productivity Evaluation for
Self-Adaptive Context-Oriented Software

Development
Basel Magableh and Stephen Barrett

Distributed Systems Group,
School of Computer Science and Statistics

Trinity College Dublin, Ireland
Emails: magablb@cs.tcd.ie, stephen.barrett@cs.tcd.ie

Abstract—Anticipating context changes using a model-based
approach requires a formal procedure for analysing and mod-
elling their context-dependent functionality, and a stable descrip-
tion of the architecture which supports dynamic decision-making
and architecture evolution. This article demonstrates the capabil-
ities of the context-oriented component-based application-model-
driven architecture (COCA-MDA) to support the development
of self-adaptive applications; we describe a state-of-the-art case
study and evaluate the development effort involved in adopting
the COCA-MDA in constructing the application. An intensive
analysis of the application requirements simplified the process of
modelling the application’s behavioural model; therefore, instead
of modelling several variation models, the developers modelled an
extra-functionality model. COCA-MDA reduces the development
effort because it maintains a clear separation of concerns and em-
ploys a decomposition mechanism to produce a context-oriented
component model which decouples the applications’ core func-
tionality from the context-dependent functionality. Estimating the
MDA approach’s productivity can help the software developers
to select the best MDA-based methodology from the available
solutions proposed in the literature. Thus, counting the source
line of code is not adequate for evaluating the development effort
of the MDA-based methodology. Quantifying the maintenance
adjustment factor of the new, adapted, and reused code is a better
estimate of the development effort of the MDA approaches.

Keywords-model-driven architecture, MDA productivity, CO-
COMO ii, self-adaptive application.

I. INTRODUCTION

Mobile computing environments are heterogeneous and
dynamic. Everything from the devices used and resources
available to network bandwidths and user context can change
drastically at runtime [1]. This presents the software devel-
opers with the challenge of tailoring behavioural variations
both to each specific user need and to the context informa-
tion. Context-dependent behavioural variations can be seen
as a collaboration of individual features expressed in re-
quirements, design, and implementation. Before encapsulating
the crosscutting context-dependent behaviours into a software
module, the developers must first identify them both in the
requirements document and in the software model. This is
difficult to achieve because, by their nature, context-dependent
behaviours are entangled with other behaviours, and are likely
to be included in multiple parts (scattered) of the software

modules. Using intuition or even domain knowledge is not
necessarily sufficient for identifying the behavioural variations;
instead, it requires a formal analysis procedure for the software
requirements and a separation of their individual concerns.
Moreover, a formal procedure for modelling these variations
is needed. This kind of analysis and modelling procedure can
reduce the complexity in modelling self-adaptive applications
and encapsulate the context-dependent part of the distinct
architecture module (component).

A context oriented component model (COCA-component)
[2] is used to encapsulate behavioural variations and decouple
them from the application’s core functionality. In this way,
dynamic component composition is achieved. Additionally,
from the software developer’s perspective, it is vital to know
the productivity of the development paradigm which might
be used in constructing the self-adaptive application. Produc-
tivity evaluation of model-driven approaches can assist the
developers in selecting among the proposed methodologies in
the literature which achieve dynamic behavioural variations
of self-adaptive software. Context-oriented component-based
application-model-driven architecture (COCA-MDA) emerged
as a development paradigm which facilitates the development
of self-adaptive context-oriented software [3], [4].

This article evaluates the development effort involved in
adopting COCA-MDA when constructing a self-adaptive ap-
plication for an indoor wayfinding application (IWayfinder)
developed for individuals with cognitive impairments. The
development effort of COCA-MDA is compared to other
model-driven approaches proposed in the literature.

The remainder of the article is structured as follows. Section
II provides a comparative analysis of related studies. Section
III demonstrates a case study. The COCA-MDA phases are
described in Section IV. Section V provides a COCA-MDA
evaluation using constructive cost model II (COCOMO II).
Section VI summarizes the research findings and describes
directions for future work.

II. RELATED WORK

In the literature, there are several MDA approaches which
target the development of self-adaptive applications for mobile

!"##$%&'()$*+(,-+.(&/+.0$1/+',-,+2,$/+$3,4($5,+,-.(&/+$6/7&0,$8990&2.(&/+:$.+;$<,-=&2,:

!"#$%$"&!'$((!&$%)**+,-&.%%+/+-%**+0111
230+*%.**%!)456789.-%**.-'

#"

computing environments which produce component-based ap-
plications; this study borrows from the following methodolo-
gies: MUSIC, proposed by [5]; U-MUSIC [6]; and Paspallis
MDA [7].

The MUSIC development methodology [5] adopts a model-
driven approach to constructing the application variability
model. The applications are built as a component framework
with component types as variation points. Middleware is used
to resolve the variation points, which involves the election
of a concrete component as a realization of the component
type. Using this method, a number of application variants can
automatically be derived.

The U-MUSIC methodology, proposed by [6], adopts the
model-driven approach to constructing self-adaptive applica-
tions and enabling dynamic unanticipated adaptation based
on a component model. The U-MUSIC system enables the
developers to specify the application variability model, con-
text elements, and data structure. The developers are able
to model the component functionalities and quality of ser-
vice (QoS) properties using an abstract, platform-independent
model (PIM).

Paspallis [7] proposes another MDA-based methodology
which considers the context providers for the application. For
each context provider, a plug-in is proposed during the design
phase. At runtime, a utility function is used to consider the
context state and perform decision-making. Once the plug-in is
selected (to be load into the application), middleware support
performs dynamic runtime loading of the plug-in. However, it
is impossible to consider all the context providers which might
produce context information at runtime.

In MUSIC, U-MUSIC, and Paspallis approaches, dynamic
decision making is supported by a utility function. The utility
function is defined as the weighted sum of the different
objectives based on user preferences and QoS. However, this
approach suffers from a number of drawbacks. First, it is
well known that correct identification of the weight of each
goal is a major difficulty. Second, the approach hides conflicts
among multiple goals in a single, aggregate objective function,
rather than exposing the conflicts and reasoning about them. At
runtime, a utility function is used to select the best application
variant; this is the so-called ’adaptation plan’. Realistically, it
is impossible for the developer to predict all possible variations
of the application when unanticipated conditions could arise.
In addition, mobile computing devices have limited resources
for evaluating the many application variations at runtime and
can consume significant amounts of device resources. As an
outcome, the benefit gained from the adaptation is negated by
the overhead required to achieve the adaptation. Because of
the above issue, it is impossible to use MUSIC to provide
unanticipated adaptation in a self-adaptive application. More-
over, modelling the application using U-MUSIC, MUSIC, and
Paspallis’s MDA produces an architecture with a tight coupling
between the architecture and the target platform.

Lewis et al. [8] have evaluated the impact of MDA on
the development effort and the learning curve of the MDA-
based development tools based on their own experiences.

The authors concluded that the real potential behind MDA
is not completely employed either by current tools or by the
proposed MDA approaches in the literature. In addition, the
developers have to modify the generated code such that it
is suitable for the target platform. The degree to which the
generated code needs modification is affected by the MDA
tools used. In the same way, the developer’s understanding
of the MDA tasks and familiarity with the target platform
have direct impacts on MDA productivity. Constructive cost
model II (COCOMO II) [9] emerged as a software cost
estimation model which considers the development method-
ology productivity. The productivity evaluates the quality of
benefits derived from using the development methodology,
in terms of its impact on the development time, complexity
of implementation, code quality, and cost effectiveness [10].
COCOMO II allows estimation of the effort, time, and cost
required for software development. The main advantage of this
model is that COCOMO II is an open model with various
parameters which affect the estimation of the development
effort. Moreover, the COCOMO II model allows estimation
of the software application development effort in both person-
months (PM) and time to develop (TDEV). A set of inputs
such as software scale factors (SFs) and 17 effort multipliers
is needed. A full description of these parameters can be found
in [9]. An example of an evaluation of MDA approaches with
(COCOMO II) can be found in [11].

III. SELF-ADAPTIVE INDOOR WAYFINDING APPLICATION
FOR INDIVIDUALS WITH COGNITIVE IMPAIRMENTS

IWayFinder provides distributed cognition support for in-
door navigation to persons with cognitive disabilities. RFID
tags and QR-codes are placed at decision points such as
hallway intersections, exits, elevators, and entrances to stair-
ways. After reading the encoded URL in the QR-codes, the
Cisco engine provides the required navigation information and
instructs the user. The proposed self-adaptive application uses
an augmented reality browser (ARB) to display the navigation
directions. The browser displays the directions on the physical
display of the tool’s camera. The application is able to provide
the user with time-based events such as the opening hours of
the building, lunch time, closing hours of the offices, location
access rights which control the entrance of users to certain
locations, and any real-time alarm events. Moreover, the
infrastructure support allows several persons to monitor and
collaborate with the user en route. The IWayFinder application
and the COCA-MDA development methodology were fully
described in our previous work [3], [4]. This article focuses
on describing an evaluation of the cost effectiveness when
adopting the COCA-MDA (among other MDA approaches)
in developing the IWayFinder application. Assuming that the
context information is delivered by the Cisco infrastructure,
we propose the following anticipation scenarios:

A1: Self-tuning The application must track the user’s path
inside the building. When decision points (DPs) are reached,
the application places a marker for each DP the user passed. If
the user is unable to locate a decision point in the building, the

##

application must be able to guide the user towards a safe exit.
The route directions can be delivered to the user in several
output formats: video, still images, and voice commands.
The application should change the direction output while also
adapting to the device resources and the level of cognitive
impairment of the individual.

A2: Self-recovering Assuming that the user is trapped in a
lift with no GPRS connection (or in the case of a fire), the fire
alarm is raised, the application is notified, and the application
adopts the shortest path to the nearest fire exit. In both cases,
the application submits the user’s current coordinates and an
emergency help message to the emergency number, parents,
career team, and security staff. The communication is achieved
using the available connection, regardless of the resource cost,
to alert any nearby devices to the emergent need for help. If
no connection is made, the device emits an alarm sound and
increases the device volume to maximum. The security staff or
fire fighters receive the emergency message and can view the
CCTV video to identify the floor on which the user is trapped.
When the CCTV system locates the user, full information
about the user is displayed, including a personal and health
profile. At the same time, the application guides the user to a
safe exit using a preloaded path (in case the CCTV camera is
disabled and the services engine is off). Fire fighters can use
the received message to locate the user within the building.

Fig. 1. Context-Oriented Component-Based Application-Model-Driven Ar-
chitecture (COCA-MDA)

IV. COCA-MDA DEVELOPMENT APPROACH

The COCA-MDA follows the principles of the object man-
agement group (OMG) model-driven architecture. The design
of a context-aware application according to the COCA-MDA
approach generally involves the six phases shown in Figure 1.
Modelling IWayfinder using COCA-MDA can be summarised
as shown in Figure 2. The figure summarizes the modelling
tasks using the associated UML diagrams. The developer can
start the analysis of an application scenario to capture the
requirements.

Analysis: The requirements of the system are modelled in
a computation-independent model (CIM), thus describing the
situation in which the application will be used and predicting
the exact behaviour of the application as a result of runtime

Fig. 2. Modelling Tasks

context changes. This phase is accomplished by performing
the following three tasks.

Task 1. Requirement capturing by textual analysis:: In this
task, the developer identifies the candidate requirements for the
illustration scenario using a textual analysis of the application
scenario. It is recommended that the developer identify the
candidate actors, use-cases, classes, and activities. This can
be achieved by creating a table which lists the results of the
analysis.

Task 2. Identifying the extra-functional requirements and
relating them to the middleware functionality:: The require-
ment is classified in the requirements’ diagram, based on
its type and whether it comes from a context provider or
a consumer. The next level of requirements classification
is to classify the requirements based on their anticipation
level: foreseeable, foreseen, or unforeseen. This classification
allows the developer to model the application behaviour as
much as possible and to plan for the adaptation actions.
However, to facilitate this classification framework, a UML
profile is designed to support the requirements analysis and to
be used by the software designer, as shown in Figure 3. For
example, displaying the direction output in the camera browser
is a functional requirement which drives the extra-functional
requirement number 4, ’utilise the resources’, which requires
a middleware functionality to manage the context changes and
take the adaptation actions which satisfy it. This requirement
is classified as the foreseeable anticipation level.

Task 3. Capturing user requirements:: This task is com-
bined with the previous requirements diagram. This task
focuses on capturing the user’s requirements as a subset of
the functional requirements, as shown in the UML profile in
Figure 3. This task allows the developers to analyse the main
functions of the application which achieve specific goals or
objectives. Normally, this kind of requirement is expressed by
’The user must be able to do ...’.

#!

Fig. 3. Requirements UML Profile

Fig. 4. Partial Requirements Diagram

Modelling and design: COCA-MDA has adopted the com-
ponent collaboration architecture (CCA) [12] at the PIV phase
by partitioning the software into two views: the structure
view and the behaviour view. The structure view focuses
on the core components of the self-adaptive application and
hides the context-driven components. The behaviour viewpoint
focuses on modelling the context-driven behaviour of the
component, which may be invoked in the application execution
at runtime. To achieve this function, the following three tasks
are performed.

Task 4. Resources and context entity model : Resources and
context model refers to a generic overview of the underlying
device’s resources, sensors, and logical context providers. This
diagram models the engagement between the resources and the
application under development. It facilitates the developer in
understanding the relationship between the context providers
and their dependency.

Task 5. Use cases: : In this phase, the requirements diagram
is combined into a use-case model. The use-cases describe
the interactions between the software system and the actor.
The system-dependent and environment-dependent behaviours
are modelled as extensions of the functional use-cases. The
functional use-cases are modelled in a class diagram de-
scribing the application core functions. The extended use-
cases are modelled as another object diagram which describes
the application’s behavioural view. For example, the ’adapt
the direction output’ use-case is a contextually driven use-
case which extends the application functionality to utilise the
devices’ resources so as to provide a route to the nearest fire

exit.
Task 6. Modelling the application core structure: : In

this task, a classical class diagram models the components
which provide the application’s core functions. These func-
tions are identified in the use-case diagram in the previous
task. However, the class diagram is modelled independently
of the variations in the context information. In this scenario,
some classes, such as ’Displaying POI’s’, ’Route-Planning
UI, CameraUI, MapUI, and User Interface’, are classified to
be in the application core. These classes provide the core
functions for the user during his tour. Figure 5 shows the
core-structure class model ignoring any interaction with the
context environment or the middleware.

Fig. 5. IWayFinder Core-Classes Structure

Task 7. Identifying Application Variant Behaviour (Behaviour
View):

The use-case diagram is split into two distinct object
diagrams. The first diagram describes the basic application
components which are executed regardless of the execution
context. The core structure is integrated with the extra-
functional class model in the final architecture model. The
extra-functionality class diagram provides a detailed view of
the application COCA-component and the COCA-middleware.
In addition, these diagrams model the desired behaviour, which
can be used to anticipate context changes. Figure 6 shows a
COCA-component designed to anticipate the ’direction out-
put’. The COCA-component implements delegate objects and
sub layers; each layer implements a specific context-dependent
function. The COCA-middleware [2], [13], uses this delegate
object to redirect the execution among the sub layers based
on the context condition.

The application behavioural model is used to demonstrate
the decision points in the execution which might be reached
whenever internal or external variables are found. This deci-
sion point requires several parameter inputs to make the correct
choice at this critical time. Using the activity diagram, the
developers can extract numerous decision polices. Each policy
must be modelled in a state diagram: textbfPolicy: Direction
output. This policy is attached to the ’direction output’ COCA-

!%

Fig. 6. Direction Output Context Oriented Component

component in Figure 6. The policy syntax can be described
by the code shown in List 1.

If (direction is Provided && Available memory >= 50
&& CPU throughput <= 89 && light level >= 50
&& BatteryLevel >= 50) then {PlayVideo(); displayImage();

VoiceCommand();}
Else If (BatteryLevel < 50 || memory level < 50 || CPU >92)
then {displayImage(); VoiceCommand();}
else If(BatteryLevel < 20)
then VoiceCommand();

Listing 1. Decision Policy 2

The variant behaviour model is supported by a state-machine
model which describes the application decision polices. The
three models of the application are used as input for the next
phase, model-to-model transformation.

Model-to-model transformation: The platform-
independent model and behavioural model are translated
into architecture description language (COCA-ADL). This
phase includes model-to-model transformation and model
verification for the application’s structure and behaviour
views. The COCA-ADL is implemented by extending the
xADL schema (an extensible XML language). ArchStudio
is an environment of integrated tools for modelling,
visualizing, analysing, and implementing software and
systems architectures. The ArchStudio provides Archipelago
as the graphical editor used to model the architecture.
Archipelago was used to extend the xADL by implementing
the COCA-ADL meta-model. The ArchStudio editor enables
the developer to model their application using three distinct
models: structure, state machine, and activity diagram [14].

Testing and validating: Tests the model and verifies its
fitness for achieving the application goals and objectives.

Platform-specific model: The platform-specific model pro-
duced by the transformation is a model of the same system
specified by the PIM (it also specifies how that system makes
use of the chosen platform). A PSM may provide more or
fewer details, depending on its purpose. A PSM will be an
implementation if it provides all the information needed to
construct a system and to put it into use. Alternatively, it may
act as a PIM used to further refine the PSM so that it can be

directly implemented.
Code generation: Model-to-text includes model-to-text

transformation deployment and execution verification. The
COCA-ADL XMI code is transformed into the implementation
language.

V. MDA EVALUATION

The IWayFinder application has been selected to determine
the development effort required by COCA-MDA compared
to that required by three MDA approaches which have been
proposed in the literature: U-MUSIC-MDA, proposed by
[6]; Paspallis’s MDA, proposed in [7]; and MUSIC-MDA,
proposed in the IST-MUSIC project deliverables in [5]. The
enterprise architecture tool (EA) [15] was used to develop
the IWayFinder application using the four MDAs (COCA,
MUSIC, U-MUSIC, and Paspallis’s). Each MDA phase was
carried out separately. COCOMO II [9] was used to find the
development effort in person-months for each MDA. There
are two COCOMO II models, i.e. the post-architecture model
and the early design model. The post-architecture model is a
detailed model used once the project is ready to develop and
sustain a fielded system. The early design model is a high-
level model which is used to explore alternative architectures
or incremental development strategies [9]. Based on the above
considerations, we selected the post-architecture model to
evaluate the four MDAs: COCA, MUSIC, U-MUSIC, and
Paspallis’s.

Phase Sizing Method Results
CIM

PIM

PSM

Transformation

Final code

Deployment
 integration

Counting Unadjusted
Function Points (UFP)

Relating UFP into SLOC

UFP UFP into SLOC

Quantifying the Maintenance
 Adjustment Factor (MAF)

(Size) PM

Quantifying the Maintenance
Change Factor (MCF)

(Size) PM

Source Line of Code SLOC = Final SLOC - Generated
SLOC

Quantifying the Maintenance
Change Factor (MCF)

SLOC

TABLE I
MDA PHASES AND SIZE FACTORS

Based on the COCOMO II model, the sizing of new and
reused code can be estimated via three major methods, as
described in [9]. These methods are counting source lines
of code (SLOC); counting unadjusted function points (UFPs);
and aggregating new, adapted, and reused code, i.e. the adapted
source lines of code (ASLOC).

In general, MDA-based approaches must apply a
computation-independent model (CIM), a platform-
independent model (PIM), a platform-specific model
(PSM), transformation, deployment, and code generation.
For each phase in the MDA, a sizing method was adopted
for estimating the development effort, as shown in Table I.
The code which is directly generated from the MDA tool
(EA) is excluded from the development effort, but is used
as an input to measure the software maintenance effort by

!*

counting the UFPs. In addition, the middleware code has to
be adopted and maintained, or even configured, to suit the
new application platform. Therefore, a third sizing measure
is used to evaluate the middleware code.

The following equations describe the effort (PM) and
the time to develop (TDEV), taking into consideration the
aforementioned inputs, as shown in Equation 1. The primary
equation in 1 denotes the effort in person-months derived
from the software size defined in thousands of source lines
of code (SLOC). The exponent E defines the sum of the
scale factors (SFs), i.e. the Cartesian product of the effort
multipliers (EMs) and the constant value A. A value was
determined based on several software projects which were
surveyed in [9]. The second equation in Equation 2 depicts
the time required to develop the software, derived from the
nominal effort (PM), the sum of SFs, and the constant values
based on several software projects evaluated by COCOMO II.
The rating scale factors and the effort multipliers were used in
this work to derive the effort and the time required to develop
the IWayFinder application using COCA-MDA.

Based on the above discussion, Equation 3 is used to
calculate the sizing of code maintenance [9]. The initial
maintenance size estimate is adjusted using a maintenance ad-
justment factor (MAF). This relationship can both estimate the
level of effort using the full time equivalent software personnel
FSPM , given TM (as found in annual maintenance estimates,
as shown in Equation 4, where TM = 12 months), and,
given a fixed maintenance staff level, FSPM , determine the
necessary time, TM , to complete the effort [9]. To estimate the
adopted code, the COCOMO II model uses an additional set
of equations to calculate the final count for source instructions,
related costs, and schedule. The equations in 3, 4, and 5 use
the following values as parameters.

• Adapted source lines of code (ASLOC). The number of
source lines of code adapted from existing software used
in developing the new product.

• Percentage of design modification (DM). The percentage
of the adapted software’s design which received mod-
ifications to fulfil the objectives and accommodate the
environment of the new product.

• Percentage of code modification (CM). The percentage of
the adapted software’s code which receives modifications
to fulfil the objectives and accommodate the environment
of the new product.

• Percentage of integration required for modified software
(IM). The percentage of effort needed to integrate and test
the adapted software to combine it into the new product.

• Percentage of reuse effort resulting from software under-
standing (SU). Percentage of reuse effort resulting from
assessment and assimilation (AA) and programmer unfa-
miliarity with the software domain (UNFM). [9] provides
a rating scale for programmer unfamiliarity (UNFM).

PM = A× (Size)E ×
17∏

i=1

EMi, (1)

whereE = B + (0.01×
17∑

i=1

SFi),

A = 2.95, B = 0.91

TDEV = C × (PM)F , (2)
whereF = D + 0.2× (E −B),

C = 3.67, D = 0.28 (COCOMOII.2000)

MAF = 1 +

(
SU

100
× UNFM

)
, (3)

SU: Software Understanding.
SU = (zero if DM = 0 and CM = 0),
DM: percentage of design modified,

CM: percentage of code modified,
UNFM = 0.4

PMM = TM − FSPM , (4)
where T = 12 months

PM = A× (Size)B +

⌈
ASLOC(AT

100)

ATPROD

⌉
(5)

Figure 8 provides the estimated efforts for the four MDAs.
Figure 7 shows the total size (SLOC) for the IWayFinder
application after it has been developed using each MDA. The
figure shows that COCA-MDA requires less effort in person-
months, despite the fact that the total SLOC is greater than for
Paspallis’s MDA. In Paspallis’s MDA, each context provider
requires a separate plug-in architecture, which requires new
software engineering to build the plug-in. The MDA tool does
not generate the required code for the plug-in, but instead
leaves the required code to be composed and configured in
the deployment stage. This increases the effort required to
configure and maintain the plug-in architecture. This effort is
captured using UFP analysis. The total effort for Paspallis’s
MDA is one of the highest because the ratio of the mainte-
nance adjustment factor is very high. These facts demonstrate
the accuracy obtained using COCOMO II in estimating self-
adaptive software development methodology. In addition, the
figure shows that the effort in MUSIC is the greatest; the
reason for this is a lower ratio of adaptive and reused code
in MUSIC compared to that in its extensions, U-MUSIC and
Paspallis’s MDA.

Figure 9 provides more information on each MDA regarding
the estimated cost per MDA phase. As shown in the figure,
the cost of performing the PIM was high for all MDAs. The
reason for this is that all MDAs focus more on modelling
the application variation model through the PIM. The cost
of adopting the PIM in MUSIC is the largest because of the
complexity of adopting the MUSIC PIM tasks; this requires
the developer to produce more UML models than in the others.

!-

0

50000

100000

150000

200000

0

50000

100000

150000

200000

MUSIC U-MUISC Paspallis-MDA COCO-MDA

Fig. 7. Total Source Line of Code for Each MDA Approach

0

18

36

54

72

90

0

18

36

54

72

90

MUSIC U-MUISC Paspallis-MDA COCO-MDA

Fig. 8. Total Effort for Each MDA Approach

For the same stage, Paspallis’s MDA has a lower cost. In
Paspallis’s MDA, the time spent by the developers to build
the context-provider plug-ins is greater than the effort required
to build the architecture itself. This is why Paspallis’s MDA
is second, after U-MUSIC, in terms of the evaluation of the
PSM phase.

On the other hand, Paspallis’s MDA increases the effort
required for software maintenance in the transformation and
deployment phases. Specifically, COCA-MDA and U-MUSIC
reduce the effort needed to implement new or reused context
providers (i.e. integrating a new sensor into the platform).
This result reflects the benefits gained from employing the
COCA-ADL for architecture deployment in several platforms.
It is worth noting here that the ’labour rate per month’ has
been given the same value for all the MDAs throughout the
evaluation.

0

2

4

6

9

11

13

15

0

2

4

6

9

11

13

15

CIM PIM PSM (T&V)
U_MUISC COCA-MDA MUSIC Paspallis-MDA

M
on

th
s

Fig. 9. Estimated Cost Per Phase

VI. CONCLUSIONS AND FUTURE WORK

Self-adaptability requirement, modelling, architecture, im-
plementation, and assurance approaches require a systematic
solution which inter-relates all aspects on a single platform.
Requirements analysis can provide a great deal of information
about the extra-functionalities of the self-adaptive system. In
the same way, requirements analysis can facilitate and simplify
architecture reflection by providing the information required
by the software to manage itself. Moreover, COCA-MDA can
reduce the complexity of self-adaptive engineering through

mapping requirements to actor-, system-, and environment-
dependent behaviours. This study shows how COCA-MDA
reduces the required development effort compared to other
MDAs. It also demonstrates how COCA-MDA reduces the
software maintenance ratio through the architecture deploy-
ment and transformation.

The COCA-MDA requires improvement before it can sup-
port requirements reflection and modelling requirements as
runtime entities. The requirements reflection mechanism re-
quires support at the modelling level and architecture level.
Requirements reflection can be used to anticipate the evolution
of both functional and non-functional requirements.

REFERENCES

[1] N. M. Belaramani, C.-L. Wang, and F. C. M. Lau, “Dynamic component
composition for functionality adaptation in pervasive environments,” in
Proceedings of the The Ninth IEEE Workshop on Future Trends of
Distributed Computing Systems, ser. FTDCS ’03. IEEE Computer
Society, 2003, pp. 226–232.

[2] B. Magableh and S. Barrett, “Pcoms: A component model for building
context-dependent applications,” in Proceedings of the 2009 Computa-
tion World: Future Computing, Service Computation, Cognitive, Adap-
tive, Content, Patterns, ser. COMPUTATIONWORLD ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 44–48.

[3] ——, “Objective-cop: Objective context oriented programming,” in
International Conference on Information and Communication Systems,
ser. ICICS 2011, vol. 1, May 2011, pp. 45–49.

[4] ——, “Self-adaptive application for indoor wayfinding for individuals
with cognitive impairments,” in The 24th IEEE International Symposium
on Computer-Based Medical Systems, ser. CBMS 2011, vol. In press,
Lancaster, UK, June 2011, pp. 45–49.

[5] M. Wagner, R. Reichle, M. U. Khan, and K. Geihs, “Software develop-
ment method for adaptive applications in ubiquitous computing envi-
ronments,” http://www.ist-music.eu/MUSIC/results/music-deliverables/,
IST-MUSIC, Tech. Rep., Mar 2011, [Online; accessed 1-March-2011].

[6] M. U. Khan, “Unanticipated dynamic adaptation of mobile applications,”
Ph.D. dissertation, University of Kassel, Distributed Systems Group,
Kassel, Germany, may 2010.

[7] N. Paspallis, “Middleware-based development of context-aware appli-
cations with reusable components,” Ph.D. dissertation, University of
Cyprus, Department of Computer Science, Nov 2009.

[8] G. Lewis and L. Wrage, “Model problems in technologies for in-
teroperability: Model-driven architecture,” url=http://www.sei.cmu.edu/,
Software Engineering Institute, Tech. Rep., 2005.

[9] B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy,
and B. Steece, Software Cost Estimation with Cocomo II, 1st ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 2000.

[10] T. Calic, S. Dascalu, and D. Egbert, “Tools for mda software develop-
ment: Evaluation criteria and set of desirable features,” in Proc. of the
Fifth International Conference on Information Technology. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 44–50.

[11] Achilleas, “Model-driven petri net based framework for pervasive ser-
vice creation,” Ph.D. dissertation, University of Essex, 2010.

[12] “Enterprise collaboration architecture (eca) specification,”
http://www.omg.org/, pp. 1–202, Feb 2004.

[13] B. Magableh and S. Barrett, “Adaptive context oriented component-
based application middleware (coca-middleware),” in The 8th Inter-
national Conference on Ubiquitous Intelligence and Computing (UIC
2011), ser. UIC 2011, vol. In press, Banff, Canada, September 2011,
pp. 45–49.

[14] E. Dashofy, H. Asuncion, S. Hendrickson, G. Suryanarayana, J. Georgas,
and R. Taylor, “Archstudio 4: An architecture-based meta-modeling
environment,” in Companion to the proceedings of the 29th International
Conference on Software Engineering, ser. ICSE COMPANION ’07,
2007, pp. 67–68.

[15] “Enterprise architect 8,” http://www.sparxsystems.com.au/, December
2010, [Online; accessed 1-December-2010].

!:

	Model-Driven Productivity Evaluation for Self-Adaptive Context-Oriented Software Development
	Recommended Citation

	Model-Driven Productivity Evaluation for Self-Adaptive Context-Oriented Software Development

