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Abstract

An extension of the Camassa-Holm hierarchy is constructed in this
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1 Introduction

The Camassa-Holm equation (CH) [1]

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, (1)

where ω is a real constant parameter, describes the unidirectional propaga-
tion of shallow water waves over a flat bottom [1, 2]. It firstly appeared in
[3] as an equation with a bi-hamiltonian structure. CH is a completely inte-
grable equation [4, 5, 6, 7, 8, 9], describing permanent and breaking waves
[10, 11]. Its solitary waves are stable solitons if ω > 0 [12, 13, 14, 15] or
peakons if ω = 0 [1, 16]. CH arises also as an equation of the geodesic flow for
the H1 metrics on the Bott-Virasoro group [17, 18, 19]. The bi-Hamiltonian
form of (1) is [1, 3, 5]

mt = −(∂ − ∂3)
δH2[m]

δm
= −(2ω∂ + m∂ + ∂m)

δH1[m]

δm
, (2)

where

m = u − uxx, (3)

and the Hamiltonians are

H1[m] =
1

2

∫

mudx, (4)

H2[m] =
1

2

∫

(u3 + uu2
x + 2ωu2)dx. (5)

The integration is from −∞ to ∞ in the case of Schwartz class functions,
and over one period in the periodic case.

In [20] it is shown that CH has an infinite number of local conserved
quantities. A scheme for computation of the conservation laws is proposed
in [21, 22, 23]. In this contribution we present a scheme, providing an
explicit recurrent formula for the infinite sequence of independent integrals
of motion for a chain of CH type equations.

The equation (1) admits a Lax pair [1]

Ψxx =
(1

4
+ ζ(m + ω)

)

Ψ, (6)

Ψt =
( 1

2ζ
− u

)

Ψx +
ux

2
Ψ. (7)

Recently, various multi-component generalizations of the CH equation are
under intense investigation, e.g. [9, 24, 25, 26, 27] and probably some others.
In this work we also present a construction for a multi-component system,
which admits reduction to CH equation.
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To this end, instead of the Lax pair (6), (7), we consider a more general one,
leading to a hierarchy of Camassa-Holm type:

Ψxx = Q(x, λ)Ψ, (8)

Ψt = −U(x, λ)Ψx +
1

2
Ux(x, λ)Ψ, (9)

where

Q(x, λ) = λnqn(x) + λn−1qn−1(x) + . . . + λq1(x) +
1

4
, (10)

U(x, λ) = u0(x) +
u1(x)

λ
+ . . .

uk(x)

λk
. (11)

The compatibility condition of (8), (9) gives the equation

Qt =
1

2
Uxxx − 2UxQ − UQx, (12)

which, due to (10), (11), is equivalent to a chain of n evolution equations
with k+1 differential constraints for the n+k+1 variables q1, q2, . . ., qn, u0,
u1, . . ., uk (n and k are arbitrary natural numbers, i.e. positive integers):

qn−r,t = −
r

∑

s=max(0,r−k)

(2ur−s,xqn−s + ur−sqn−s,x), r = 0, 1, . . . , n − 1,

0 =
1

2
(ur,xxx − ur,x) −

min(n,k−r)
∑

s=1

(2ur+s,xqs + ur+sqs,x),

r = 0, 1, . . . , k − 1,

0 =
1

2
(uk,xxx − uk,x). (13)

The system (13) is similar to the hydrodynamic chain, studied in a series
of papers [28, 29, 30, 31], and to other CH generalizations [9, 24, 26, 27, 32].
Let us now consider the following examples.

Example 1: k = n = 2.
The choice u2 = −1/2 solves automatically one of the constraints. The

other two differential constraints can be easily integrated, giving

q1 = u1 − u1,xx + ω1, (14)

q2 = u0 − u0,xx + 3u2
1 − u2

1,x − 2u1u1,xx + 4ω1u1 + ω2, (15)

where ω1,2 are arbitrary constants. The system of equations for u0, u1 is
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q2,t + 2u0,xq2 + u0q2,x = 0, (16)

q1,t + 2u0,xq1 + u0q1,x + 2u1,xq2 + u1q2,x = 0. (17)

Example 2: k = 1, n = 2.
This system was studied in more details in [25]. In the notations u0 ≡ u,

q1 ≡ −q and q2 ≡ ρ2, and with the choice u1 = −1/2, the system can be
written in the form

qt + uqx + 2qux − ρρx = 0, (18)

ρt + (uρ)x = 0, (19)

where q = u − uxx + ω and ω is an arbitrary constant.
Example 3: CH equation
CH can be considered as a reduction from the system (14) – (17). Indeed,

one can obtain an integrable reduction of (14) – (17) by taking u1 = ω1 = 0.
Then q1 = 0, q2 = u0 − u0,xx + ω2 and (16) is exactly the CH equation (1)
with u ≡ u0 and ω ≡ ω2. Equation (17) is trivially satisfied. Thus, the CH
corresponds to a Lax pair with

Q(x, λ) = λ2q2(x) +
1

4
, U(x, λ) = u0(x) −

1

2λ2
. (20)

It is not difficult to recover the Lax pair (6) – (7) by identifying ζ = λ2.
CH can also be obtained as a reduction from (18) – (19) by setting ρ = 0.

2 Generating Function for the Integrals of Motion

Introducing

p =
Ψx

Ψ
, (21)

from (8) we obtain (cf. [33, 34, 21])

px + p2 = Q(x, λ). (22)

Then, from (9), (21) and (22) the following conservation law follows:

pt =
(1

2
Ux − pU

)

x
. (23)
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Therefore p(x, λ), regarded as a solution of (22), is the density of the gen-
erating function of the conservation laws. We notice that the densities are
determined up to a constant. Indeed, if α(λ) is an arbitrary function of λ,
the quantity P = p + α is also a generating function, since it satisfies

Pt =
(1

2
Ux − PU + αU

)

x
. (24)

We can use this freedom to fix the convergency properties of the integrals
representing the conserved quantities.

Clearly, p is related to the scattering matrix [7] when the Schwartz class
of solutions is considered, or to the monodromy matrix in the periodic case
[34].

Now it is evident that (23) or (24) represent a parameter-dependent
conservation law, which is equivalent to a sequence of infinitely many con-
servation laws.

Indeed, since λ is an arbitrary (spectral) parameter, one can expand the
solution p(x, λ) of (22) about λ = ∞. Let us suppose for simplicity that
n = 2a is an even number. (The case when n is odd is handled in a similar
manner, e.g. by introducing a new spectral parameter ζ, such that λ = ζ2,
see the CH case [21, 23], where n = 1). Then

p(x, λ) = paλ
a + . . . + p1λ + p0 + +

∞
∑

s=1

p−s

λs
. (25)

There are finitely many positive powers in λ due to their presence in the RHS
of (22). From (23) and (25) the following infinite sequence of conservation
laws follows (it is assumed ur ≡ 0 for r > k):

pa−r,t = −
(

r
∑

s=0

ur−spa−s

)

x
, r = 0, 1, . . . , a − 1,

p−r,t =
(1

2
ur,x −

a+r
∑

s=0

ua+r−spa−s

)

x
, r = 0, 1, . . . . (26)

Let us now expand the solution p(x, λ) of (22) about λ = 0:

p(x, λ) = p0 +
∞
∑

s=1

psλ
s. (27)

Note that the expansion coefficients ps in (27) are not the same as those
in (25). From (23) and (27) another infinite sequence of conservation laws
follows:
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pr,t = −
(

k
∑

s=0

usps+r

)

x
r = 1, 2, . . . ,

p0,t =
(1

2
u0,x −

k
∑

s=0

usps

)

x
, (28)

and in addition, some of the constraints can be rewritten in the form:

(1

2
ur,x −

k−r
∑

s=0

ur+sps

)

x
= 0, r = 1, 2, . . . , k. (29)

In general, there are two different solutions of (22). However, these
solutions do not represent independent integral densities of conserved quan-
tities, due to the following result, showing that each of the solutions can be
expressed linearly through the other one, up to an exact derivative:

Lemma 1 If p+(x, λ) and p−(x, λ) are two different solutions of (22), then
there exists a function f(x, λ), such that

p+(x, λ) = −p−(x, λ) + fx(x, λ). (30)

Proof. Writing (22) for p+(x, λ) and p−(x, λ) and subtracting the two
equations we obtain immediately f(x, λ) = − ln[p+(x, λ) − p−(x, λ)].

3 Computation of the Conserved Quantities

In order to find the integral densities, one needs to compute explicitly the
expansion coefficients in (25), (27). In this Section we will illustrate the
method at the system from Example 1. (The conservation laws for the CH,
Example 3, follow immediately via the described reduction.) Clearly, one
can apply an analogous procedure to any particular case of the system (13).

Before going into the actual computations, the following observation is
in order. Exactly as in [7, 35], using only (16) one can prove that q2(x, t)
does not change sign if q2(x, 0) does not. The idea of proof is as follows.
Consider the diffeomorphism of the line ϕ(x, t), such that

ϕt = u0(ϕ(x, t), t), ϕ(x, 0) = x. (31)

The solution of (31) is unique and represents an increasing diffeomorphism
(ϕx > 0 for all t) of R ∋ x [35]. Then, using (16) and (31), one can check
that

q2(ϕ(x, t), t)ϕ2
x(x, t) = q2(x, 0) (32)
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and the claim easily follows. Then, for simplicity, in order to make sense of
the expressions like

√

q2(x, t), 1/
√

q2(x, t), etc; we assume that the initial
data is such that q2(x, 0) does not change sign, i.e. q2(x, 0) > 0.

Also, in the case when u0, u1, ... are Schwartz class functions, it may
happen that the integral density at x → ±∞ is not zero but a constant.
Then, in order to make sense of the integral, the density obviously should
be reduced by the same constant, cf. (24).

The equation (22) is

px + p2 =
1

4
+ λq1 + λ2q2, (33)

and admits a solution of the form (25):

p = p1λ + p0 +

∞
∑

s=1

p−s

λs
, (34)

where p1 = ±√
q2, i.e. there are two solutions of (33). Since these two

solutions do not produce independent integral densities due to the Lemma
1, we proceed with, say, p1 =

√
q2. The first nontrivial integral from here is

h1 ≡
∫

p1dx =

∫

√
q2dx. (35)

From (33) and (34) we have

2p1p0 + p1,x = q1, p0 =
q1

2
√

q2
−

q2,x

4q2
. (36)

Neglecting the exact derivative, we obtain the integral

h0 =
1

2

∫

q1√
q2

dx. (37)

The next equation,

p2
0 + 2p1p−1 + p0,x =

1

4
, (38)

gives

p−1 =
1

32

( 4
√

q2
+

q2
2,x

q
5/2
2

−
4q2

1

q
3/2
2

)

+
( q2,x

8q
3/2
2

−
q1

4q2

)

x
, (39)
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and thus we obtain the integral

h−1 =
1

32

∫

( 4
√

q2
+

q2
2,x

q
5/2
2

−
4q2

1

q
3/2
2

)

dx. (40)

It is not difficult to derive the general recurrent formula from (33) and
(34):

hj =

∫

pjdx, j = 1, 0,−1, ..., (41)

p1 =
√

q2, p0 =
q1

2
√

q2
−

q2,x

4q2
, p−1 =

1

2p1

(1

4
− p2

0 − p0,x

)

, (42)

p−j = −
1

2p1

(

j−1
∑

i=0

p−ip−j+i+1 + p−j+1,x

)

, j ≥ 2. (43)

Now from (42), (43) and (23) one can express the conservation laws in
differential form (26) with a = 1:

p1,t = −(u0p1)x,

p0,t =
(1

2
u0,x − u0p0 − u1p1

)

x
,

p−1,t =
(1

2
u1,x +

1

2
p1 − u1p0 − u0p−1

)

x
,

p−j,t =
(1

2
p−j+2 − u0p−j − u1p−j+1

)

x
, j ≥ 2. (44)

The reduction of (41) – (44) to the CH case (Example 3) is straightfor-
ward via q1 = u1 = 0. All even densities, p0, p−2, ... are exact derivatives
and do not produce independent integrals of motion. Each of the remaining
odd densities p1, p−1, p−3, ... produces only one independent integral of
motion. Thus the CH integrals are h1, h−1, h−3, . . . .

Let us now take the expansion (27). Since in this case u2 = −1/2, from
(29) for r = k it follows that p0,x = 0 and then from (22), p0 = ±1/2. Due
to the Lemma 1, we consider here only the first possibility, i.e. p0 = 1/2:

p =
1

2
+

∞
∑

s=1

psλ
s. (45)

Note that in (45) p1 is not the same as in (34). From (33) and (45) we
obtain

p1 + p1,x = q1, (46)
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which due to (14) has a solution

p1 = u1 − u1,x + ω1, (47)

leading to the integral (h1 is not the same as in (35))

h1 =

∫

u1dx. (48)

The next equation from (33) and (45) is

p2 + p2,x + p2
1 = q2. (49)

Using (15), (47) one can verify that

p2 = u0 − u0,x + 2u2
1 − 2u1u1,x + 2ω1u1 − ω2

1 + ω2. (50)

Then the next independent integral is

h2 =

∫

(u0 + 2u2
1)dx + 2ω1h1. (51)

The equation for p3 is

p3 + p3,x + 2p1p2 = 0, (52)

giving

h3 =

∫

p3dx = −2

∫

p1p2dx, (53)

where p1 and p2 are given by (47), (50). We notice that formally (see (52))

p3 = −(1 + ∂x)−12p1p2. (54)

The equation for p4 is

p4 + p4,x + 2p1p3 + p2
2 = 0, (55)

and thus
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h4 =

∫

p4dx = −
∫

(2p1p3 + p2
2)dx. (56)

In order to express
∫

p1p3dx only via the known p1 and p2 we proceed as
follows, using (52), (47) and neglecting total derivatives:

∫

p1p3dx = −2

∫

p2
1p2dx −

∫

p1p3,xdx =

−2

∫

p2
1p2dx −

∫

(u1 − u1,x + ω1)p3,xdx =

−2

∫

p2
1p2dx −

∫

(u1p3,x + u1,x(2p1p2 + p3))dx =

−2

∫

p2
1p2dx −

∫

((u1p3)x + 2u1,xp1p2)dx =

−2

∫

p1p2(u1,x + p1)dx = −2

∫

p1p2(u1 + ω1)dx =

−2

∫

p1p2u1dx + ω1h3. (57)

Finally,

h4 =

∫

(4u1p1p2 − p2
2)dx − 2ω1h3. (58)

The densities for the higher integrals are, in general, nonlocal.
To summarize: the conserved quantities are

hj =

∫

pjdx, j = 1, 2, . . . , (59)

where according to (33) and (45) the integral densities pj can be computed
recurrently:

pj = −(1 + ∂x)−1
j−1
∑

i=1

pipj−i, j ≥ 3, (60)

where p1 and p2 are given in (47), (50), e.g. see (54). Again from (60) and
(23), the conservation laws can be expressed in differential form (28):

pj,t =
(1

2
pj+2 − u1pj+1 − u0pj

)

x
, j = 1, 2, . . . . (61)
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The reduction to CH (Example 3) goes as follows. With q1 = u1 = ω1 =
0 we have (47) p1 = 0 and from (50), bearing in mind that in this case
u0 ≡ u, ω2 ≡ ω,

p2 = u − ux + ω. (62)

Then, clearly all odd integral densities are zero. Furthermore, h2 gives the
CH integral H0 =

∫

mdx and h4 leads to H1 [recall (4)]. Now we can verify
that the reduction of h6 leads to the second CH Hamiltonian H2 [recall (5)].

The equation for p6 with the reduction is

p6 + p6,x + 2p2p4 = 0, (63)

and correspondingly

h6 = −2

∫

p2p4dx. (64)

The equation for p4, (55) now is

p4 + p4,x + p2
2 = 0, (65)

and therefore, in order to compute
∫

p2p4dx we proceed as follows. Multi-
plying (65) by p2 and then using (65) and (62) we obtain:

∫

p2p4dx = −
∫

p3
2dx −

∫

p2p4,xdx =

−
∫

p3
2dx −

∫

(u − ux + ω)p4,xdx =

−
∫

p3
2dx −

∫

(up4,x + ux(p2
2 + p4))dx =

−
∫

p3
2dx −

∫

((up4)x + uxp2
2)dx =

−
∫

p2
2(ux + p2)dx = −

∫

p2
2(u + ω)dx =

−
∫

(u3 + uu2
x + 2ωu2)dx − 3ω2H0 − 2ωH1,

leading to the independent integral

H2 =
1

2

∫

(u3 + uu2
x + 2ωu2)dx.

In other words, the CH conserved quantities are reproduced by the even
integrals h2, h4, h6, . . . .
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