
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computer Science

2011

Detecting the Onset of Dementia using Context-Oriented Detecting the Onset of Dementia using Context-Oriented

Architecture Architecture

Basel Magableh
Technological University Dublin, 453543@tudublin.ie

Nidal AlBeiruti
nbeiruti@glam.ac.uk

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Magableh, B., AlBeiruti, N.(2011) Detecting the Onset of Dementia Using Context-Oriented Architecture.
5th International Conference and Exhibition on Next Generation Mobile Applications, Services, and
Technologies (NGMAST’12), 1, Paris, France, Sept. doi : 10.21427/2trz-2m29

This Article is brought to you for free and open access by the School of Computer Science at ARROW@TU Dublin. It
has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomart%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Dublin Institute of Technology
ARROW@DIT

Dissertations School of Computing

2012

Detecting the Onset of Dementia Using Context-
Oriented Architecture
Basel Magableh

Nidal AlBeiruti

Follow this and additional works at: https://arrow.dit.ie/scschcomdis

Part of the Computer Engineering Commons

This Conference Paper is brought to you for free and open access by the
School of Computing at ARROW@DIT. It has been accepted for inclusion
in Dissertations by an authorized administrator of ARROW@DIT. For
more information, please contact yvonne.desmond@dit.ie,
arrow.admin@dit.ie, brian.widdis@dit.ie.

https://arrow.dit.ie?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.dit.ie/scschcomdis?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.dit.ie/scschcom?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.dit.ie/scschcomdis?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie

Detecting the Onset of Dementia using
Context-Oriented Architecture

Basel Magableh
School of Computer Science and Informatics,

University College Dublin

Dublin, Ireland

Email:basel.magableh@ucd.ie

Nidal AlBeiruti
Centre of Excellence in Mobile Applications and Services

Faculty of Advanced Technology,

University of Glamorgan, UK

Email: nbeiruti@glam.ac.uk

Abstract—In the last few years, Aspect Oriented Software De-
velopment (AOSD) and Context Oriented Software Development
(COSD) have become interesting alternatives for the design and
construction of self-adaptive software systems. An analysis of
these technologies shows them all to employ the principle of the
separation of concerns, Model Driven Architecture (MDA) and
Component-based Software Development (CBSD) for building
high quality of software systems. In general, the ultimate goal
of these technologies is to be able to reduce development costs
and effort, while improving the adaptability, and dependability
of software systems. COSD, has emerged as a generic devel-
opment paradigm towards constructing self-adaptive software
by integrating MDA with context-oriented component model.
The self-adaptive applications are developed using a Context-
Oriented Component-based Applications Model-Driven Architec-
ture (COCA-MDA), which generates an Architecture Description
language (ADL) presenting the architecture as a components-
based software system. COCA-MDA enables the developers to
modularise the application based on their context-dependent
behaviours, and separate the context-dependent functionality
from the context-free functionality of the application. In this
article, we wish to study the impact of the decomposition
mechanism performed in MDA approaches over the software
self-adaptability. We argue that a better and significant advance
in software modularity based on context information can increase
software adaptability and increase their performance and modi-
fiability.

Index Terms—model-driven architecture, context oriented pro-
gramming, component composition, self-adaptive application,
context oriented software development, ambient assisted living.

I. INTRODUCTION

Context-dependent applications refer to a class of soft-

ware systems that are able to monitor and detect context

changes in the environment where they operate. They can

autonomously modify their own structure and behaviour in

response to context changes [1]. Software in distributed and

mobile computing environments needs to cope with variability

as software systems are deployed on an increasingly large

diversity of computing platforms and operate in different

execution environments. Mobility induces context changes to

the computational environments and therefore changes to the

availability of resources, and continuously evolving require-

ments require software systems to be able to adapt to context

changes [2]. Moreover, because of the software pervasiveness,

and in order to make adaptation effective and successful,

adaptation processes must be considered in conjunction with

dependability and reliability by providing dynamic verification

and validation of the adaptation output among the adaptation

goals, objectives, and architecture quality attributes [2].

In the classical view of object-oriented software develop-

ment, the modular structure for software systems has rested

on several assumptions. These assumptions may no longer

characterize the challenge of constructing self-adaptive soft-

ware systems that are to be executed in mobile computing

environments [3]. The most important assumptions in object-

oriented development methodologies are that the decision to

use or reuse a particular component/object is made at the

time the software is developed. However, the development

of a variety of modern self-adaptive software architectures

such as mobile/ubiquitous computing, and component-based

and context-oriented software has emphasized on deferring

these decisions about component selection until runtime. This

might increase the software capabilities in terms of variability,

adaptability, and maintainability, and increase the anticipatory

level of the software by loading a particular component/service

that can handle unforeseen context changes dynamically.

The hypothesis presented here is that self-adaptive software

engineering requires to consider the context information and

context-dependent behaviours in the analysis, design and im-

plementation of self-adaptive software. In particular, software

composition must be considered in conjunction with context-

dependent behavioural variations and the contextual changes,

which provides context-driven adaptation and self-adaptability.

To achieve this target, Context Oriented Software De-

velopment (COSD) was proposed as a generic develop-

ment methodology, which facilitates the development of

self-adaptive context-oriented software. The COSD inte-

grates a model-driven architecture approach (Context-Oriented

Component-based Applications Model-Driven Architecture

(COCA-MDA)) [4] with a behavioural decomposition strategy,

based on the observation of context information in require-

ments analysis and modelling phase. As a result of com-

bining a decomposition strategy with COCA-MDA, a set of

behavioural units is produced. Each unit implements several

context-dependent functionalities. The context-oriented com-

ponent model (Context-Oriented Component model (COCA-

component)) encapsulates code fragments of the context-

2012 Sixth International Conference on Next Generation Mobile Applications, Services and Technologies

978-0-7695-4803-6/12 $26.00 © 2012 IEEE

DOI 10.1109/NGMAST.2012.50

24

dependent functionality in distinct components and decouples

them from the core-functionality components.

Aspect Oriented Software Development (AOSD) [5] and

COSD [4] are the alternatives for the design and construction

of self-adaptive software. Their ultimate goal is to support

the adaptability and variability of software systems, and to be

able to reduce development cost and effort, while improving

the software modularity and complexity. This motivates us to

evaluate these technologies with respect to their ability to sup-

port software adaptability (modifiability) and the performance

gain from using these technologies to implement the case study

application in a mobile computing environment [4].

The rest of the article is structured as follows. Sec-

tion II discusses behavioral variability support in context-

oriented programming and aspects. Section III describes the

Context-Oriented Software Development Paradigm. Section

III-A demonstrates a case study designed using the COCA-

MDA and implemented with the COCA-middleware. The

Context-Oriented Software is evaluated in terms of energy

utilisation and adaptation time as discussed in Section IV. The

conclusions of this study and future works are discussed in

Section V.

II. VARIABILITY MANAGEMENT WITH

CONTEXT-ORIENTED PROGRAMMING AND ASPECTS

Mobile computing infrastructures make it possible for mo-

bile users to run software services on heterogeneous and

resource-constrained platforms. Heterogeneity and device lim-

itedness create a challenge for the development and deploy-

ment of mobile services that are able to run in the execution

context and are able to ensure that users experience the

best quality of services according to their needs and specific

contexts of use. Thus, it is desirable that self-adaptive software

is able to reconfigure and re-optimise itself by recomposing

components or services dynamically, according to the opera-

tional context [6].

Compositional adaptation enables a software system to

adapt a new structure/behaviour for anticipating concerns that

were unforeseen during the original design of the software.

Normally, compositional adaptation can be achieved using the

separation of concerns techniques, computational reflection,

component-based design, and adaptive middleware [7]. The

separation of concerns enables the software developers to sep-

arate the functional behaviour and the crosscutting concerns of

self-adaptive applications. Crosscutting concerns are properties

or areas of interest such as quality of service, energy con-

sumption, location awareness, users’ preferences, and security.

The functional behaviour refers to the business logic of an

application [7]. Context-dependent behavioural variations are

heterogeneous crosscutting concerns and a set of collaborated

aspects that extend the application behaviour in several parts

of the program and their code have an impact across the

whole software. Before encapsulating crosscutting context-

dependent behaviours into software modules, the developers

must first identify them in the requirements documents. This is

difficult to achieve because, by their nature, context-dependent

behaviours are tangled with other behaviours, and are likely

to be included in multiple parts of the software modules.

Using intuition or even domain knowledge is not necessarily

sufficient for the developers to identify the context-dependent

parts of self-adaptive applications.

Context-Oriented Programming (COP) provides a dynamic

fine-grained behavioural adaptation mechanism, which uses

a programming-level technique for performing the adaptation

[8]. In COP, context can be handled directly at the code level

by enriching the business logic of the application with code

fragments responsible for performing context manipulation,

thus providing the application with a code block, that imple-

ments the required behaviour [6]. The assumptions made by

the COP approaches proposed in [8], i.e. that the developer

knows all the possible software adaptations in advance and

designs the application accordingly. As an outcome, the antic-

ipated adjustment is restricted to the amount of code blocks

offered by the developers. In addition, COP has no separation

between the application’s business and adaptation logic. the

context model and the adaptation logic are explicitly hard-

coded in the application’s business code; this often leads to

poor scalability and maintainability [6].

However, for a more complex context-dependent software

system, the same context information would be triggered

in different parts of an application and would trigger the

invocation of additional behaviour. In this way, context manip-

ulation becomes a concern that spans several application units,

essentially crosscutting into the main application execution

[9]. A programming paradigm aiming at handling such cross-

cutting concerns (referred to as aspects) is Aspect-Oriented

Programming (AOP) [10]. Using the AOP paradigm, context

information can be handled through aspects that interrupt

the main application execution. The idea behind AOP is to

implement crosscutting concerns as aspects whereas the core

features are implemented as components. Using pointcuts

and advice, an aspect weaver glues aspects and components

together. Pointcuts specify the join points of aspects and

components, whereas advice define which code is applied to

these points. In this sense, the aspect-oriented development

paradigm can be used to handle homogeneous behavioural

variations where the same piece of code can be invoked in

several software modules [11]. On the other hand, context-

driven adaptation requires a set of collaborated aspects to be

executed in several software modules i.e. Executing multiple

code fragments in several parts of the program at the same

time.

Tanter et al. [12] proposed context-aware aspects, which

supports context-driven adaptation by designing pointcuts that

depend on different context conditions, so that advices would

only be executed in specific context conditions. Current AOP

languages have limited support for context condition expres-

sion. First, they are not able to consider past context. Second,

they are not able to express context-dependencies in aspects.

Designing aspects that become active when particular contexts

are verified, require the possibility to refer to a context defi-

nition in a pointcut construction. That means join points like

25

BeInContext(Context LocationCtx) should be provided by the

framework. Another important ability of a framework should

be giving an overview about all actual and past activated

contexts, so that pointcuts can be designed on the base of this

information. In other words, the AOP framework needs to keep

track of past context conditions and their associated states.

This is called context snapshotting [12], and the saved state of

one context condition at a given point of time is called context

snapshot. A global context snapshot is therefore a snapshot

of all context conditions at a given point in time. Context

snapshots are only made at a special point of time, because

otherwise it would lead to high memory usage. Therefore the

main problem is to define the right points of time to take

such context snapshots. The actual current solution is to take

snapshots of context conditions only if necessary as stated in

the Reflex framework [13].

The following section proposes the COSD development

methodology, that applies to the Model-driven Architecture

style. The COCA-MDA methodology’s phases and tasks are

described in detail and show the process of constructing a case

study application.

III. CONTEXT-ORIENTED SOFTWARE DEVELOPMENT

PARADIGM

In order to overcome the problem and the challenges

of engineering self-adaptive software, this article contributes

to the knowledge by evaluating the impact of COSD over

software adaptability. COSD was proposed as a generic and

standard development paradigm towards constructing self-

adaptive software from context-oriented components, which

enables a complete runtime composition of the context-

dependent behaviours and provides the software with capa-

bilities of self-adaptability and dependability in mobile com-

puting environment. Our model is based on a decomposition

strategy of self-adaptive software based on context, which

provides flexible mechanism for modularising the software

into several composable units of behaviour and decouples

the context-dependent from the context-free parts. Because

each context-dependent functionality realises multiple volatile

context-dependent behaviour. The context-oriented component

model (COCA-component) encapsulates their implementation

in distinct architectural units and provides several benefits for

the software. This differs from the majority of contemporary

works, which seek to embed awareness of context in the

functional implementation of applications.

The adaptive software operates through a series of substates.

The substates are represented by j, and j might represent a

known or unknown conditional state k. Examples of known

states in the generic form include detecting context changes

in a reactive or proactive manner, so the developers are able to

specify decision policy (k), which controls the adaptation in

the associated state (Si). Each decision policy (k) is attached

to a decision point (DP)j, which controls the transformation

T(jk) of the self-adaptive software form statei into statei+1,

when the application receives context changes (Ci) from the

computational environment, as shown in Figure 1.

Fig. 1: Behavioural Decomposition Model

In the presence of uncertainty and unforeseen context

changes, a self-adaptive application might be notified about

an unknown condition prior to the software design. Such

adaptation is reflected in a series of context-system states.

(C + S)ji denotes the ith combination of context-dependent

behaviour, which is related to the Decision Point (DP)j by the

notion mode Mjk. In this way, the development methodology

decomposes the software into a set of context-driven and

context-free states. At runtime, the middleware transforms the

self-adaptive software form statei into statei+1, considering

a specific context condition Tjk, as shown in Figure 1.

This enables the developer to clearly decide which part of

the architecture should respond to the context changes Tjk,

and provides the middleware with sufficient information to

consider a subset of the architecture during the adaptation.

This enhances the adaptation process, impact, and cost and

reduces the computation overhead from implementing this

class of applications in mobile devices.

Context-driven adaptation requires dynamic composition of

context-dependent parts, which enables the middleware to add,

remove, or reconfigure components within an application at

runtime. Each component embeds a specific context-dependent

functionality (C + S)ji, realized by a COCA-component.

Each COCA-component realizes several layers that encap-

sulate a fragment of code related to a specific software

mode layer(Mjk), as shown in Figure 1. The developers

have the option to provide a decision policy (k) for each

(DP)j for a specific context-related condition. Hereafter, the

COCA-components are dynamically managed by Context-

Oriented Component-based Applications Middleware (COCA-

middleware) and their internal parts to modify the application

behaviour. The COCA-middleware performs context monitor-

ing, dynamic decision-making, and adaptation, based on policy

evaluation.

The COCA-middleware shown in Figure 2 performs the

adaptation processes, including context monitoring and de-

tecting and dynamic decision-making, and maintains the ar-

chitecture quality attributes during the adaptation. The con-

text manager performs context monitoring and detecting. It

employs the observer design pattern for binding the context

26

Fig. 2: COCA-platform architecture.

provider with the context consumer [14]. The adaptation

manager performs dynamic decision-making, and adaptation,

based on policy evaluation. The policy manager evaluates the

decision policies that were predefined in the design phase.

The verification manager verifies the adaptation among the un-

derlying requirements, adaptation goals and decision polices;

and it can verify the adaptation output among the available

resources and the trade-off between the quality attributes

of the architecture. The component manager instantiate the

component implementation using the bundle design pattern

[15]. Developing the application using COCA-MDA enables

the COCA-middleware to determine which parts need to be

changed and how to change them to achieve the best output

and enable the component model to employ the delegation

design pattern [15]. Developing the application using COCA-

MDA enables the COCA-middleware to determine which parts

need to be changed and how to change them to achieve the

best output and enable the component model to employ the

delegation design pattern [15]. The COCA-middleware design

principles and the adaptation mechanism were described by

Magableh and Barrett [14].

The COCA-MDA provides the developers with the ability

to specify the adaptation goals, actions, and causes asso-

ciated with several context conditions using a policy-based

framework. For each COCA-component, the developers can

embed one or more Decision PoLicys (DPLs) that specify

the architecture properties. The DPL is described by a state-

machine model based on a set of internal and external variables

and conditional rules. The rules determine the true action or

else an action based on the variable values. The action part of

the state diagrams usually involves invoking one or more of

the component’s layers. A single layer is activated if a specific

context condition is found, or deactivated if the condition is

not found.

Fig. 3: Context-oriented component-based application model-

driven architecture (COCA-MDA)

A. Self-adaptive Context-Oriented Component-based Applica-
tion Example

The Context-Oriented Component-based Architecture, and

the development methodology were described in [4], [14].

This article focuses on the validation and evaluation of the

context-oriented software. To this aim, we have considered

Computational and Sensory Detection of Dementia (CaSDD)

application as a case study described in the following scenar-

ios.

Fig. 4: CaSDD Architecture

The paradigm of Ambient Assisted Living (AAL) [16] has

been gaining more interest recently. AAL paradigm mainly

originates as a result of the merger between two streams which

are assisted living and ambient intelligence. AAL solutions

leverage the concept of aging-in-place which has proven to be

very valuable especially under the current austerity measures

all over the world and because of the increase in the ratio of

care receivers to the number of social care providers [17]. As

part of the big paradigm, elderly monitoring, in order to collect

data about their medical or non-medial status, utilizes the

vigorous technological leap in the communication, hardware

and software arenas especially in the field of Wireless Sensor

Networks (WSNs) and human behaviour modelling algo-

rithms. The solution depicted in Figure 4 is aimed at detecting

and predicting the onset of dementia by monitoring activities

27

of daily life of elderly people within their home environments.

Abnormal behaviour is a very early symptom of the onset of

dementia. Sensors can be deployed in each room within the

home environment as illustrated in Figure 4. Simple sensors

such as Passive Infra Red (PIR), temperature, luminosity and

utilities’ meters sensors are preferred to complex and invasive

sensors such as video [17]. Data collected from those sensors

will form a raw context that will be gathered on a centralized

home gateway within the household. This raw context needs to

be processed to remove any uncertainties and extract necessary

features that will enable modelling the human behaviour for

the elderly person who is living within that house. After

building a statistical model and setting up thresholds, any

abnormal behaviour can be detected and therefore may herald

the onset of dementia. However, the system will integrate with

third-parties as indicated in the figure and this underlines the

important factor that the framework is not supposed to take

decisions but to instigate actions.

The deployed sensors will generate valuable context data

that can be used for multiple purposes, specially predicting and

detecting abnormal behaviour of the subject (elderly person).

This can only be achieved, if the software system is able to

provide a reasonable conclusions about the subject’s context

data, which includes:

• The location/room

• The activity level within a room which is the number of

firings of the PIR sensor:

– Elapsed time between sensor’ readings:

∗ Two consecutive readings from the same sensor

mean that the subject is in the same room (inac-

tivity time).

∗ Two consecutive readings from different sensors

mean that the subject is moving from one room

to another.

– The frequency of movement firings within the same

room (activity time).

• No sensors’ firings at all can be considered a feature

where it means that the subject is not available.

• Temperature, luminosity and utilities’ meter readings can

have their own features or can be used in other stages to

mitigate uncertainty.

The contextual data in the above list provides multiple

variations of context-dependent behaviours, which presents

a challenge for decision support members to analysis be-

havioural variation according to a specific context and activity

level. The field of assisted living and ambient intelligence can

take advantage of the growing technology of self-adaptability

and context-awareness, which provides a dynamic decision-

making and provides the software with autonomic attributes

such as self-organizing and self-healing. To this aim, this ar-

ticle focuses on demonstration how context-oriented software

development can be used for building assisted living appli-

cation. However, adapting the context-dependent functionality

according to the current subject living within the household

will enable inferring a more accurate behavioural model. In

addition, it can protect those resource constrained sensors from

power depletion and thus missing important data.

IV. COSD VS. AOSD EXPERIMENTS

This section focuses on evaluating the performance and

modifiability quality attributes of context-oriented software,

including the COCA-middleware and the case study imple-

mentation of the CaSDD application. AOSD [5] and COSD are

the alternatives for the design and construction of self-adaptive

software. Their ultimate goal is to support the adaptability

and variability of software systems, and to be able to reduce

development cost and effort, while improving the software

modularity and complexity. This motivates this study to eval-

uate these technologies with respect to their ability to support

software adaptability (modifiability) and the performance gain

from using these technologies to implement the case study

application in a mobile computing environment. This article

claimed that COSD is better suited to dynamic context-driven

adaptation in the mobile computing domain. To this end, an

evaluation of the two major paradigms (AOSD and COSD) is

required to find out which one is better suited to developing

self-adaptive applications.

The assumption made by the AOSD communities is that

dynamic aspect weaving can be used to adjust the software

behaviour dynamically, regardless of the complexity involved

in implementing Aspect-Oriented Programming (AOP) appli-

cations. Existing Dynamic AOP techniques tend to add a

substantial overhead in both execution time and code size

[18]. The CaSDD implementation was re-engineered to be

integrated with the Objective-C AOP framework [19]. As a

result, several aspects were implemented which implement

context monitoring and detecting. In addition, the context-

dependent behaviours for the location service, activity level,

and the frequency of moments were implemented. However,

for the location service, there are three nested aspects imple-

mented to provide behavioural variation of the battery level.

These aspects are the GPS-based, WiFi-based, and IP-based

location services. In COSD, these aspects are implemented

using three COCA-components, as demonstrated in Section

III-A.

A. Experiment 1: Context Monitoring and Detection

For the context detection process, both implementations

were evaluated based on the above criteria. The evaluation

results for energy usage are shown in Figure 5. The evaluation

results show that DAOP-CaSDD consumes more energy to

notify the application components about multiple context

changes which were detected in short frequency. This requires

more CPU activity to process the context changes and evaluate

them with the passive context values stored in the joinpoints.

The CPU activity for both applications is demonstrated in Fig-

ure 6. In addition, the Dynamic Aspect Oriented Programming

(DAOP) application requires more memory for allocating the

aspect contexts and notifying them because each aspect must

be allocated and executed. The AOP framework then notifies

the aspects about the context changes. Later, the decision is

28

left to the aspect methods implementation to decide whether

to adapt or not. Such implementation of the context detec-

tion process using DAOP intensively consumes the allocated

resources to notify multiple aspects about multiple events. In

some cases, the aspect implementation was independent of the

execution context, but it was executed and notified.

0

25

50

75

100

Energy usage

67.70
79.20

P
o

w
e

r
co

n
su

m
p

ti
o

n
 %

DAOP-CaSDD COCA-CaSDD

Fig. 5: Context Monitoring and Detection Battery Usage

0%

25%

50%

75%

100%

CPU activity

21%
40%

CONTEXT MONITORING

M
il

li
se

co
n

d

DAOP-CaSDD COCA-CaSDD

Fig. 6: Context Monitoring and Detection CPU Activity

B. Experiment 2: Collaborated Aspect Activation

It is claimed that in AOSD, dynamic aspect weaving can

inject tangle-free code in the program execution; as explained

before, context-dependent behaviours are collaborated aspects

entangled with each other. It is claimed that in COSD,

COCA-components can be activated dynamically to adjust

the application behaviour, with affordable costs, during the

adaptation. Designing context-dependent behaviour using an

aspect-oriented programming paradigm requires platform sup-

port for activating aspects driven by the context state; such

an implementation requires the AOP platform to evaluate

each joinpoint in conjunction with the associated context

state and the passive context values. In addition, once the

decision has been made, the AOP platform must search for

the associated method implementation which implements the

required context-dependent behaviour. Moreover, from our

own experience, it is very complex to decide which aspect

should be woven first, because of the implicit dependence

among the aspect implementations. For example, the platform

should decide when the battery level is low, and which aspects

must be activated. On the other hand, when activating the

location aspect, the platform must consider the battery level

before deciding the frequency of sampling for 30 minutes;

such processes provide cyclic dependence among the aspects

implementations and lead to unguaranteed adaptation outputs.

Figure 7 shows the battery usage when multiple contextual

aspects are activated and executed compared with the com-

position of multiple COCA-components. The figure shows

that the DAOP-CaSDD consumes more energy to perform

the adaptation as it requires more energy to process the

context state in each joinpoint. In addition, it requires the

AOP framework to resolve the dependence between several

aspects before and after the advice methods execution. The

CPU activity is shown in Figure 8.

50%

62.5%

75%

87.5%

100%

Energy Usage

69.286%
79.643%

COLLABORATED ASPECTS/COCA-COMPONENTS ACTIVATION

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

DAOP-CaSDD COCA-CaSDD

Fig. 7: Activating Collaborated Aspects/COCA-components

Battery Usage

1%

25.75%

50.5%

75.25%

100%

CPU Activity

18.06%

47.34%

COLLABORATED ASPECTS/COCA-COMPONENTS ACTIVATION

M
il

li
se

co
n

d

DAOP-CaSDD COCA-CaSDD

Fig. 8: Activating Collaborated Aspects/COCA-components

CPU Activity

The aspects composition needs to keep track of past context

conditions and their associated states; more CPU activity and

memory allocation are needed to perform this functionality.

This experiment describes how each platform responds to mul-

tiple events detected at the same time. The adaptation/recon-

figuration time for composing aspects/components is shown

in Figure 9. The values were taken every 2 minutes from

the Instruments tool while executing the application for 30

min continuously. As shown in Figure 9, the COCA-CaSDD

requires less CPU time for composing the components, but

DAOP requires more time for activating and executing the

contextual aspects. The evaluation of aspects activation and

execution shows an increased adaptation time because each

aspect requires more memory allocation and CPU time to

resolve the execution context with the context snapshot. On the

other hand, the COCA-middleware requires more adaptation

time for loading and executing the bundle implementation,

but it can switch between weak/strong adaptation actions

29

based on the execution context and the allocated resources.

As shown in the figure, COCA-components composition re-

quires less adaptation/reconfiguration, based on the adaptation

mechanism. Such variations in the adaptation time provided by

COCA-middleware can make use of the adaptation process and

increase the device durability. The adaptation time in DAOP,

as shown in the figure, may increase over the execution time,

which leads to poor performance and lower efficiency.

0.5

6.45

12.4

18.35

24.3

30.25

36.2

42.15

48.1

54.05

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

A
d

ap
ta

ti
o

n
/r

e
-c

o
n

fi
gu

ra
ti

o
n

 t
im

e
 (

m
il

li
se

co
n

d
)

Trails
DAOP COSD

Fig. 9: Aspects/COCA-components Composition

V. CONCLUSIONS AND FUTURE WORKS

The evaluation of the COSD paradigm in comparison to

AOSD shows that COSD is better suited to implementing

context-dependent and self-adaptive applications. The perfor-

mance and energy usage in COCA-applications are better than

in DAOP-applications. There is no doubt that Aspect-oriented

frameworks can be used for developing and implementing self-

adaptive applications, but their performance is very poor in

comparison to that of COSD, as demonstrated in the imple-

mentation of the case study of Computational and Sensory

Detection of Dementia application.

The COCA-MDA needs to be improved with respect to

support for both requirement reflection and modelling re-

quirements as runtime entities. The requirement reflection

mechanism requires support at the modelling level and at the

architecture level. Reflection can be used to anticipate the

evolution of both functional and non-functional requirements.

The decision policies require more development with respect

to policy mismatch and resolution. This is in line with an im-

provement in terms of self-assurance and dynamic evaluation

of the adaptation output.

REFERENCES

[1] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A. Wolf, “An architecture-
based approach to self-adaptive software,” Intelligent Systems and Their
Applications, vol. 14, no. 3, pp. 54–62, 1999.

[2] P. Inverardi and M. Tivoli, “The future of software: Adaptation and
dependability,” in Software Engineering, A. Lucia and F. Ferrucci, Eds.,
2009, pp. 1–31.

[3] W. Harrison, “Modularity for the changing meaning of changing,” in
Proceedings of the tenth international conference on Aspect-oriented
software development, ser. (AOSD ’11), Porto de Galinhas, Brazil, 2011,
pp. 301–312.

[4] B. Magableh and S. Barrett, “Context oriented software development
[special issue],” Journal of Emerging Technologies in Web Intelligence
(JETWI), vol. 3, no. 4, pp. 206–216, June 2011.

[5] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds., Aspect-Oriented
Software Development. Addison-Wesley, 2004.

[6] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, pp. 14:1–14:42, May 2009.

[7] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” Journal of Computer, vol. 37, pp. 56–
64, July 2004.

[8] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-oriented pro-
gramming,” Journal of Object Technology, vol. 7, no. 3, pp. 125–151,
March 2008.

[9] G. Kapitsaki, G. Prezerakos, N. Tselikas, and I. Venieris, “Context-aware
service engineering: A survey,” Journal of Systems and Software, vol. 82,
no. 8, pp. 1285–1297, 2009.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings
of the European Conference of Object-Oriented Programming, (ECOOP
’01), ser. LNCS, Budapest, Hungary, 1997, vol. 1241, pp. 220–242.

[11] M. Mezini and K. Ostermann, “Variability management with feature-
oriented programming and aspects,” in Proceedings of the 12th ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. (SIGSOFT ’04), Newport Beach, CA, USA, 2004, pp. 127–
136.

[12] É. Tanter, K. Gybels, M. Denker, and A. Bergel, “Context-aware
aspects,” in Proceedings of the 5th International Symposium on Software
Composition, ser. (SC 2006), Vienna, Autriche, 2006, pp. 227–242.

[13] É. Tanter, “Aspects of composition in the reflex aop kernel,” in Proceed-
ings of the 5th International Symposium on Software Composition, ser.
(SC 2006), Vienna, Autriche, 2006, pp. 99–114.

[14] B. Magableh and S. Barrett, “Adaptive context oriented component-
based application middleware (coca-middleware),” in Proceedings of the
8th International Conference of Ubiquitous Intelligence and Computing,
(UIC 2011), ser. Lecture Notes in Computer Science, vol. 6905, Banff,
Canada, September 2011, pp. 137–151.

[15] E. Buck and D. Yacktman, Cocoa design patterns, 2nd ed. Developer’s
Library, 2010.

[16] M. D. Mulvenna, W. Carswell, P. J. McCullagh, J. C. Augusto, H. Zheng,
W. P. Jeffers, H. Wang, and S. Martin, “Visualization of data for ambient
assisted living services,” IEEE Communications Magazine, vol. 49,
no. 1, pp. 110–117, 2011.

[17] N. AlBeiruti and K. Al-Begain, “A survey on home-based technologies
for detecting behavioural abnormalities and cognitive decline in elderly
people,” in Proceedings of IEEE Jordan Conference on Applied Electri-
cal Engineering and Computing Technologies,(AEECT ’11), 2011, pp.
366–369.

[18] C. Hundt, D. Stöhr, and S. Glesner, “Optimizing aspect-oriented mech-
anisms for embedded applications,” in Proceedings of the 48th in-
ternational conference on Objects, models, components, patterns, ser.
(TOOLS’10), Malaga, Spain, 2010, pp. 137–153.

[19] “Aspect oriented programming framework for cocoa and objective-c.”
http://www.cocoadev.com/index.pl?AspectCocoa, May 2011, ”[Online;
accessed 1-June-2011]”.

30

	Detecting the Onset of Dementia using Context-Oriented Architecture
	Recommended Citation

	Dublin Institute of Technology
	ARROW@DIT
	2012

	Detecting the Onset of Dementia Using Context-Oriented Architecture
	Basel Magableh
	Nidal AlBeiruti

	Detecting the Onset of Dementia Using Context-Oriented Architecture

