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Abstract — Non-negative Tensor Factorisation based methods have found use in the
context of musical sound source separation. These techniques require the use of a
suitable cost function to determine the optimal factorisation, and most work has fo-
cused on the use of the generalised Kullback-Liebler divergence, and more recently the
Itakura-Saito divergence. These divergences can be regarded as limiting cases of the
parameterised Beta divergence. This paper looks at the use of the Beta Divergence in
the context of musical source separation with a view to determining an optimal value
of Beta for this problem. This is considered for both magnitude and power spectro-
grams. In an effort to avoid potential local minima in the Beta divergence, the use of a
“tempered” Beta Divergence is also explored.

Keywords — Non-negative Tensor Factorisation, Sound Source Separation, Beta Diver-
gence

I Introduction

Much research has been carried out on the use of
non-negative matrix factorisation (NMF) and non-
negative tensor factorisation (NTF) for the pur-
poses of musical sound source separation [1, 2].
The majority of this work has focused on the use of
the generalised Kullback-Liebler divergence (KLD)
as a cost function as it has been found to work reli-
ably for sound source separation. This divergence
is defined as:

DKL

(
X‖X̂

)
=

∑ (
X log

X
X̂ − X + X̂

)
(1)

where X is a tensor containing the original data, X̂
is an estimate of the original data, and summation
takes place over all dimensions of the tensors.

More recently it has been suggested that the
Itakura-Saito divergence (ISD) may be a more use-
ful divergence for performing NMF and NTF [3].
This is due to the fact it is scale invariant and so
low energy components have the same relative im-
portance as high energy components. Further, the
ISD can be considered a statistical model of super-

imposed gaussian components when dealing with
power spectrograms. ISD is defined as:

DIS

(
X‖X̂

)
=

∑(X
X̂ − log

X
X̂ − 1

)
(2)

Both of the above divergences can be considered
as limiting cases of a more general parameterisable
divergence, known as the Beta Divergence. This
divergence was first proposed for use with non-
negative matrix factorisation (NMF) techniques by
Kompass[4] and later by Cichocki et al [5].

DB

(
X‖X̂ , β

)
=

∑(
X X

β−1 − X̂ β−1

β (β − 1)
+ X̂ β−1 X̂ − X

β

)
(3)

For β = 2 the squared Euclidean distance is ob-
tained,as β → 1 the divergence tends to KLD, and
so for β = 1 we define the Beta divergence as KLD.
Similarly, for β → 0 ISD is obtained, and for β = 0
we define the divergence as ISD.

The optimal choice of β depends on the statis-
tics of the data being investigated, and experi-



ments have been performed on determining the op-
timal parameter of β for speech signals when using
standard NMF and convolutive NMF[6]. However,
the Beta Divergence has yet to be evaluated for
musical signals, particularly in the context of the
extended non-negative tensor factorisation models
proposed for musical signals proposed in [2, 7].

II Musical Source Separation Model

The musical source separation algorithm used in
this paper is a harmonicity enforcing additive syn-
thesis based model, where each instrument or
source is modelled by a set of harmonic weights
[2]. These weights are invariant to pitch and so
each note played by an instrument will use the
same weights regardless of pitch. This is a simpli-
fication of the actual situation where the timbre
of the instrument will vary with pitch and so a
source-filter model was also incorporated to allow
the timbre of instruments to change with pitch,
resulting in improved separations. The evolution
of the instrument timbres with time is modelled
by incorporating shift-invariance in time. A linear
mixing model is also assumed.

To further improve the separations, the parame-
ters of each source, such as the number of harmon-
ics and number of shifts in time can be set indepen-
dently, offering considerable flexibility. The utility
of this can be seen in that modelling a flute will
typically require less harmonics than a piano or
violin and so the number of harmonics can be ad-
justed accordingly if a flute is known to be present.
Further, if knowledge of the pitch range of the in-
struments is known as is the case in score-assisted
separation [8], then the pitch range of the indi-
vidual instruments can be set according to this
information. This has the effect of reducing the
possibility of errors in the separations. This gen-
eralised model was first presented in [7], but no
numerical results on the effectiveness of the gener-
alised model were presented at that time.

In the following, 〈AB〉{a,b} denotes contracted
tensor multiplication of A and B along the di-
mensions a and b of A and B respectively. Outer
product multiplication is denoted by ◦. Indexing
of elements within a tensor is notated by A(i, j)
as opposed to using subscripts. This notation fol-
lows the conventions used in the Tensor Toolbox
for Matlab, which was used to implement the fol-
lowing algorithm [9]. For ease of notation, as all
tensors in the model are instrument-specific, the
subscript k is implicit in all tensors. Elementwise
multiplication is denoted by ⊗ and all division is
taken as elementwise.

For an r-channel mixture, individual channel
magnitude spectrograms are obtained and com-
bined in a single tensor X , of size r×n×m tensor
where n is the number of frequency bins and m

is the number of time frames. The tensor is then
modelled as:

X ≈ X̂ =
K∑

k=1

G ◦ 〈〈RW〉{3,1}〈SP〉{2,1}〉{2:3,1:2}

(4)

with R = 〈FH〉{2,1} and K denotes the number of
pitched instruments.
G is a tensor of size r, containing the gains of

a given pitched instrument in each channel. F is
of size n × n, where the diagonal elements con-
tain a filter which attempts to model the formant
structure of an instrument, thus allowing the tim-
bre of the instrument to alter with frequency. H
is a tensor of size n× zk × hk where zk and hk are
respectively the number of allowable notes and the
number of harmonics used to model the kth instru-
ment, and where H (:, i, j) contains the frequency
spectrum of a sinusoid with frequency equal to the
jth harmonic of the ith note. W is a tensor of
size hk × pk containing the harmonic weights for
each of the pk shifts in time that describe the kth
instrument. S is a tensor of size zk × m which
contains the activations of the zk notes associated
with the kth source, and in effect contains a tran-
scription of the notes played by the instrument. P
is a translation tensor of size m × pk ×m, which
translates the activations in S across time, thereby
allowing the model to capture temporal evolution
of the harmonic weights.

Multiplicative update equations can then be de-
rived for each of the free variables in the model in a
manner similar to that described in [10]. Defining

D =
X

X̂ 2−β
(5)

and

O = X̂ β−1 (6)

the update equations, which have not been previ-
ously presented in published work, for the model
parameters are as follows:

G = G⊗
〈〈D〈RW〉{3,1}〉{2,1}〈SP〉{2,1}〉2:4,[3,1,2]}
〈〈O〈RW〉{3,1}〉{2,1}〈SP〉{2,1}〉2:4,[3,1,2]}

(7)

F = F⊗
〈〈GD〉{1,1}〈〈T W〉{3,1}〈SP〉{2,1}〉{2:3,1:2}〉{2,2}
〈〈GO〉{1,1}〈〈T W〉{3,1}〈SP〉{2,1}〉{2:3,1:2}〉{2,2}

(8)

W = W⊗
〈〈(G ◦ R)D〉{1:2,1:2}〈SP〉{2,1}〉{[1,3],[1,3]}
〈〈(G ◦ R)O〉{1:2,1:2}〈SP〉{2,1}〉{[1,3],[1,3]}

(9)

S = S⊗
〈〈(G ◦ 〈RW〉{3,1}

)D〉{1:2,1:2}P〉{2:3,[2,1]}
〈〈(G ◦ 〈RW〉{3,1}

)O〉{1:2,1:2}P〉{2:3,[2,1]}

(10)



SDR SIR SDR
Standard 8.33 23.20 8.67

Generalised 8.98 24.50 9.28

Table 1: Comparison of performance (in dB) of
standard model and generalised model using KLD
as cost function

The model parameters are randomly initialised to
positive values and the use of multiplicative up-
dates then ensures non-negativity.

III Testing the Beta Divergence

A set of 40 test signals containing mixtures of
pitched instruments was used to test the Beta Di-
vergence as a cost function for the separation of
musical signals. These test signals contained equal
numbers of both stereo and mono mixtures, and
full details of the test signals can be found in [2].

Three commonly used separation metrics,
namely Signal to Distortion ratio (SDR), Signal
to Interference ratio (SIR) and Signal to Artifacts
ratio (SAR) were used to measure the separations
obtained on these signals for various values of β.
SDR attempts to provide an overall measure of the
separation quality and takes into account interfer-
ence from other sources as well as other artifacts
due to separation and resynthesis. SIR provides
a measure of the presence of other sources in the
separated source and SAR provides a measure of
artifacts present due to separation and resynthesis.
A more detailed description of these metrics, and
code to implement these measures can be found at
[11],and [12] respectively.

As no results comparing the performance of the
generalised model described above with the model
described in [2] have previously been published,
these are provided in Table 1 to provide a base-
line against which to compare the performance
of the Beta Divergence, where Standard refers to
the model used in [2] and Generalised the model
presented in this paper. In both cases KLD was
used as a cost function. It can be seen that the
generalised model has resulted in improvements of
around 0.6 dB for both SDR and SIR, and an im-
provement of 1.3 dB for SIR, showing that the in-
creased flexibility of the generalised model does of-
fer improved performance over models where the
parameters are the same for all instruments.

The value of β was varied from 2 to 0 in steps
of 0.1, giving a total of 21 different values of β. It
can be seen that this covers the squared Euclidean
distance as well as both KLD and ISD. For each of
the 40 test signals, the average separation perfor-
mance was obtained from the individual scores for
each source in a given test signal, thereby provid-
ing a measure of overall separation for each signal.

These were then averaged across all the test sig-
nals to provide a measure of the effectiveness of
the separations obtained for each value of β.

Further, these tests were ran using both mag-
nitude and power spectrograms as inputs to the
model. All previous work on this model had fo-
cused on the use of the magnitude spectrogram
only, as this had been found to work better with
KLD than power spectrograms. However, in light
of the use of the Beta Divergence in this paper it
was felt that it was necessary to revisit the use
of power spectrograms in case some value of β in
conjunction with power spectrograms gave better
performance than using magnitude spectrograms
with the Beta Divergence.
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Fig. 1: Average SDR obtained for various values of β
(Magnitude Spectrograms)
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Fig. 2: Average SIR obtained for various values of β
(Magnitude Spectrograms)

Figure 1 shows the average SDR obtained for
magnitude spectrograms from the test signals for
the various values of β. It can be seen that the
optimal value of β occurs when β = 1, with a tailoff
in performance as the value of β moves away from 1
in either direction, with a more noticeable decrease
in performance as β tends to zero. A similar trend
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Fig. 3: Average SAR obtained for various values of β
(Magnitude Spectrograms)

can be observed for SIR, shown in figure 2, and
for SAR, shown in figure 3. For all metrics, it can
be seen that using KLD (β = 1) outperforms all
other values of β. This justifies the widespread use
of KLD for musical source separation when using
magnitude spectrograms to date.
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Fig. 4: Average SDR obtained for various values of β
(Power Spectrograms)

Figure 4 shows the average SDR obtained us-
ing power spectrograms from the test signals. In
comparison to magnitude spectrograms where the
optimal value was β = 1, here the optimal value
is β = 0.5. Again there is a notable drop in per-
formance as β tends to zero, with a lesser falloff
as β goes towards two. It can also be seen that
the maximum SDR value is around 0.75 dB lower
than the maximum SDR when using magnitude
spectrograms.

In the case of SIR for power spectrograms
(shown in figure 5), the optimal value occurs at
β = 0.4, with the maximun SIR being around 3
dB lower than that of the highest value of the mag-
nitude spectrograms. For SAR, (see figure 6) the
maximum value occurs at β = 0.6, with a differ-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
12

13

14

15

16

17

18

19

20

21

22

S
IR

 (
dB

)

Beta

Fig. 5: Average SIR obtained for various values of β
(Power Spectrograms)
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Fig. 6: Average SAR obtained for various values of β
(Power Spectrograms)

ence of around 0.5 dB between the largest power
spectrogram value and the largest magnitude spec-
trogram value.

The above suggests that a value of around β =
0.5 is optimal for the sound separation model when
using power spectrograms. It also shows that with
respect to the metrics used KLD with magnitude
spectrograms outperforms all other values of β.
However, it should be noted that these metrics do
not always correspond with human perception of
separation. To this end, informal listening tests on
the separation quality were performed.

The results of the informal listening tests were
broadly in line with the results obtained using
the metrics. In general, using a magnitude spec-
trogram results in better separation performance
across a much larger range of β values, whereas
with power spectrograms separation was generally
quite poor in the range 2 ≤ β ≤ 1.5. In the region
of ±0.2 of the optimal values given by the metrics,
little or no difference could be heard in the quality
of the separations regardless of whether magnitude
or power spectrograms were used. Finally, as β



got closer to zero, the separation performance de-
graded. In particular, it was observed that notes
played by one source were often stolen by another
source, resulting in very noticeable artifacts in the
separations.

Overall, both the metrics and informal listen-
ing tests show that the performance of magnitude
spectrograms with β ≈ 1 and power spectrograms
with β ≈ 0.5 are better than separations obtained
with other β values. Further, it has been observed
that separation performance is effectively equiva-
lent in these cases. This justifies the use of KLD
with magnitude spectrograms in previous research
using this model.

IV The Tempered Beta Divergence

It has recently been noted that the Beta diver-
gence is convex with respect to the optimisation of
any individual parameter in NMF and NTF-based
models if 1 ≤ β ≤ 2, but is non-convex in the range
0 ≤ β < 1 [13]. It was suggested that this made
the Beta divergence prone to local minima in this
range. In particular, with respect to the ISD, it
was shown that using a tempered version of the
ISD resulted in improved performance in a stan-
dard NMF framework. The tempered ISD uses β
as a temperature parameter, which is varied over
the course of the iterations of the algorithm. Ini-
tially β is set in the convex region, typically at
β = 2, and after a set number of iterations at this
value, the value of β was then gradually reduced
to 0 over a number of iterations before remaining
at 0 until convergence.

In light of the improved performance of ISD us-
ing this approach it was decided to test a tempered
version of the Beta divergence to see if improved
performance could be obtained in this manner. To
this end, a starting value of β = 2 was used and
final values in the range 0 ≤ β ≤ 1.5 were inves-
tigated. Both power and magnitude spectrograms
were again used in testing.

However, it was found that in all cases the use of
the Tempered Beta divergence gave considerably
poorer performance than using fixed values of β
throughout optimisation. This is contrary to the
results obtained in [13] when using tempering with
ISD in a standard NMF model, and so the use of
the tempered Beta Divergence will not be consid-
ered when using the separation model contained in
this paper in the future.

V Conclusions

The use of the Beta Divergence for musical sound
source separation in the context of extended ten-
sor factorisation models has been explored. Both
power spectrograms and magnitude spectrograms
were used in testing, and it was found that for
magnitude spectrograms using the KLD was opti-

mal with respect to the metrics used. For power
spectrograms, the Beta Divergence with β ≈ 0.5
was found to perform best, with KLD and mag-
nitude spectrograms outperforming the best value
of the power spectrograms. Informal listening tests
suggest that both of these cases give similar sepa-
ration performance, thus justifying the use of KLD
in previous research.

Also tested was a tempered version of the Beta
Divergence. This was done in an effort to over-
come potential local minima in the divergence, but
the tempered Beta Divergence was found to give
poorer performance in all cases.

The use of both power and magnitude spec-
trograms, as well as a fractional divergence has
also prompted the question as to whether there is
an optimal power to raise the magnitude spectro-
grams by for the purposes of sound source separa-
tion. This will be an area for future research.
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