
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles School of Computer Science

2011-9

Self-adaptive application for indoor wayfinding for individuals with Self-adaptive application for indoor wayfinding for individuals with

cognitive impairments cognitive impairments

Basel Magableh
Technological University Dublin, 453543@tudublin.ie

Stephen Barrett
Trinity College, Stephen.Barrett@tcd.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Magableh, B., Barrett, S. (2018) Self-adaptive application for indoor wayfinding for individuals with
cognitive impairments,” in The 24th IEEE International Symposium on Computer-Based Medical Systems,
ser. CBMS 2011, vol. 1, Lancaster, UK, June 2011, pp. 45–49. doi.org/10.21427/my07-et32

This Article is brought to you for free and open access by the School of Computer Science at ARROW@TU Dublin. It
has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomart%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Dublin Institute of Technology
ARROW@DIT

Dissertations School of Computing

2011

Self-adaptive application for indoor wayfinding for
individuals with cognitive impairments
Basel Magableh

Follow this and additional works at: https://arrow.dit.ie/scschcomdis

Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the School of
Computing at ARROW@DIT. It has been accepted for inclusion in
Dissertations by an authorized administrator of ARROW@DIT. For more
information, please contact yvonne.desmond@dit.ie, arrow.admin@dit.ie,
brian.widdis@dit.ie.

https://arrow.dit.ie?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.dit.ie/scschcomdis?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.dit.ie/scschcom?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arrow.dit.ie/scschcomdis?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=arrow.dit.ie%2Fscschcomdis%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie
mailto:yvonne.desmond@dit.ie,%20arrow.admin@dit.ie,%20brian.widdis@dit.ie

Self-adaptive application for indoor wayfinding for individuals with cognitive
impairments

Basel Magableh and Stephen Barrett
Distributed Systems Group, School of Computer Science and Statistics

Trinity College Dublin, Ireland
Emails: magablb@cs.tcd.ie, stephen.barrett@cs.tcd.ie

Abstract

This article focuses on describing a Model Driven Archi-
tecture (COCA-MDA) approach that facilitates the develop-
ment of self-adaptive application for indoor wayfinding for
individuals with cognitive impairments. COCA-MDA pro-
vides the following benefits: 1) It enables the architecture
to anticipate several behavioural variations based on the
context and the specific needs of the individuals with cog-
nitive impairments. 2) It enables the application to proac-
tively anticipate or reactively address unforeseen changes
through support by a dynamic-decision making and policy
framework. The policy framework is based on a stable de-
scription of software models and proprieties. 3) It can de-
compose the application into several architectural units to
allow developers to decide which part of the architecture
should be notified when a specific context condition occurs.

1 Introduction

Some of the challenges for individuals with cognitive
impairments in wayfinding are remaining oriented, recall-
ing routines, and travelling in unfamiliar areas while rely-
ing on limited cognitive capacity. Whereas people without
disabilities often use maps or written directions, either as
navigation tools or for remaining oriented, the cognitively
impaired population is very sensitive to issues of abstrac-
tion (e.g. icons on maps or signage), which presents the
application designer with the challenge of tailoring naviga-
tional information to each specific user and context. With
the capacity to move and the desire to be socially included,
mentally/cognitively disabled individuals who are indepen-
dently mobile but have difficulties reaching their intended
destination might benefit from the self-adaptive application
proposed in this study. A self-adaptive application modi-
fies its own structure and behaviour in response to changes
in its operating environment [1]. Hirschfeld et al. [2] con-

sider context to be any information that is computationally
accessible and upon which behavioural variations depend.

Adaptation is caused by context changes. Whenever
the system’s context changes, the system has to decide
whether to adapt. Context-dependent behaviour variation
is a computational entity that provides information about
the changes in its artefacts, the so called system behaviour
parts [2]. The complexity of these behaviour variations lies
on the fact that they can occur separately or in any combi-
nation. Therefore, a formal procedure is required to analyse
them and separate their various concerns. Moreover, a for-
mal procedure to model these variations is needed. These
analysis and modelling procedures can reduce the complex-
ity of context-aware application modelling. In this way, it
facilitates the development process and componentisation
of the system into several behavioural parts. These parts can
be used dynamically to modify the application behaviour
based on the execution context.

This article focuses on describing a Context Oriented
Component-based Application Model Driven Architecture
(COCA-MDA) approach for developing a self-adaptive ap-
plication for indoor navigation (IWayFinder). COCA-
MDA organises the architecture into two casually connected
layers: the base layer, which provides the application’s
core structure, and the meta-layer, where the components-
based model (COCA-components) are located. The COCA-
component is a unit of behaviour that provides composable
units of behaviour. Hereafter, these COCA-components are
handled by the COCA-middleware [3], for application com-
position and adaption. The proposed self-adaptive applica-
tion anticipates the context information that is delivered by
the Cisco Mobility Services Engine infrastructure [4] that
provides location-based, time-based, and profile-based con-
textual information.

The remainder of the article is structured as follows. Sec-
tion 2 provides a comparative analysis of related studies.
Section 3 demonstrates the COCA-MDA modelling pro-
cess used by IWayFinder. The COCA-MDA phases are
described in Section 4. Section 5 provides an overall de-

scription of the COCA-middleware. Section 6 evaluates
IWayFinder in terms of energy use, context monitoring, and
detection enhancement.

2 Related Work

An indoor wayfinding application was developed by [5].
The passive architecture integrates radio-frequency identifi-
cation (RFID) tags for wayfinding. Once the tag is scanned,
a request is sent via a GPRS connection to a back end server.
The server processes the location data and sends the rout-
ing information on the form of a pre-stored images that de-
scribe several alternative directions on the path. For each
decision point, the server provides the mobile device with
four alternative images. The proposed architecture [5] has
several drawbacks: 1) The passive RFID tags are hard for
the cognitively-impaired individuals to locate. 2) Deliver-
ing the navigation directions in images increases the cogni-
tive load for the user; in some cases the image on the screen
is difficult to view. 3) The application does not consider the
resource scarcity of the mobile device. 4) The application
does not provide behavioural variations that consider unan-
ticipated conditions. 5) The application is not able to man-
age the trade-off between resources cost and priority/impor-
tance to use them.

In the literature, there are several MDA approaches that
target self-adaptive, context aware applications such as MU-
SIC [6], U-MUSIC [7], and Paspallis MDA [8]. The U-
MUSIC methodology [7] adopts MDA to enable dynamic
unanticipated adaptation based on a component model. U-
MUSIC enables the developers to specify the application
variability model, context elements, and data structure. Pas-
pallis et al. [8] propose another MDA-based methodology
that considers the context providers for the application: for
each context provider, a plug-in or bundle is planned and
designed during the design phase. The MUSIC develop-
ment methodology [6] adopts a model-driven approach to
constructing the application variability model. In MUSIC,
middleware is used to resolve the variation points, which in-
volves the election of a concrete component as a realization
for the component type. A number of application variants
can automatically be derived.

These approaches suffer from a number of drawbacks.
First, it is well known that correct identification of the
weight of each goal is a major difficulty for the utility func-
tions. Second, the approach hides conflicts among multiple
adaptation goals by combining them in a single, aggregate
objective function, rather than exposing the conflicts and
reasoning about them. On the other hand, it would be op-
timistic to assert that the process of code generation from
models can become completely automatic and that the de-
veloper’s role lies only in application design. Third, it is im-
possible for the developer to predict all possible variations

of the application when unanticipated conditions will arise.
In addition, mobile devices have limited resources for eval-
uating many application variations at runtime and can con-
sume significant amounts of device resources. As result, the
benefit gained from the adaptation is negated by the over-
head required to achieve the adaptation. Fourth, mobile de-
vices produce an architecture with a tight coupling between
the context provider and the context consumer, which may
cause the middleware to notify multiple components about
multiple context changes. Finally, this form of the decision
making process does not allow the user to control the adap-
tation effect.

CAMEL, proposed in [9] as a metamodel for adapta-
tion in what was called ”contextual adaptation”, uses an in-
sert or binding adaptation mechanism based on the JCOOL
domain-specific language. CAMEL has no formal MDD
methodology that has a generic life cycle that a developer
could use. Regardless of these problems, JCOOL is better
suited to the SMILE platform and the Java language. The A-
MUSE methodology was introduced in [10] to integrate the
MDA approach with a service-oriented architecture. The
A-MUSE methodology shows novelty in its behavioural
model transformation; however, no generic methodology
was proposed. Behavioural anticipation and dynamic de-
cision making are not supported by CAMEL.

In general, no approach or methodology has been pro-
posed specifically for developing self-adaptive applications
that consider the nature of context-dependent behaviour
variation and anticipate context changes. Indeed, it is cur-
rently quite difficult to produce context-aware applications,
especially in the presence of unforeseen changes in condi-
tion. Anticipating context changes using a model approach
requires both a formal procedure to analyse and model those
context changes and a dynamic-decision making process
supported by middleware. In addition, the developers can
design the system to proactively or reactively address un-
foreseen changes by providing a decision policy that trig-
gers the adaptation whenever specific context values cross
(lower or upper) boundaries. This process is easy to accom-
plish so long as the middleware is aware of which parts of
the architecture (components) are affected by these context
changes. Additionally, the predefined policy can provide
the middleware with sufficient information to perform the
adaptation.

3 Self-adaptive indoor wayfinding for indi-
viduals with cognitive impairments appli-
cation

The Cisco mobility infrastructure has the ability to cap-
ture and employ contextual information about mobile as-
sets. Contextual information can be collected automatically
using the Wi-Fi connectivity of the asset (for example, lap-

2

tops or Wi-Fi phones) or, for assets that do not have intrinsic
wireless, by attaching radio frequency tags or QR-codes to
the asset. QR-codes are a specific matrix barcode (or two-
dimensional code) that is readable by dedicated QR barcode
readers and camera phones [11]. The benefit of integrating
the application with the Cisco engine is the integration of
several assets that provide the contextual information. QR-
codes or RFID tags are placed at the decision points (DPs)
(such as hallway intersections, exits, doors, elevators, or en-
trances to stairways) identified by the Cisco engine.

A user enters the building and points the mobile phone’s
camera at any of the QR-codes available at the DP. After
reading the encoded URL in the QR-codes, the Cisco en-
gine then provides the required navigation information and
instructs the user. To overcome the challenges of image ren-
dering, the proposed self-adaptive application uses an aug-
mented reality browser (ARB) to display the navigation di-
rections. The browser displays the directions on the phys-
ical display of the tool’s camera. Using the device cam-
era, the system reduces the cognitive load and increases the
user’s ability to realize the desired route. In addition, the ap-
plication is able to provide the user with time-based events
such as the opening hours of the building, lunch time, clos-
ing hours of the offices, location access rights that control
the entrance of users to certain locations, and any real time
alarm events. Moreover, the infrastructure support allows
several persons to monitor and collaborate with the user en
route. Assuming the context information is delivered by
the Cisco infrastructure, the following anticipation scenar-
ios are proposed:

A1: Self-tuning The application must track the user’s
path inside the building. When a decision point (DP) is
reached, the application places a marker for each DP the
user passed. If the user is unable to locate the a decision
point in the building, the application must be able to guide
the user towards a safe exit. The route directions can be
delivered to the user in several output formats: video, still
image, and voice command. The application should change
the direction output while also considering the device re-
sources and the level of cognitive impairment of the indi-
vidual.

A2: Self-recovering Assuming the user is trapped in a
lift with no GPRS connection or in the case of a fire, the fire
alarm is raised, the application is notified, and the applica-
tion adopts the shortest path to the nearest fire exit. In both
cases, the application submits the user’s current coordinates
and an emergency help message to the emergency number,
parents, career team, and security staff. The communica-
tion is achieved using the available connection, regardless
of the resource cost, to alert any nearby devices about the
emergent need for help. If no connection is made, the de-
vice emits an alarm sound and increases the device volume
to maximum. The security staff or fire-fighters receive the

emergency message and can view the CCTV video to iden-
tify the floor on which the user is trapped. When the CCTV
system locates the user, full information about the user is
displayed, including a personal and health profile. At the
same time, the application guides the user to a safe exit us-
ing a preloaded path (in case the CCTV camera is disabled
and the services engine is off). Fire-fighters can use the re-
ceived message to locate the user in the building.

4 Generic Phases of COCA-MDA

The COCA-MDA follows the principles of the object
management group (OMG) model-driven architecture. In
MDA, there are three different views in the software:
the computation-independent view (CIV), the platform-
independent view (PIV), and the platform-specific view
(PSV). The CIV focuses on both the environment of and
the requirements of the system and hides the details of the
software structure and processing. The PIV focuses on the
operation of the system and hides details that are dependent
on the deployment platform. The PSV combines the CIV
and PIV, with an additional focus on the details of the use
of a specific platform by the software system [12]. COCA-
MDA has adopted the component collaboration architecture
(CCA) [13] at the PIV phase by partitioning the software
into two views: the structure view and the behaviour view.
The structure view focuses on the core components of the
self-adaptive application and hides the context-driven com-
ponents. The behaviour viewpoint focuses on modelling the
context-driven behaviour of the component, which may be
invoked in the application execution at runtime. The de-
sign of a context-aware application according to the COCA-
MDA approach generally involves the six phases shown in
Figure 1.

Figure 1. Context-oriented Component-
based Application Model-Driven Architecture
(COCA-MDA)

Analysis: The requirements of the system are modelled

3

in a computation-independent model (CIM), thus describ-
ing the situation in which the system will be used. A CIM
is a model of a system that shows the system in the environ-
ment in which it will operate, and thus, it helps to present
exactly what the system is expected to do. It is useful not
only as an aid to understanding a problem, but also as a
mechanism for predicting the exact behaviour of a software
system as a result of runtime changes. The first COCA-

Figure 2. Partial Requirements Diagram

MDA model is based on the requirements diagram in Fig-
ure 2. This diagram is used to classify requirements based
on their type and anticipation level. The requirements are
divided into functional and extra-functional. Hochmuller et
al. refer to the technological and non-functional properties
of software architecture as extra-functionalities [14]. Extra-
functional extends the application behaviour in response to
context changes. This work focuses on addressing extra-
functionality as a collection of context-oriented components
(COCA-components).

Modelling and design: Platform-independent model.
The platform-independent view focuses on the operation
of a system while hiding the details necessary for use of
a particular platform. In this phase, the requirements dia-
gram is combined into a use-case model. The use-cases de-
scribe the interactions between the software system and the
actor. The system-dependent and environment-dependent
behaviours are modelled as an extension of the functional
use-cases. The functional use-cases are modelled in a class
diagram describing the application core functions. The ex-
tended use-cases are modelled as another class diagram that
describes the application’s behavioural view. For example,
the fire alarm use-case is a contextually-driven use-case that
extends the application functionality to send an emergency
message and to provide a route to the nearest fire exit.

The use-case diagram is split into two distinct class di-
agrams. The first diagram describes the basic applica-
tion components that are executed regardless of the exe-
cution context. The core structure is integrated with the
extra-functional class model in the final architecture model.
The extra-functionality class diagram provides a detailed
view of the application COCA-component and the COCA-
middleware. In addition, these diagrams model the desired

behaviour that can be used to anticipate context changes.
Figure 3 shows a COCA-component modelled to antici-
pate the ’direction output’. The COCA-component imple-
ments a delegate objects and sub layers; each layer imple-
ments a specific context-dependent function. The COCA-
middleware uses this delegate object to redirect the execu-
tion among the sub layers, based on the context condition.

Figure 3. Direction Output Context Oriented
Component

The application behavioural model is used to demon-
strate the decision points in the execution that might be
reached whenever internal or external variables are found.
This decision point requires several parameter inputs to
make the correct choice at this critical time. Using the activ-
ity diagram, the developers can extract numerous decision
polices. Each policy must be modelled in a state diagram:
textbfPolicy: Direction output This policy is attached to the
’direction output’ COCA-component in Figure 3. The pol-
icy syntax can be described by the code shown in List 1.

Listing 1. Decision Policy 2
If (direction is Provided && Available memory >= 50
&& CPU throughput <= 89 && light level >= 50
&& BatteryLevel >= 50) then {PlayVideo(); displayImage();

VoiceCommand();}
Else If (BatteryLevel < 50 || memory level < 50 || CPU >92)
then {displayImage(); VoiceCommand();}
else If(BatteryLevel < 20)
then VoiceCommand();

The variant behaviour model is supported by a state-
machine model that describes the application decision po-
lices. The three models of the application are used as input
for the next phase, model-to-model transformation.

Model-to-model transformation: The platform-
independent model and behavioural model are translated
into architecture description language (COCA-ADL). This

4

phase includes model-to-model transformation and model
verification for the application’s structure and behaviour
views. The COCA-ADL is implemented by extending the
xADL schema, which is an extensible XML language.
ArchStudio helps developers to model the architecture us-
ing three grouped models: activity diagram, state diagram,
and structure diagram [15].

Testing and validating: Tests the model and verifies its
fitness for the application goals and objectives.

Platform-specific model: The platform-specific model
produced by the transformation is a model of the same sys-
tem specified by the PIM; it also specifies how that system
makes use of the chosen platform. A PSM may provide
more or fewer details, depending on its purpose. A PSM
will be an implementation if it provides all the information
needed to construct a system and to put it into operation.
Alternatively, it may act as a PIM used to further refine the
PSM so that it can be directly implemented.

Code generation: Model-to-text includes model-to-text
transformation deployment and execution verification. The
COCA-ADL XMI code is transformed into the implemen-
tation language.

5 Overview of the COCA-middleware

Figure 4. COCA-platform architecture.

The COCA-platform offers a context-aware middleware
environment for adjusting the application’s behaviour dy-
namically. Figure 4 shows the COCA-middleware architec-
ture. The platform is layered into four major layers. Each
layer provides an abstraction of the underlying technology.
Each layer is totally platform independent of any given tech-
nology. The first layer represents the context-aware appli-
cation. It provides the user with GUI, functional properties,
and non-functional properties. The second layer in the plat-
form represents the COCA-middleware. It has the middle-

ware components. Fuller details of the individual compo-
nents and subcomponents can be found in Figure 4. The OS
sensor retrieves information about the OS. Function calls
are used to retrieve information about CPU, memory, and
disk space [3].

6 Experiment evaluation

IWayFinding &
COCA-MW

IWayFinding

CPU Activity

Context Monitoring

Battery Consuming

Location update

Sleep/Wake

33% 59%

10% 59%

20% 40%

16% 34%

10% 95%

0%

25%

50%

75%

100%

CPU
Activity

Context
 Monitoring

Battery
Consuming

Location
update

Sleep
/Wake

Eneragy Usage

IWayFinding & COCA-MW IWayFinding

Figure 5. Energy usage for IWayFinder appli-
cation.

The ’direction output’ COCA-component registers
itself with the context manager to be notified when the
BatteryLevelDidChanged, CPULevelDidChanged, Mem-
oryLevelDidChanged, DeviceOrientationDidChanged
and/or LightLevelDidChanged. When the context manager
notifies [PostNotfication:BatteryLevelDidChanged] to the
’direction output’ component, the adaptation manager reads
the attached decision policy in list 1. Based on the policy
action, the adaptation manager calls the delegate object
DisplayDirection which forwards the method invocation
to the desired sub layer, based on the battery level. If
the battery level < 20%, then the adaptation manager
activates the sub layer VoiceCommand to adapt this context
condition.

The IWayFinder application has been implemented in
two different versions, with and without the COCA-
middleware. The battery life has been measured by run-
ning each version on an iPhone 4 device. The experiments
show that the COCA IWayFinder application saved bat-
tery consumption by 13%, despite its self-adaptability, as
shown in Figure 5. One of the expected benefits of us-
ing COCA-MDA in structuring the self-adaptive applica-
tion is the enhancement of the context monitoring and de-
tection processes. The IWayFinder implementation without
the COCA-platform consumes more energy during context
monitoring, thus draining the battery faster, because context
changes are sent to a large subset of components. On the
other hand, when the same application adopts the COCA-
middleware, the application is able to adapt its behaviour
and enhance both context monitoring and detection. The

5

adaptation/configuration time and the context monitoring
time are shown in Figure 6.

Adaptation /configuration
time (millisecond)

Context Monitoring
(millisecond)

IWayFinding & COCA-
MW

IWayFinding

29 78

67 137

0

30

60

90

120

150

Adaptation /configuration time (ms) Context Monitoring (ms)

IWayFinding & COCA-MW IWayFinding

Figure 6. Adaptation time (ms)

7 Future Work

The COCA-MDA requires an improvement regarding
support for both requirement reflection and modelling re-
quirements as runtime entities. The requirement reflection
mechanism requires support at the modelling level and at
the architecture level. Reflection can be used to anticipate
the evolution of both functional and non-functional require-
ments. The decision policies require more development re-
garding policy mismatch and resolution. This is in line with
an improvement in terms of self-assurance and dynamic
evaluation of the adaptation output.

References

[1] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosen-
blum, and A. Wolf, “An architecture-based approach
to self-adaptive software,” Intelligent Systems and
Their Applications, IEEE, vol. 14, no. 3, pp. 54–62,
1999.

[2] R. Hirschfeld, P. Costanza, and O. Nierstrasz,
“Context-oriented programming,” Journal of Object
Technology, vol. 7, no. 3, pp. 125–151, March 2008.

[3] B. Magableh and S. Barrett, “Pcoms: A component
model for building context-dependent applications,”
in Proceedings of the 2009 Computation World: Fu-
ture Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, ser. COMPUTATION-
WORLD ’09. Washington, DC, USA: IEEE Com-
puter Society, 2009, pp. 44–48.

[4] http://www.cisco.com, 2011, [Online; accessed 1-
April-2011].

[5] Y. Chang, S. Peng, T. Wang, S. Chen, Y. Chen, and
H. Chen, “Autonomous indoor wayfinding for individ-

uals with cognitive impairments,” Journal of Neuro-
Engineering and Rehabilitation, vol. 7, no. 1, p. 45,
2010.

[6] M. Wagner, R. Reichle, M. U. Khan, and K. Geihs,
“Software development method for adaptive ap-
plications in ubiquitous computing environments,”
http://www.ist-music.eu/MUSIC/results/music-
deliverables/, IST-MUSIC, Tech. Rep., Mar 2011,
[Online; accessed 1-March-2011].

[7] M. U. Khan, “Unanticipated dynamic adaptation of
mobile applications,” Ph.D. dissertation, University of
Kassel, Distributed Systems Group, Kassel, Germany,
may 2010.

[8] N. Paspallis, “Middleware-based development of
context-aware applications with reusable compo-
nents,” Ph.D. dissertation, University of Cyprus, De-
partment of Computer Science, Nov 2009.

[9] A. Sindico and V. Grassi, “Model driven develop-
ment of context aware software systems,” in Interna-
tional Workshop on Context-Oriented Programming,
ser. COP ’09. New York, NY, USA: ACM, 2009, pp.
7:1–7:5.

[10] L. M. Daniele, L. Ferreira Pires, and M. Sinderen,
“An mda-based approach for behaviour modelling of
context-aware mobile applications,” in Proceedings of
the 5th European Conference on Model Driven Archi-
tecture - Foundations and Applications, ser. ECMDA-
FA ’09. Berlin, Heidelberg: Springer-Verlag, 2009,
pp. 206–220.

[11] T. S. Parikh, “Using mobile phones for secure,
distributed document processing in the developing
world,” IEEE Pervasive Computing, vol. 4, pp. 74–81,
April 2005.

[12] “Object management group model driven architec-
ture,” October 2010, [Online; accessed 1-October-
2010].

[13] “Enterprise collaboration architecture (eca) specifica-
tion,” pp. 1–202, Feb 2004.

[14] H. Hochmuller, “Towards the proper integration of
extra-functional requirements,” Australasian Journal
of Information Systems, vol. 6, no. 2, pp. 98–117,
1999.

[15] E. Dashofy, H. Asuncion, S. Hendrickson, G. Surya-
narayana, J. Georgas, and R. Taylor, “Archstudio 4:
An architecture-based meta-modeling environment,”
in Companion to the proceedings of the 29th Interna-
tional Conference on Software Engineering, ser. ICSE
COMPANION ’07, 2007, pp. 67–68.

6

	Self-adaptive application for indoor wayfinding for individuals with cognitive impairments
	Recommended Citation

	Dublin Institute of Technology
	ARROW@DIT
	2011

	Self-adaptive application for indoor wayfinding for individuals with cognitive impairments
	Basel Magableh

	Self-adaptive application for indoor wayfinding for individuals with cognitive impairments

