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Abstract:  

Investigations of polymerization rates in an acrylamide-based photopolymer are presented. The 

polymerization rate for acrylamide and methylenebisacrylamide was determined by monitoring the 

changes in the characteristic vibrational peaks at 1284 cm
-1

 and 1607 cm
-1

 corresponding to the bending 

mode of CH bond and CC double bonds of acrylamide and in the characteristic peak at 1629 cm
-1

 

corresponding to carbon-carbon double bond of methylenebisacrylamide using Raman spectroscopy. To 

study the dependence of the polymerization rate on intensity and to find the dependence parameter, the 

polymerization rate constant was measured at different intensities.  

A comparison with a commercially available photopolymer shows that the polymerization rate in this 

photopolymer is much faster. 

Keywords: Acrylamide-based photopolymer, Raman spectroscopy, holography, polymerisation rate. 

OSIC codes: 090.0090, 160.5335, 160.5470, 170.5660, 260.5130. 

 

 

 



1. Introduction  

Self-processing photopolymers are attractive materials for the production of easily fabricated holographic 

optical elements [1], for holographic data storage [2-4], the fabrication of switchable electro-optical 

devices [5] and the design of non-destructive optical test systems [6,7]. Besides the advantage of being 

self-developing, photopolymers can have high sensitivity, large dynamic range, good optical properties, 

low cost and are easy to prepare.  

Photopolymer systems for recording holograms typically comprise one or more monomers, a 

photoinitiator, a binder and a sensitizing dye. Several theoretical models have been used to describe the 

mechanism of hologram recording in photopolymers [8-14]. Most of the models proposed are based on 

diffusion of monomer or mass transport when a concentration gradient of monomer is created.  The basic 

mechanism of the hologram recording in dye sensitized photopolymers is that a dye absorbs the energy of 

a photon and enters to into an excited state, whereupon it reacts with an electron donor to create free 

radicals. These free radicals initiate the polymerization reaction.  As a result when the illuminated field is 

spatially modulated, the conversion double to single bonds in polymerization causes a change in 

polarizability and hence of refractive index. In addition, a concentration gradient of the monomer is 

created, resulting in monomer diffusion from higher concentration regions to lower concentration regions 

causing a spatial modulation of the refractive index through changes in density.  

Diffusion models predict that the key factor that controls the dynamics of hologram recording and the 

final properties of the hologram is the ratio of the diffusion and polymerization rates. The diffusion 

process is spatially dependent whereas the polymerization process is intensity dependent. Some of the 

earlier models [9-11, 14] assumed that the polymerization rate, which is the rate of conversion of 

monomer into polymer by polymerization, has a linear dependence on the intensity of light exposure. 

Kwon et al [12] modified this assumption and proposed a dependence of polymerization rate on the square 

root of the intensity. This is on the assumption that the rate of initiation is equal to the rate of termination 



and the free radical concentration is constant all through the polymerization. We believe that it is better to 

determine the parameter which relates the polymerization rate to the exposure intensity experimentally 

than to make such assumptions. To the best of our knowledge such characterization in acrylamide based 

photopolymer is reported in this paper for the first time.  

There are some commercial photopolymer systems manufactured by companies such as Du Pont, InPhase 

technologies, IBM and Aprilis. In order to better understand the differences in their properties as 

holographic recording materials it is useful to characterize and compare their diffusion and polymerization 

rates. Such data is not available for all commercial photopolymers, but some of them have been 

characterized and reported. Moreau et al [13] characterized Du Pont’s photopolymer and measured the 

diffusion constant at around 6.5x10
-11

 cm
2
/s. They have also characterized the polymerization constant by 

measuring the shrinkage during bulk polymerization, obtaining a value of 0.019 s
-1

mW
-0.5

. Utilizing the 

methodology described for diffusion studies in [13], this acrylamide-based photopolymer was 

characterized in a previous publication and the monomer diffusion rate during the initial stage of grating 

recording was measured and has been reported [8]. As suggested above, the ratio of the diffusion rate and 

polymerization rate plays an important role in the dynamics of hologram recording and the final refractive 

index modulation, so it is necessary to also characterize the polymerization rate constant. Moreau et al 

characterized the polymerization in Du Pont’s photopolymer on the assumption that the thickness of the 

photopolymer changes during polymerization and also they assume that the polymerization rate depends 

on the square root of exposure intensity [13].  

An attempt to characterize the polymerization rate constant in a similar acrylamide-based photopolymer 

was made by Neipp et al. [15]. A first harmonic diffusion model proposed by Piazolla and Jenkins [16] 

was used. The polymerization constant was determined by fitting the temporal evolution of the 

transmission efficiency data during holographic recording at a spatial frequency of 1125 lines/mm. The 

polymerization rate constant for the photopolymer containing only one monomer (acrylamide) was found 



to be 0.020 s
-1

mW
-0.5

. However, this was based on the assumption that the diffusion time was a constant 

30 seconds during the recording and at this spatial frequency.  

In the present paper, a different approach is used to measure the polymerization rate constant in an 

acrylamide-based photopolymer. The measurements were carried out under uniform illumination and 

therefore the measured polymerization rate does not depend on an assumed diffusion time. 

Raman spectroscopy was used here as a direct visualisation of the photochemical process to characterize 

the polymerization rate. The polymerization rate was determined by studying the decrease in the intensity 

of two characteristic acrylamide Raman peaks during polymerization in comparison with a reference peak 

at 631 cm
-1 

which doesn’t change on polymerization. 

During polymerization, monomer is consumed due to polymerization where a polymer is formed. During 

the consumption of monomer, the C=C double bond present in the monomer is converted into a C-C 

single bond. This leads to a decrease of the intensity of the associated Raman peak. The experimental set-

up and the results are shown in sections 3 and 4. 

2. Theory 

Raman spectroscopy has the potential to directly monitor individual constituents of a complex molecule 

within the sample. It has been previously utilized [17, 18] to characterize the consumption of acrylamide 

in polyacrylamide gels for radiation dosimetry. The authors observed that the consumption of monomer is 

monoexponentially dependent on irradiation dose.  

In this study, Raman spectroscopy was used as a tool for characterizing the consumption of monomer in 

irradiated acrylamide-based photopolymer samples. The basic mechanism of the polymerization in this 

photopolymer is explained in more detail elsewhere [4]. Monomer conversion was characterized by 

monitoring the Raman scattering of the carbon-carbon double bond (C=C) peaks and the bending mode of 

the C-H vinyl bond peak in acrylamide, as a function of illumination time. 



3. Experimental 

The experimental set-up used in this study is shown in figure 1. A specially designed optical set-up was 

arranged near the Raman spectrometer to facilitate the exposure of the photopolymer layer and in-situ 

measurement of the polymerization rate. Photopolymer samples were prepared using gravity settling 

technique. The photopolymer composition consists of 8.44 mmol of acrylamide, 1.29 mmol of 

NN’methylenebisacrylamide, 0.0148 mol of triethanolamine and 1.25 µmol of erythrosine B 

photosensitive dye. These are added to 17.5 ml of 10% w/v polyvinyl alcohol stock solution prepared in 

distilled water. A magnetic stirrer was used to completely dissolve the monomers and to obtain a 

homogenous photopolymer solution. 2 ml of the photopolymer solution was gravity settled on a 50x50 

cm
2 
clear glass substrate. The thickness of the photopolymer layer after drying was approximately 180µm. 
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Figure 1 Experimental set-up of the Raman spectrometer and irradiation set-up. 

 

A 532 nm solid state green laser was used to expose the photopolymer layer. As the system under study 

was insensitive to 633 nm and to avoid any additional changes in the sample during the measurement, a 

He-Ne laser (633 nm) with a maximum power of 20 mW integrated in an Instruments SA LABRAM 1B 



Raman spectrometer system was used to acquire the vibrational Raman spectrum of the photopolymer 

sample. The laser power of the probe beam at the sample was ~7 mW and a 50X objective was employed, 

producing a spot size of ~2µm. However, the photopolymer is insensitive to the probe even for longer 

exposure. 

4. Results and discussion 

Vibrational Raman spectra of the individual components of the photopolymer composition, acrylamide, 

NN’methylenebisacrylamide, triethanolamine, erythrosine B, and polyvinyl alcohol were initially 

recorded and are shown in figures 2 (a) to 2 (e) respectively. The Raman spectra of the photopolymer 

composition containing all components except bisacrylamide and with bisacrylamide are shown in figures 

3(a) and (b) respectively. From figure 3(b) it can be observed that in the spectrum of the photopolymer 

containing bisacrylamide an additional peak at 1629 cm
-1

 is present, which is not present in the spectrum 

of the photopolymer sample containing no bisacrylamide. This shows that the peak corresponding to 1629 

cm
-1

 is the characteristic peak of bisacrylamide and can be assigned to the carbon-carbon double bond 

(C=C) [12]. From the Raman spectrum of photopolymer containing no bisacrylamide (figure 3(a)) a peak 

at 1607 cm
-1

 was observed which corresponds to the acrylamide carbon-carbon double bond (C=C) [12]. 

From the individual Raman spectra of TEA (figure 2(c)) and PVA (figure 2(e)) it can be observed that 

there are no characteristic peaks above 1500 cm
-1

 for these components. From the Raman spectra of 

acrylamide monomer (figure 2(a)) and dye (figure 2(d)) it was observed that the acrylamide peak has a 

strong peak at 1638 cm
-1

 which can be ascribed to the C=C double bond in acrylamide and from the 

Raman spectrum of erythrosine B dye, a very weak signal at 1606 cm
-1 

was observed. From figure 3(a) we 

assign the peak at 1607 cm
-1

 to acrylamide carbon-carbon double bond [12] and the peak at 1284 cm
-1

 was 

assigned to the bending mode of carbon-hydrogen (CH) vinyl bond of the acrylamide [11,12]. 
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Figure 2. Raman spectrum and the characteristic peaks of (a). Acrylamide, (b). 

NN’methylenebisacrylamide, (c). Triethanolamine, (d). Erythrosine B, (e). Polyvinyl alcohol.  
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Figure 3. Raman spectrum and the characteristic peaks of photopolymer layer containing (a). Acrylamide 

only as a monomer and (b) both acrylamide and NN’methylene bisacrylamide as the monomers. 

 
In order to study the dependence of the polymerization rate on intensity the photopolymer layers were 

exposed to uniform light intensities of 2.5, 5, 10, 20 and 35 mW/cm
2
 over a 1 cm

2
 spot on different 

samples. These intensities were similar to those used during the 2-beam holographic grating recording in 

this photopolymer. When the photopolymer layer is exposed to the light, a polymerization reaction is 

initiated, consuming the monomer. In the present experimental set-up a 532 nm wavelength (1 cm
2
) laser 

spot used for exposure was overlapped with the internal 633 nm wavelength He-Ne laser ~2 µm diameter 

probe beam of the Raman spectrometer. During the polymerization process carbon-carbon vinyl double 

bonds (C=C) are converted to single bonds (C-C). This conversion of bonds on polymerization results in 

the decrease of the intensity peaks corresponding to the carbon-carbon double (C=C) bond at 1607 cm
-1 

and the bending mode of the carbon-hydrogen (CH) vinyl bond at 1284 cm
-1

 for acrylamide and carbon-

carbon double bond at 1629 cm
-1 

for NN’methylenebisacrylamide when exposed with constant doses of 

exposure. The Raman spectra were recorded as a function of illumination time.  

In the photopolymer system containing monomer and crosslinking monomer (figure 3(a) and 3(b)) the 

carbon-carbon double bond peaks of acrylamide and bisacrylamide were broadened considerably 

compared to the spectra of the individual components (figure 2(a) and (b)). Such a broadening as a result 



of environmental damping is common. The primary maximum at 1607 cm
-1

 corresponds to the acrylamide 

carbon-carbon double bond and the primary maximum at 1629 cm
-1

 was assigned to carbon-carbon double 

bond characteristic of bisacrylamide.  

When the photopolymer layer was irradiated, the intensity peaks of the carbon-carbon double bond (C=C) 

and carbon-hydrogen vinyl bending mode (CH) corresponding to acrylamide and the intensity peak 

corresponding to carbon-carbon double bond (C=C) of bisacrylamide at 1629 cm
-1

 decreased concurrently. 

An example of such a decrease in the intensity peak is shown in figures 4(a) and (b). Figure 4(a) shows the 

decrease in the intensity of the peaks at 1607 cm
-1

 and 1629 cm
-1

, when exposed to a constant intensity of 

10 mW/cm
2
 several times for 1 second on the same spot. A similar decrease in the intensity of the peak at 

1284 cm
-1

 corresponding to bending mode of CH vinyl bond characteristic of acrylamide was observed 

when exposed at the same intensity of 10 mW/cm
2
 for 1 second and is shown in figure 4(b). 
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Figure 4(a). Raman spectra of photopolymer containing monomer and crosslinking monomer 

exposed to a constant intensity of 10 mW/cm
2
 for 1 second each time before the spectrum is 

measured. The peaks correspond to 1607 cm
-1 

and 1629 cm
-1

 or acrylamide and bisacrylamide 

C=C bonds respectively. 
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Figure 4(b). Raman spectra of photopolymer containing monomer and crosslinker exposed to a constant 

intensity of 10 mW/cm
2
 for 1 second each time before the spectrum is measured. The peak corresponds to 

1284 cm
-1

, the CH vinyl bond of acrylamide. 

 
A Gaussian/Lorentzian function was used to fit the spectrum to obtain the peak height instead of taking 

the peak height obtained directly from the spectrum. Graphs of peak intensities versus illumination time 

were plotted and are shown in figures 5 (a), (b) and (c) corresponding to the characteristic peaks at 1284 

cm
-1

, 1609 cm
-1

 and 1629 cm
-1

 respectively. 
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Figure 5. Graphs of peak intensity versus illumination time corresponding to (a) CH vinyl bond of 

acrylamide at 1284 cm
-1

, (b) carbon-carbon double bond of acrylamide at 1607 cm
-1

, and (c) carbon-

carbon double bond of NN’methylenebisacrylamide at 1629 cm
-1

. The solid line is a mono-exponential 

fitting curve and the scattered points correspond to the data points (peak intensity). The photopolymer 

layer was exposed to a uniform exposure intensity of 10mW/cm
2
. 

 



From the graphs it can be seen that the consumption of monomer is monoexponential. An exponential 

decay fit of the data gives the characteristic time constant for the decay of the scattering intensity 

corresponding to the acrylamide and bisacrylamide carbon-carbon double bonds (C=C) and carbon-

hydrogen vinyl bond (CH). 

In the early versions of the theoretical models proposed to explain the polymerization reaction kinetics for 

holographic recording in photopolymers [3-5], the polymerization rate was assumed to depend linearly on 

intensity of exposure. In the more recent studies [12] the polymerization time constant is related to the 

exposure intensity as shown in equation 1.   

2/1kI
t

1
=  ............................................................................................................................. 1 

where t is polymerization time constant, k is polymerization rate and I is the intensity of illuminating light.  

Such assumptions are not always justifiable as the rate of polymerization also depends on the reactivity of 

the monomers and on their concentration. The chemical structure and functionality of monomers as well 

as the background polymer also could influence the polymerization rate [13]. The above equation can be 

written in more general way [15] as shown in equation 2. 

γ
= kI

t

1
................................................................................................................................  2 

where γ is the parameter which determines the dependence of the polymerization rate on intensity, which 

is of interest in this study. 

The value of γ was determined by plotting the logarithm of polymerization time constant, obtained when 

the photopolymer layers were exposed to different intensities, against the logarithm of the exposure 

intensity and the data fitted using a linear fitting function. The results are shown in figures 6 (a), (b) and 

(c). 

In the present photopolymer composition the values of  γ obtained by fitting the data at 1284 cm
-1

 and 

1609 cm
-1 

wavenumbers were found to be same, 0.27. These peaks correspond to the carbon-hydrogen 

vinyl bond and carbon-carbon double bond (C=C) respectively of acrylamide. From the linear fit of the 



data points for the peak at 1629 cm
-1

 corresponding to carbon-carbon double bond of 

NN’methylenebisacrylamide, the value obtained for γ was 0.32. One can notice that the experimentally 

determined values for γ parameter differ substantially from normally assumed value of 0.5 [ref]. It implies 

much weaker dependence of the polymerisation rate on the intensity of recording. 

By substituting the value of polymerization time constant t, the polymerization rate dependence parameter 

γ and exposure intensity I into equation 2, the polymerization rate of acrylamide in the photopolymer 

composition was calculated and the value is 0.100 s
-1

(mW/cm
2
)

-0.27
. The polymerization rate constant of 

bisacrylamide in the photopolymer composition was also calculated and the value is                            

0.114 s
-1

(mW/cm
2
)

-0.32
. Similar values for the polymerization rates were obtained directly from the 

intercept of the graph by taking the inverse logarithm of the log k value. 
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Figure 6. A graph of log (t) against log (Iexp) corresponding to the (a) bending mode of CH vinyl bond of 

acrylamide at 1284 cm
-1

, (b) carbon-carbon double bond of acrylamide and (c) carbon-carbon double bond 

of NN’methylenebisacrylamide. The solid line corresponds to a linear fit of the scattered data points. t is 

the polymerization time constant obtained at different exposure intensities.  

 

When compared to other photopolymers such as Du Pont’s whose polymerization rate was characterized 

as 0.019 s
-1

mW
-0.5

, the photopolymer under study has almost an order of magnitude faster polymerization 

rate.  

The measured polymerization rate is approximately five times faster than that obtained by Neipp et al [9] 

for a similar acrylamide-based photopolymer system. However, Neipp et al’s polymerization rate depends 

on the assumption that the diffusion time is of the order of 30 seconds for which there is little basis given. 

And also the sensitizing dye used in their photopolymer composition is yellowish eosin which is different 

from that used in the present study. So a direct comparison may be somewhat misleading. However, in the 

present measurements a somewhat faster polymerization rate was obtained and the measurement does not 

rely on assumed diffusion rates. It should also be borne in mind that the polymerization rate in this system 

was estimated under spatially uniform illumination whereas, in holographic recording the actual 

polymerization rates are likely to be influenced by diffusion of additional monomer and a spatially varying 



supply of initiating molecules, and could be even faster. Also variations in polymerization rates would be 

expected due to variations in the photopolymer formulation.  

5. Conclusions 

Characterization of the polymerization rate constant in an acrylamide-based photopolymer for holographic 

recording using Raman spectroscopy is presented. The consumption of monomer was observed to be 

mono-exponential. A time constant from the exponential fit of the intensity peaks corresponding to 

acrylamide carbon-carbon double bond (C=C), carbon-hydrogen vinyl bond (CH2) and carbon-carbon 

double bond of bisacrylamide (C=C) was obtained and the polymerization rate constant was determined. It 

was determined experimentally that the dependence of the polymerisation rate on the intensity is weaker 

than the one assumed in the commonly accepted models. The values for the γ parameter obtained for 

acrylamide and NN’methylenebisacrylamide are 0.27 and 0.32 correspondingly. The polymerization 

constant of acrylamide in the stated photopolymer composition was found to be 0.100 s
-1

(mW/cm
2
)

-0.27
 and 

polymerization rate of bisacrylamide was found to be 0.114 s
-1

(mW/cm
2
)

-0.32
. The polymerization rate 

constant in this photopolymer is faster than in other commercial photopolymers for holographic recording. 
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