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Musical Sound Source Separation using extended tensor decompositions

Derry FitzGerald†

†Audio Research Group, Dublin Institute of Technology
Kevin St., Dublin 2, Ireland

Email: derry.fitzgerald@dit.ie

Abstract—Recently, tensor decompositions have found
use in sound source separation. In particular, non-negative
tensor decompositions have received a lot of attention
due to their ability to decompose audio spectrograms into
meaningful ”parts” such as individual notes. Extensions
to the basic non-negative tensor factorisation framework
allow the incorporation of additional constraints, such as
shift-invariance in both frequency and time. This enables
the factorisations to capture more complex structures than
individual notes, such as individual sources playing differ-
ent pitches and time-evolving instrument timbres. Further
music specific constraints such as harmonicity and source-
filter modeling have been shown to improve separation per-
formance for musical signals. Other recent advances also
allow the incorporation of Bayesian priors into these mod-
els, thereby further improving the separations obtained.

1. Introduction

Recently, non-negative matrix factorisation (NMF) and
non-negative tensor factorisation (NTF) techniques have
been the focus of much attention as a means of carrying
out musical sound source separation from single and mul-
tichannel mixtures [1, 2]. Standard NMF and NTF de-
compositions return basis functions which correspond to
meaningful parts such as notes played by a pitched instru-
ment. However, clustering these basis functions to their
respective sources proved difficult. Later, shift invariant
approaches, which could model a given pitched instrument
with a single basis function which was then shifted in fre-
quency to approximate different notes played by the instru-
ment, were developed to overcome this limitation [3, 4].

While sucessful in overcoming the problem of clustering
the basis functions, these techniques were not without their
drawbacks. In particular, shift-invariance in frequency ne-
cessitated the use of a time-frequency transform with log-
frequency resolution such as the Constant Q Transform [5].
As the mapping from a log-frequency domain to a linear
frequency domain is an approximate mapping, this caused
problems with the resynthesis of the separated sources.
This problem could be ameliorated somewhat by incorpo-
rating the mapping into the signal model and optimising for
reconstruction error in the linear frequency domain [6].

Further, using a single basis function to model an instru-
ment is only a valid approximation over a limited pitch
range, and in practice, the timbre of pitched instruments

changes with frequency. In an attempt to overcome this,
Virtanen and Klapuri proposed incorporating a source-filter
model [7], which allowed the timbre to change by using a
fixed filter to approximate the resonant structure of the in-
strument.

Finally, none of the above techniques constrained the ba-
sis functions of pitched instruments to be harmonic. An
inital attempt to include such a constraint was made by
Raczynski et al [8], who zeroed the basis functions in re-
gions where no harmonic activity was expected. An addi-
tive synthesis approach to incorporating harmonicity was
later proposed in [9]. The addition of harmonicity was also
found to constrain the optimisation problem sufficiently to
allow the simultaneous separation of pitched and unpitched
sources, and the resulting model is described in greater de-
tail in Section 2.

The rest of the paper is organised as follows: Section 1.1
describes the notation conventions used throughout the pa-
per, while section 2 describes a generalised tensor factori-
sation model capable of separating mixtures of both pitched
and unpitched sources. Section 3 describes Bayesian exten-
sions to this model, while section 4 describes application of
the algorithm to a number of real-world situations. Finally,
section 5 provides some conclusions.

1.1. Notation

For the rest of the paper, all tensors, regardless of the
number of dimensions, are signified by the use of cali-
graphic letters such asA. 〈AB〉{a,b} denotes contracted ten-
sor multiplication ofA andB along the dimensionsa and
b of A andB respectively. Outer product multiplication
is denoted by◦. Indexing of elements within a tensor is
notated byA(i, j) as opposed to using subscripts. This no-
tation follows the conventions used in the Tensor Toolbox
for Matlab, which was used to implement the following al-
gorithm [10]. For ease of notation, as all tensors are now
instrument or source specific, the subscripts are implicit in
all tensors within summations. Elementwise multiplication
is denoted by⊗ and all division is taken as elementwise.

2. Source-Filter Sinusoidal Non-negative Tensor Fac-
torisation

Given anr-channel mixture of pitched and unpitched
musical instruments, magnitude spectrograms are obtained



for each channel, resulting inX, anr × n × m tensor with
n the number of frequency bins andm the number of time
frames. The tensor is then modelled as:

X ≈ X̂ =

K
∑

k=1

G ◦ 〈〈〈FH〉{2,1}W〉{3,1}〈SP〉{2,1}〉{2:3,1:2}

+

L
∑

l=1

M◦ 〈B〈CQ〉{1,1}〉{2,1} (1)

where pitched instruments are modelled by the first right-
hand side term and unpitched or percussion instruments by
the second term.K denotes the number of pitched instru-
ments andL denotes the number of unpitched instruments.
The individual elements of the model are described below.
G is a tensor of sizer, containing the gains of a given

pitched instrument in each channel.F is of sizen × n,
where the main diagonal contains a filter which attempts to
model the formant structure of an instrument, thus allowing
the timbre of the instrument to alter with frequency.H is
of sizen×zk×hk wherezk is the number of allowable notes
andhk the number of harmonics used to model thekth in-
strument. HereH (:, i, j) contains the frequency spectrum
of a sinusoid with frequency equal to thejth harmonic of
the ith note.H remains fixed during optimisation.W of
sizehk × pk containing the harmonic weights for each of
the pk shifts in time that describe thekth instrument.S is a
tensor of sizezk × m which contains the activations of the
zk notes associated with thekth source, and in effect con-
tains a transcription of the notes played by the instrument.
P is a translation tensor of sizem× pk×m, which translates
the activations inS across time. This allows the model to
capture evolution in the harmonic weights with time.

In the case of the unpitched instruments,M is a tensor
of size r containing the gains of an unpitched instrument
in each channel.B is of sizen × ql and contains a set of
frequency basis functions which model the temporal evo-
lution of the timbre of the unpitched instrument whereql

is the number of translations in time used to model thelth
instrument.C is a tensor of sizem which contains the ac-
tivations of thelth instrument, andQ is a translation tensor
of sizem× ql ×mused to shift the activations inC in time.

As opposed to the model presented in [9], here each in-
strument can have its parameters set individually, such as
the number of harmonics or the number of allowable notes.
For example, a flute can be modelled with fewer harmonics
than a piano, and so the model parameters can be adjusted
accordingly. This increased flexibility can be leveraged to
improve the separations obtained from the algorithm.

Once a suitable metric for measuring reconstruction of
the original data, such as the generalised Kullback-Liebler
divergence, is chosen, iterative update equations can be de-
rived for each of the model variables. These update equa-
tions take the form

R = R ⊗

▽−
R,D(X‖X̂)
▽+
R,D(X‖X̂)

(2)

whereR represents a given variable in the model to be
updated,D

(

X ‖ X̂
)

denotes the reconstruction metric, and
where▽−

R,D(X‖X̂) and▽+
R,D(X‖X̂) represent the negative and

the positive parts respectively of the partial derivative of the
reconstruction metric with respect toR.

3. Bayesian Extensions

Recently Virtanen et al. have proposed a number of
Bayesian extensions to NMF for the purposes of audio sep-
aration [11]. This work focused on the use of gamma priors
to incorporate constraints such as prior knowledge of the
frequency characteristics of the sources and temporal con-
tinuity on the note activations. These additional terms are
added directly to the chosen reconstruction metric.

Priors over the unpitched frequency basis functionsB
were derived by Virtanen et al by assuming that each entry
of each prior is independently drawn from a Gamma distri-
bution, where the distribution was defined as:

G(y; a, b) = ya−1b−ae−y/b/Γ(a) (3)

whereΓ(a) is the gamma function. In the case of the fre-
quency basis functions for unpitched instruments this can
be expressed as

p(B(v, r)) = G(B(v, r);αv,r , β
−1
v,r )

= B(v, r)αv,r−1β
αv,r
v,r e−B(v,r)βv,r /Γ(αv,r) (4)

wherev denotes thevth frequency bin,r denotes therth
of ql frames used to model the temporal evolution of the
source. The hyperparametersαv,r andβv,r can be chosen
independently for each source, and a simple interpretation
of β−1

v,r is as a set of weights which describe the typical fre-
quency content of a given source. For example,β−1

v,r could
be a typical frequency spectrogram of an unpitched instru-
ment such as a hi-hat.

Similar priors can easily be incorporated for the harmon-
ics weightsW and the formant filterF , thereby allowing
additional knowledge of the sources to be incorporated in
an intuitive manner. In effect, the update equations are
modified to include a set of weights which point the up-
dates towards the source known to be present. The mod-
ified update equations including the gamma prior take the
form

R = R ⊗

(α − 1)/R + ▽−
R,D(X‖X̂)

β + ▽+
R,D(X‖X̂)

(5)

whereα andβ are tensors containing the hyperparmeters
for the gamma distribution. In practice, all elements inα
are set to 1.

Virtanen et al. encourage temporal continuity on the ba-
sis function activations through the use of a gamma chain.
Taking the activations of the pitched sources as an example,



this chain is constructed through the use of an auxiliary ten-
sorZ of sizezk ×m+ 1, which is defined as follows:

Z(i, 1) ∼ G(Z(i, 1);a+ 1, (ab)−1)

S(i, τ) | Z(i, τ) ∼ G(S(i, τ); a, (Z(i, τ)a)−1) (6)

Z(i, τ) | S(i, τ) ∼ G(Z(i, τ + 1);a+ 1, (S(i, τ)a)−1)

whereτ indicates the time index in frames and lies between
1 andm, andi indexes over 1 :zk. In this contexta acts as
a coupling parameter between frames, and larger values of
a result in more strongly coupled adjacent frames.

It should be noted that this approach can easily be
adapted to deal with other forms of continuity. For exam-
ple, it would be expected that a formant filterF would vary
smoothly with frequency, and so continuity in frequency
would be of benefit in this situation. Similarily, continuity
can be imposed on the harmonic weightsW, either be-
tween the strengths of the partial, which would correspond
to assuming spectral smoothness, a principal found to be
useful in music transcription [12] or by imposing continu-
ity on the temporal evolution of the partials.

The update equations incorporating the gamma chain
take the general form

R = R ⊗

2a/R + ▽−
R,D(X‖X̂)

aT + ▽+
R,D(X‖X̂)

(7)

whereT is a tensor which depends on the auxilliary tensor
Z for the gamma chain. In the case ofS, updates forZ are
given by:

T = Z(i, 1 : m) +Z(i, 2 : m+ 1) (8)

and

Z(i, τ) =



























1/(S(i, 1)+ b), τ = 1

2/(S(i, τ) + S(i, τ − 1), 1 < τ < m+ 1

1/S(i, τ) τ = m+ 1

(9)

Similar auxiliary tensors can be defined for bothF andW,
though it should be noted that forF the gamma chain will
be defined only for the main diagonal.

4. Applications

This section presents a number of real-world applica-
tions of the separation algorithm, with particular reference
to the separation of pitched instruments from percussion
and noise. Figure 1 shows an excerpt from “Rosanna” by
Toto, along with the separated pitched and drum instru-
ments respectively. It can be seen that the separation of
the drum sounds is quite clean, with little or no evidence of
pitched instruments, while the prominent transients of the
drum sounds are not evident in the pitched separation. On
listening, little or no evidence of the pitched sound can be
heard in the separated drums, while there is still some evi-
dence of the drums in the pitched signal, though at a much

reduced volume. This appears to be because the pitched
separation also appears to capture relatively long tailed re-
verberations of the drum events, in part due to the continu-
ity constraint imposed on the pitched instruments.
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Figure 1:(a) Original excerpt from “Rosanna” by Toto, (b)
Separated pitched instruments, (c) Separated drums

This can be seen more clearly in Figure 2, where a drum
intro from the same song is passed through the same al-
gorithm. The drum instruments can be seen to have been
clearly captured, while the “pitched” separation consists
mainly of more continuous noise. On listening to the
“pitched” separation, it sounds like a drum signal passed
through a reverb, and by adjusting the amplitudes of the
“pitched” and unpitched parts, the drum ontro can be made
to sound like it is a much bigger room.

Finally, Figure 3 shows an example of using the algo-
rithm to denoise a degraded 78rpm recording. It can be
seen that the noticeable transients have been completely re-
moved from the recording, as well as much constant noise
that is not visable on the waveform. On listening, the sound
quality has been improved considerably, with the noise
only audible in quieter passages of the recording.

5. Conclusions

A brief overview of NTF-based approaches to musi-
cal source separation has been given. An extended NTF-
based approach was then presented which incorporated
both source-filter modelling and harmonicity constraints.
Following this, a number of Bayesian extensions to this
model, using Gamma priors in particular, were discussed.
These extensions can result in improved separation perfor-
mance, particularly with regards to continuity constraints.
A number of separation examples using these extensions
were then shown, demonstrating the utility of these tech-
niques in real world settings. However, a problem with
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Figure 2:(a) Drum intro from “Rosanna” by Toto, (b) Sep-
arated drum instruments, (c) Separated “reverb”

these techniques is that they are computationally intensive.
Future work will concentrate on improving the speed of
these algorithms.
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