
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Mathematics and Statistics 

2007-01-01 

Krylov subspaces from bilinear representations of nonlinear Krylov subspaces from bilinear representations of nonlinear 

systems systems 

Marissa Condon 
Dublin City University, marissa.condon@dcu.ie 

Rossen Ivanov 
Technological University Dublin, rossen.ivanov@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart 

 Part of the Mathematics Commons, Non-linear Dynamics Commons, and the Systems and 

Communications Commons 

Recommended Citation Recommended Citation 
Condon, M & Ivanov, R. Krylov subspaces from bilinear representations of nonlinear systems. COMPEL 
Journal, vol. 26, no. 2.DOI: doi:10.1108/03321640710727755 

This Article is brought to you for free and open access by the School of Mathematics and Statistics at ARROW@TU 
Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For 
more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatart
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatart?utm_source=arrow.tudublin.ie%2Fscschmatart%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=arrow.tudublin.ie%2Fscschmatart%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/118?utm_source=arrow.tudublin.ie%2Fscschmatart%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fscschmatart%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=arrow.tudublin.ie%2Fscschmatart%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Krylov Subspaces from Bilinear Representations of Nonlinear systems 

M. Condon and R. Ivanov 

School of Electronic Engineering, Dublin City University, Dublin 9, IRELAND 

 

Abstract – 

For efficient simulation of state-of-the-art dynamical systems as arise in all aspects of 

engineering, the development of reduced-order models is of paramount importance.  

While linear reduction techniques have received considerable study, increasingly 

nonlinear model reduction is becoming a significant field of interest.  From a circuits 

and systems viewpoint, systems involving micromachined devices or systems 

involving mixed technologies necessitate the development of reduced-order nonlinear 

models.  From a control systems viewpoint, the design of controllers for nonlinear 

systems is greatly facilitated by nonlinear model reduction strategies.  To this end, the 

paper proposes two novel model-reduction strategies for nonlinear systems.  The first 

involves the development, in a novel manner as compared to previous approaches, of 

a reduced-order model from a bilinear representation of the system while the second 

involves a reducing a polynomial approximation using subspaces derived from a 

related bilinear representation.  Both techniques are shown to be effective through the 

evidence of a standard test example. 

    

 

 

 

 

 



1. INTRODUCTION 

With the growing complexity and dimensionality of state-of-the-art dynamical 

systems as arise in all aspects of engineering, model reduction is becoming a vital 

aspect of modern system simulation.  While model reduction techniques for linear 

systems are well studied (e.g. [1-5] and references therein) especially in the context of 

interconnect and package modelling, the study of nonlinear model reduction strategies 

has received considerably less attention. However, from a circuits and systems 

viewpoint, systems involving micromachined devices or systems involving mixed 

technologies necessitate the development of reduced-order nonlinear models.  From a 

control systems viewpoint, the design of controllers for nonlinear systems is greatly 

facilitated by nonlinear model reduction strategies.  Applications for effective 

nonlinear control design abound in engineering from the control of chemical process 

systems to the control of aeronautical and electrical power systems.  Hence, the 

development of model reduction methods for nonlinear systems is of paramount 

importance to the general engineering community.  Unfortunately, the study of 

nonlinear systems is much more complicated since their solutions (when they exist) 

can be of a quite complex nature (not unique, singular, chaotic etc.).  Therefore, the 

development of suitable reduced-order modelling techniques represents a formidable 

challenge. Some recent work in this field is presented in [6-15]. 

 

The present contribution proposes two novel techniques involving Krylov subspaces 

for model reduction of weakly nonlinear systems.  The particular choice of Krylov 

subspace model reduction stems from the success of the Krylov paradigm in linear 

model reduction.  Firstly for linear systems, the choice of a projection matrix is 



straightforward resulting from the moment-matching properties of the transfer 

function of the system.  Secondly, the computation the projection matrix is 

straightforward involving only the solution of linear equations or matrix products. 

Furthermore, the Krylov approach enables the efficient formation and simulation of a 

reduced order model in that the reduced order model has the same form as the original 

system but is of much lower dimensionality.   However, the development of Krylov 

approaches for nonlinear model reduction is not quite so straightforward.  Consider 

the following nonlinear system: 
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where  and is the reduced state space.  and the aim is that 

 where  is the output of the reduced model.  However, to date, there has been 

no universal approach proposed for the determination of V.  Furthermore, as outlined 

in [12], the interpretation of (2) as a reduced-order model for a nonlinear system is 

dubious. Since f is a nonlinear function, it is not, in general, possible to pass V through 

the parentheses in (2) and thus computation of the nonlinear function, f, is 

unavoidable.  Since the computation of such a function is often the major determining 

factor in the overall system simulation time, a reduction in the size of the state-space 
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if achieved in this manner may not produce the desired effect as regards a significant 

reduction in computation time. 

 

Thus, for nonlinear systems, some compromises have to be made if Krylov 

approaches are to be utilised.  For this contribution, the compromise comprises either 

a restriction on the type of nonlinear system under consideration or an approximation 

of the nonlinear equations describing the system behaviour.  In particular, two 

categories of nonlinear system representation will be considered – bilinear system 

representations and polynomial system representations.  A bilinear system is one 

which is linear in state, linear in control but not linear jointly.  Bilinear systems 

frequently arise naturally in engineering, for example, nuclear fission, chemical and 

biological models  and ecological models [17].  However, even when the system itself 

is not naturally bilinear, the bilinear representation offers a superior representation to 

a linear model.  Polynomial representations also aim to improve on a basic linear 

model by incorporating in the system representation the higher-order terms in a series 

expansion of the nonlinear function, f.   

 

While some Krylov subspace based approaches have been proposed for nonlinear 

model reduction eg [10-12] employing bilinear and polynomial representations, the 

current work employs them in a rather different manner to that previously presented.  

Full details of the new approaches and their position relative to existing methods will 

be detailed in subsequent sections.  Section 2 will present the first approach and the 

second is detailed in Section 3.  An illustrative and standard example [10-15] is given 

in Section 4, which confirms the efficacy of the proposed approaches.  It should be 

noted that this example is not intended to be a practical application of the techniques.  



It is chosen to enable ease of comparison of the proposed techniques with existing 

approximations and to confirm the theoretical proposals put forth throughout the 

paper. 

 

2. BILINEAR APPROXIMATION OF WEAKLY NONLINEAR SYSTEMS 

Consider again the nonlinear system in (1).  For the ensuing analysis, it is assumed 

that the system (1) is weakly nonlinear with an asymptotically stable equilibrium 

point as described in [10].  Without loss of generality, it is assumed that  is the 

stable equilibrium point of the system i.e. . Under this assumption can 

be expanded in a generalised Taylor’s series about the equilibrium point : 

0=x
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where , ,  , etc. and  ⊗  denotes the Kronecker 

product.  Stability of the system implies that all the eigenvalues of  have negative 

real parts. 
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The systems under consideration will be assumed to be weakly nonlinear.  Hence, the 

condition that each term in the Taylor’s expansion is small compared to the previous 

one will be taken to hold.  Consequently, the system in (1) can be approximated by 

the well-known bilinear representation (Carleman bilinearization) of (1) [10]: 
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The matrices  are defined from the Taylor’s series expansion in (3) and iA

iiiji AIIIAIIIAA ⊗⊗⊗++⊗⊗⊗+⊗⊗⊗= LLKL ,  

BIIIBIIIBB j ⊗⊗⊗++⊗⊗⊗+⊗⊗⊗= LLKL0  

where I is the  identity matrix and there are nn × j  terms in each sum. Thus , 

are square matrices of dimension ; , 

Â

N̂ Knnn L++ 2 x̂ B̂ ,  are vectors with 

 components if K terms in the Taylor’s series expansion are taken into 

account. 

Ĉ

Knn Ln + +2

 

As stated in the introduction, the rationale for employing the bilinear representation is 

that it allows higher-order terms to be explicitly incorporated in the subsequent model 

reduction technique and hence is superior to employing a linear representation.  

However, for practicality purposes, the matrix  requires truncation.  For the 

present work,  is taken as: 
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which corresponds to taking into account the quadratic terms in (3). 

Consequently,  
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where  and  are the matrices in (3), ,  

where

1A 2A 1121 AIIAA ⊗+⊗= BIIBN ⊗+⊗=

I is the  identity matrix. Thus,  and are square matrices of dimension 

; , 

nn × Â N̂

2nn + x̂ B̂ , C  are vectors with  components.   ˆ 2nn +

 

Now for the purposes of developing the new Krylov approach, consider, initially, the 

case of a bilinear system subject to a constant input u . 
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This obviously results in the linear system (8) and thus the system, (8), possesses all 

the advantageous properties pertaining to linear systems.  Bearing this observation in 

mind, for the general case where u , it is proposed to introduce a 

parameter

constt ≠)(

κ which is related to u : )(t ][uκκ =  ( uu =][κ for constant input) and 

BB KK ≤≤− u][κ  reflecting the fact that | where KBKtu ≤|)( B is a constant bound.  It 

is assumed that κ is a functional on  (i.e. a parameter that does not depend on  but 

does depend on the behaviour of u  for 

u

(

t

)t ,0[ ]τ∈t  and on the specific choice of 

interval, ],0[ τ ).  The dependence of κ on is important.  This enables the Krylov 

subspaces of the system (8) to vary with  which results in a superior model 

reduction technique for a bilinear representation.  Hence, in order to define 

)(tu

)(tu

]u[κ , 

consider a rescaling of the input uu γ→  where γ is a constant and uγ is sufficiently 

small.  This transforms the bilinear system into another bilinear system with source 

u(t)  as follows: 
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)(ˆˆ)(

)()ˆ()()(ˆˆ)(ˆˆ)(ˆ

txCty

tuBtutxNtxAtx

=

++= γγ&

A rescaling of B̂ does not affect the determination of Krylov spaces. 



However, the term in (9) shows that in order to determine the (input-dependent) 

Krylov subspaces it is necessary to impose the validity of the following property of 

uxNˆˆγ

κ : 

][][ uu γκγκ =       (10) 

i.e. ][uκ  must be a linear functional on .  Therefore, for the general case of a non-

constant input, it is reasonable to define 

u

[ ]uκ  as follows:  

∫=
τ

τ
κ

0

)(1][ dttuu .               (11) 

The definition in (11) obviously obeys (10). 

 

Of course, for control systems, where the input controls the output, u is not given a 

priori but nevertheless (11) provides an estimate on how the parameter 

)(t

κ  relates to 

the typical values of the input.  In general, the best value of κ  for a particular control 

system can be found from computer simulations. 

 

The proposition then is to employ the following linear system that is related to the 

original bilinear system to extract a projection subspace for the bilinear system with a 

][uκ  value determined from (11) or by some other means: 
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When the system in (12) is represented in the frequency domain, the input and output 

are related by the following transfer function: 

BAIsCsH ˆ)ˆˆ(ˆ)( 1−−= κ      (13) 



where  and NAA ˆˆˆ κκ += Î  is the corresponding  dimensional identity matrix.
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If H(s) is to be computed in an efficient manner using a truncated version of the 

summation expression in (14) then the sequence of moments { must decrease 

rapidly in absolute value to zero with increasing

}pm

p .  This is clearly dependent on the 

choice of expansion point .  For example, if the absolute value of all eigenvalues of 

 is greater than 1, then the absolute values of all eigenvalues of  are less than 1 

and { decreases with 

0s
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point for moment matching.  Otherwise, (e.g. when  has small eigenvalues), an 

appropriate expansion point should be chosen such that the absolute value of all 

eigenvalues of  is greater than 1. 
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For model reduction purposes, what is of interest is the relationship between the 

moments and the formation of suitable projection subspaces.  All of the moments (16) 



may be written as scalar products between the following left and right Krylov spaces 

e.g. [10]: 
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(The notation is adopted throughout that Krylov subspaces of the form K̂  have 

dimension . while Krylov spaces of the form ..2nn + K  have dimension n).  

The projection subspace is formed by taking the first  vectors of each Krylov space. 

To avoid ill-conditioning in the reduction matrices, the two bases can be made 

biorthogonal, i.e. WV where the vector-columns of V  are from , the vector-

rows of W  are from  and  is the  identity matrix. 

k
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The state vector may then be approximated by the ‘reduced’ k -dimensional state 

vector  i.e. . The resultant reduced bilinear system is therefore: 
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where , ,   and . VAWAr
ˆ= VNWNr

ˆ= BWBr
ˆ= VCCr

ˆ=

Thus, by employing the system in (12) it is possible to define suitable Krylov spaces 

that may subsequently be used for determining a reduced-order bilinear system.  The 

success of employing such subspaces will be evident from the results in Section 4.   

 

3.POLYNOMIAL APPROXIMATION OF WEAKLY NONLINEAR SYSTEMS 

The second technique proposed for model reduction of weakly nonlinear systems is 

based on a polynomial approximation of the given system (1).  However, for ease of 

explanation we will restrict ourselves in the current work to a quadratic approximation 

which is as follows: 
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Particular observations in relation to a corresponding bilinear approximation of the 

nonlinear system can provide some insight into the construction of a suitable Krylov 

space for model reduction of the quadratic representation.  Therefore, the first part of 

this section will again focus on the bilinear representation.  Consider the solution to 

the bilinear system in (4) [16]:  
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i℘  is the set of permutations of  { and },...,1 itt θ  is the unit step function. The 

expression for  can be obtained from those for v  with iz i B̂  replaced by the identity 

matrix I.  

The kernels C  of this solution naturally lead to the multi-

dimensional transfer functions of the form [10]: 
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The coefficients in a power series expansion of  (about ) are the following 

multi-moments: 
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The matrices involved in (22) have the following noteworthy structure: 
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where  and . IsAA s 01,1 0
−= IIsAA s ⊗−= 021,21 0

As a result of this structure and that of B̂ and (see Section 2 (7)), the kernels of 

degree 1 may be written as: 
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This indicates that they can therefore be represented as scalar products between 

vectors of the following n -dimensional (not -dimensional) Krylov spaces: 2nn +
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Similarly, kernels of degree 2 may also be represented as scalar products between 

vectors of -dimensional Krylov spaces: n
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The combined Krylov spaces are as follows: 
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Thus, the crucial observation is that -dimensional Krylov spaces suffice for 

matching both degree 1 and degree 2 kernels (and possibly some of the degree 3 

kernels) for a bilinear system.  

n

          

Since the bilinear system of (4)-(7) was formed on the basis of inclusion only of 

quadratic terms in the Taylor’s series approximation of the original system, it is 

proposed that the Krylov spaces in (28) can be used for reduction of the n -

dimensional quadratic system in (19).  Taking the relevant k -dimensional (where k is 

the order of the reduced system) left and right subspaces, biorthogonal bases and 

projection matrices V  and W  can be constructed as described in Section 2.  The 

reduced quadratic system is then: 
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4. AN ILLUSTRATIVE EXAMPLE 
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Fig 1. Nonlinear RC ladder 



The circuit employed is the nonlinear RC ladder shown in Fig. 1 (frequently employed 

as a test circuit for model reduction techniques [10-15]). The nonlinear resistors (a 

diode in parallel with a unit resistor) have the constitutive relation i  

and the capacitors have unit capacitance. 

vev v +−= )1()( 40

 

The input to the system is a current source  entering node 1 and the output is 

the voltage taken at node 1. The number of nodes in the system is n=30.  

tetu −=)(

 

The system is initially approximated by a bilinear system of order 30+302=930.  The 

time interval chosen for consideration is t , i.e. ]1,0[∈ 1=τ  and hence the parameter κ 

in (12) is evaluated as . 6321.01 =1
1

0

−== −−∫ edte tκ

 

The reduction process for the bilinear system of order 930 to a bilinear system of 

order three is implemented utilising the Krylov spaces defined by (17) (Method 1).  In 

order to compare various results, the root-mean squared error is calculated between 

the outputs of the bilinear model (4) of order 930 and the reduced-order models (18).  

Table 1 shows the results achieved with 6321.0=κ  for a selection of expansion 

points .  (Obviously, tests were carried out for a much larger range of expansion 

points and what is given in Table 1 corresponds only to a suitable selection).  The 

variation in the results clearly shows the importance of judicious choice of expansion 

point.  The best result is achieved with and expansion point of  with the 

corresponding rms error equal to 1.1×10

0s

7.20 =s

=

-5. To confirm the validity and superiority of 

this new approach (Method 1), results are also shown for the case where 0κ .  This 

corresponds to the standard linear approximation of a bilinear representation.  With 



0=κ  the rms error is ~10-3 for a large range of values of  around 3.0 (where the 

rms values are at their lowest).  Phillips [12] also proposes determining a projection 

basis for bilinear systems based on a Krylov approach.  He chooses an initial basis V
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and finally constructs V (k is the order of 

the reduced system) from .  With this approach the second order 

regular kernels of the reduced model and the original bilinear system match up to 

terms in  -  where the subscript r 

denotes matrices of the reduced-order model.  Implementation of this approach in 

conjunction with biorthogonalisation [10] yields an rms error of 2.4×10
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-4.  

Biorthogonalisation is known to be more efficient in multimoment matching than the 

use of one-sided Krylov subspaces [10].  

κ s

As evidenced by these results, the new method proposed in this work with a suitable 

choice of expansion point leads to greatly improved results. 

Table 1: Results for nonlinear ladder 

 0  Rms error 
0 0 1.3×10-2 
0 3.0±1.0 (6.5±0.2)×10-3 

0.6321 0 1.7×10-2 
0.6321 2.4 2.9×10-4 
0.6321 2.5 1.9×10-4 
0.6321 2.6 1.0×10-4 
0.6321 2.7 1.1×10-5 
0.6321 2.8 6.4×10-5 
0.6321 2.9 1.3×10-4 
0.6321 3.0 2.0×10-4 

 

The second approach is that suggested in Section 3 whereby the system is 

approximated by a quadratic system (19) of order 30.  The reduction to a  3=k



dimensional quadratic system is implemented by utilising the following Krylov 

subspaces (based on (28)): 

.},,{}{

},,,{}{
1

,1
1
,212

1
,1

1
,1

2
,1

1
,1

0000

00

T
ssss

T

ss

NAAACACACWspan

BABABVspan
−−−−

−−

=

=
    (30) 

and the chosen expansion point is . This particular choice of subspaces and 

expansion point is found to yield the best results.  The subspace selection is based on 

matching the first four of the first-order kernels as the first-order kernels contribute 

most to the response of the system.  The elements of span{V} are from  

in (28).  The first two elements of  are selected from  and the 

third element is selected from .  The root-mean squared error is calculated 

between the outputs of the quadratic model (19) and the reduced-order model (29).  

The rms error achieved is 1.0×10

3.20 =s

}{ TWspan

2,L
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,11, 0

BAK sR
−

)1
,1 0

−
sA,(1,L CK

K

-4 highlighting the efficacy of this second novel 

approach.  If a projection basis is chosen based solely on a linear approximation of the 

system, the rms error is 7.6×10-4.  It should be noted that choosing a basis based on a 

linear approximation of the system is the standard approach for reducing a quadratic 

model [13] (and also indicated in [15]).  These results clearly indicate that the 

proposed approach leads to significant improvements.  

 

5.  CONCLUSIONS 

Two novel methods involving Krylov subspaces for model reduction of weakly 

nonlinear systems have been proposed.  The first method is based on bilinearisation of 

the system and utilizing the Krylov basis for a related linear system (12).  The second 

approach involves using Krylov bases identified for a bilinear representation of the 

system for subsequent reduction of a polynomial approximation of the system. 



The first method (that proposed in Section 2) has the advantage that the choice of 

Krylov bases is straightforward as is the case for all linear systems.  It consists of the 

selecting the first  vectors of the set given in (17).  The drawback with the approach 

is that which is common to all techniques that involve working directly with bilinear 

systems and is that the size of bilinear system is large i.e.  if only quadratic 

terms are taken into account.  Another point to note is that an extra parameter is 

introduced into the system, 

k

nn +2

κ .  However, an approach is suggested for the 

determination of this parameter based on taking the average value of the input over 

the interval of interest.  For an input such as u tt ωsin)( =  over a large time interval,  

∞→τ , clearly the average value will be zero and the system is approximated with 

the linear part of the bilinear representation.  However, for cases of inputs with a non-

zero average over a finite interval such as a decaying exponential or a step input, then 

utilising (12) is advantageous.  The paper also indicates the necessity of judicious 

choice of expansion point, , in model reduction methods involving series 

expansions in general.   

0s

 

The advantage of the method proposed in Section 3 is that there is no need to work 

directly with the large bilinear system.  All that is required is to employ the Krylov 

spaces resulting from a bilinear representation of the system.  Furthermore, there is no 

new parameter introduced into the modelling process.  However, once again the 

choice of expansion point is a factor that must be taken into account in the application 

of reduction technique.  Also, the selection of the vectors from the general Krylov 

spaces (28) needs to be made judiciously. 

 



Both approaches have been seen to yield greatly improved results over standard 

related techniques.  
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