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Three-dimensional Simulation of the Radiation
Field Patterns Generated by an Integrated

Antenna

Jonathan Blackledge and Bazar Babajanov∗

Abstract— Simulating the electromagnetic field pat-

terns generated by integrated antennas used in mobile

phones, for example, is fundamental to understand-

ing their transmission characteristics and thereby en-

gineering designs that optimise the directional prop-

erties of electromagnetic propagation. Modern inte-

grated antennas have complex three-dimensional ge-

ometry designed to optimise their performance in

terms of their multi-band and multi-modal attributes.

This geometry, coupled with their close proximity

to other component of the device (such as the bat-

tery and Printed Circuit Board, for example) pro-

duce complex field patterns due to the scattering of

the electric (and magnetic) field within a spatial do-

main that is the same order of scale as the wavelength.

Simulating this interaction therefore requires models

that are generalised and not specific to an idealised

antenna geometry. In this paper we present a three-

dimensional model for simulating the interaction of

an electromagnetic field generated by antennas whose

geometry is arbitrary with complex dielectric compo-

nents in the near-field, in particular, the Fresnel zone.

The resulting field pattern is then taken to be a sec-

ondary source, whose far-field intensity map is com-

puted by application of a Fourier transform. The ma-

terial properties of the dielectric are taken to include

variations in the relative permittivity and conductiv-

ity which are assumed to be isotropic. The evaluation

of the scattered electromagnetic field is undertaken

using a new approach based on a free space Green’s

function to the Poisson equation whose properties are

compared to the conventional Green’s function solu-

tion to the inhomogeneous Helmholtz equation. Some

example simulations are provided to illustrate the ap-

proach used which include fractal antennas based on

self-similar patterns.

∗Jonathan Blackledge (jonathan.blackledge@dit.ie) is the Sci-
ence Foundation Ireland Stokes Professor at Dublin Institute
of Technology (DIT) and Director of the Information and
Communications Security Research Group. Bazar Babajanov
(a.murod@mail.ru) is Assistant Professor at the Department of
Mathematical Physics, Urgench State University, Uzbekistan

Keywords: Microwave propagation, near-field in-
teraction, far-field radiation pattern, integrated
antennas.

1 Introduction

Modern mobile phones and other mobile devices have a
range of emission/reception components which include
GSM (Global System for Mobile communications), 3G
(3rd Generation of mobile telecommunications technol-
ogy), LTE (Long Term Evolution, marketed as 4G LTE
and a standard for wireless communication of high-speed
data for mobile phones and data terminals), Bluetooth
(a wireless technology standard for exchanging data over
short distances), WLAN (Wireless Local Area Network),
GPS (Global Positioning System). DVB-H (Digital
Video Broadcasting - Handheld) and FM (for FM radio
reception). This requires advances in mobile technology
to increase their portfolio of reception and/or transmis-
sion/reception features which, in turn, requires a range of
integrated antennas for operation over a broad range of
frequencies. For example, the standard iPhone has four
antennas for Bluetooth, Wi-Fi, GPS, UMTS and GSM.

The principal requirements that ‘drive’ the development
of mobile phones are the reduction in physical size and
weight, low cost, high efficiency and low SAR levels, i.e.
the Specific Absorption Rate (SAR) which is a measure
of the rate at which energy is absorbed by the body when
exposed to a radio frequency electromagnetic field. With
regard to service providers and the development of a cel-
lular network infrastructure, the primary issues concern
the provision of a multi-band capability and broadband
operations which are robust to environmental changes
while optimising the use of channel capacity. In terms
of electromagnetic field configuration, the challenge is
to design small antennas which are internal to the mo-
bile device, are light weight and cheap to mass produce,
are multi-band and incorporate integrated multi-antenna
systems. Since the early 1990s there has been a gen-
eral decrease in the size, weight and price of a mobile



phone while the functionality and performance has in-
creased significantly morphing into the era of the smart
phone from 2008 to date. An important component of
this development has been the design of high frequency
radio antennas which include the use of patch antennas
instead of whips, ergonomic issues such as tapering and
weighting to encourage users to hold the device below
the antenna and the use of plastic casings. The first
GSM-phone with an integrated antenna was the Hagenuk
Global Handy launched in 1996 which pioneered the use
of increasingly sophisticated integrated multi-band an-
tennas that are common today. The principal advantage
of developing integrated (as opposed to external) anten-
nas is aesthetics, low cost and robustness but this comes
at the price of the small available volume, shadowing and
the interaction with other components. This paper fo-
cuses on modelling this interaction.

The development of all mobile phones can be considered
to involve three principal components, the chargeable
battery, the integrated electronics (including software)
and the integrated antenna. With regard to the latter two
categories, there is a clear distinction that can be consid-
ered: wheres Moore’s law (i.e. the number of transistors
that can be placed inexpensively on an integrated circuit
doubles approximately every two years) can loosely be
applied to the evolution of the electronic sophistication
of a mobile phone, the antennas can ultimate only fol-
low Maxwell’s law (i.e. the properties of electromagnetic
fields as defined by Maxwell’s equations). Thus, the sim-
ulation of antenna performance using products such as
Feko [1], EMWorks [2] and CST [3], for example, is crit-
ical to the antenna design which is coupled with its me-
chanical design, measurement of the electromagnetic field
intensity patterns, prototyping and production in terms
of the available space, shape and pre-defined position of
feed contacts. In this context, typical design concept for
a mobile phone include bar phones with integrated an-
tennas, flip-phones with an external antenna, bar phones
with helical antennas and slide phone with an integrated
antenna.

One of the limiting factors associated with any antenna
design is the Chu-Harrington bandwidth limit [4], [5]
which sets a lower limit on the Q (Quality) factor for
a small radio antenna. The Q factor is a dimensionless
parameter that characterises a resonator’s bandwidth ∆ω
relative to its carrier frequency ω0 (where ω is the angular
frequency) and is given by

Q =
ω0

∆ω

The maximum bandwidth is therefore determined by the
minimum Q. For an antenna in free space enclosed in a

sphere of radius a the minimum Q factor is given by

Qmin =
1 + 3k2a2

k3a3(1 + k2a2
)

a relationship that implies that there is a compromise re-
quired between the enclosing volume of the antenna and
the available bandwidth. Optimising this relationship is
therefore an important issue in mobile antenna develop-
ment. Other factors include the effect of a finite ground
plane, handset components such as the battery and the
user’s presence. Referring to Figure 1 [6] which shows the
basic geometry for a Planar Inverted F-Antenna (PIFA),
in order to generate a resonator we need to incorporate
the condition (for wavelength λ)

L+H ∼ λ

4

which requires miniaturisation of a folded radiator. Fur-
ther the input impedance is a function of S and the band-
width is a function of H and W . This requires that the
shape of the antenna is adapted to the phone cover and
that slots and cuts are introduce into the radiator to gen-
erate multi-modality. If a patch antenna of the type il-
lustrated in Figure 1 is mounted of the PCB (Printed
Circuit Board) then the current distribution on the patch
induces currents on the PCB which are frequency related.
In turn, this can contribute to the electromagnetic field
that is generated. This effect, coupled with the geome-
try of the antenna and the context of its integrated de-
sign requires simulation of the expected Electromagnetic
(EM) radiation pattern. There are a range of EM field
simulators available for this purpose but they all have
limitations associated with the geometry (including size,
structure and complexity), the physical and mathemat-
ical model (in terms of the limiting conditions imposed
such as the isotropy and absorbing properties of the mate-
rials) and computational effects such the use of irregular
grids and spatial truncation. The resolution of the grid
upon which the simulation is undertaken also incurs com-
putational costs especially when a fully three-dimensional
simulator is being considered. The simplest simulator is
to consider the radiation field pattern in the far-field to
be given by the Fourier transform of the antenna geome-
try (the source function). Simulation of the field pattern
in the near-field involves convolution with the free space
Green’s function and in the intermediate zone, convo-
lution with a Fresnel Point Spread Function. However,
simulations of this type, irrespective of there sophistica-
tion in terms of a GUI and graphical representations, do
not usually take into account the interaction (scattering)
of the field emitted by the antenna with near-field struc-
tures associated with an integrated design.

In this paper, we consider a fully three dimensional Voxel
based model whose principal aim is to provide a far-



field simulation of the radiative field generated by the
near-field scattering effects associated with an integrated
multi-model antenna. After providing a brief overview of
the issues associated with cellular antennas in Section II,
Section III introduces the electromagnetic model start-
ing from Maxwell’s macroscopic equations. This section
examines the principal conditions that are required to
construct a wave equation for the electric field that is
based on material (dielectric) isotropy. Section IV in-
vestigates the solutions required to evaluate the three-
dimension electric wavefield pattern in the Fresnel and
Fourier zones. This is achieved using a conventional
free space Green’s function method but using a non-
conventional approach to obtaining a series solution for
the scattered field that represents a novel and original
component of work reported in this paper. The solution
obtained is used in Section V to introduce the princi-
pal steps associated with the simulation for a simplified
source-reflector system. Finally, in Section VI, we con-
sider the simulation of radiation field patterns focusing
on, by way of an example, fractal antennas which have
properties that are ideally suited for operations over a
range of frequencies. This includes computation of the
current density induced by the back-scattered electric
field.

Figure 1: Basic geometry of a PIFA internal antenna
which is a simplified schematic of antennas with more
complex topologies used for 3G and GSM reception.
Source:[6]

2 Cellular Antennas

An antenna without gain (0 dB) radiates an electromag-
netic wavefield in all directions equally whereas anten-
nas with gain redirects or concentrates electromagnetic
energy in a certain direction, the gain in performance
being measured in the direction of the energy concentra-

tion. In both cases, the spatial distribution of the electro-
magnetic energy can be characterised by computing the
square modulus of the (complex) wavefield once it has
been measured experimentally and/or simulated numer-
ically. The models used to simulate such fields fall into
two distinct classes: near-field modelling where the wave-
field is analysed within a few wavelengths of the source
and far-field modelling in which the wavefield is analysed
many wavelengths away from the source. The purpose of
modelling the field pattern generated from an integrated
antenna is to assess the directional properties subject to
a given design.

In simple terms, a low gain cellular antenna performs
better in areas where the signal is subject to multiple re-
flections that occur in urban areas, for example, and is
generally oriented vertically with regard to the antenna
mast. A vertically mounted high gain antenna directs
more energy parallel to the earth and less energy toward
the sky. These antennas perform best when the mast is
unobstructed and located on the horizon (e.g. oceans,
lakes, deserts). For users who travel to remote areas
of poor cellular signal and varying geographic terrain,
both types of antennas are required because of this phe-
nomenon.

In the frequencies ranges used for cellular mobile commu-
nications, 0 dB gain or quarter wave antennas are rela-
tively short and usually on the cm scale. The length of
antennas used in different types of communication is gen-
erally dictated by the frequency being used rather than
the power of the antenna. Lower frequencies have longer
wavelengths, therefore to achieve the same radiation pat-
tern with the same energy, the antenna length must be
longer in low frequency communications than high fre-
quency communications. For example, a quarter wave 0
dB gain antenna that is used for the cellular band should
be approximately 9 cm. Although the most efficient use
of an antenna is subject to one specific frequency, cellu-
lar communications use a wide frequency spectrum (824
Mhz to 896 Mhz for the Cellular band and 1850 to 1960
Mhz for the Personnal Communications Services - PCS)
and sacrifices must therefore be made to make the an-
tenna perform adequately in both bands. This makes
dual band antennas less efficient than single band anten-
nas. However, dual band cellular antennas are reasonably
efficient and given the reality that cellular phones operate
in either band without the users control, it is usually re-
quired that the antenna be as good a radiator as possible
in both bands.

Antenna efficiency is significantly improve by the intro-
duction of Ground-plates which provide a reflective effect
on all radio frequency signals When an antenna radiates
energy, the energy is radiated in all directions. Since ra-



dio frequencies do not penetrate highly conductive mate-
rials the addition of a reflector enhances the radiative ef-
ficiency. Integrated antennas are therefore designed with
a built-in ground-plane reflector whereas antennas with
coils and symmetrical horizontal protrusions, for exam-
ple, are designed for use in places where a ground-plane
is unavailable. antennas with a built in ground-plane are
very effective if they are well designed. Such designs are
predicated on the configuration of the antenna and its
near-field environment which generates complex interac-
tions due to local scattering effects and it is for this reason
that near-field simulation methods are required.

3 Electromagnetic Model

We consider a three-dimensional electromagnetic model
based on a medium that is inhomogeneous, isotropic and
linear. Isotropy implies that there is no directional bias to
the inhomogeneous characteristics of the medium which
are scalar functions of space only. Linearity implies that
the medium is not affected by the propagation of electro-
magnetic waves, e.g. it is not a function of the electric
or magnetic field strength, for example [7]. Using Inter-
national Systems of Units (SI) Maxwell’s (macroscopic)
equations become (e.g. [8] and [9])

∇ · εE = ρ, (1)

∇ · µH = 0, (2)

∇×E = −µ∂H
∂t

, (3)

and

∇×H = ε
∂E

∂t
+ j. (4)

where r = x̂x+ŷy+ẑz is the three-dimensional space vec-
tor and t is time, E(r, t) is the electric field (volts/metre),
H(r, t) is the magnetic field (amperes/metre), j(r, t)
is the current density (amperes/metre2), ρ(r, t) is the
charge density (charge/metre2), ε(r) is the permittiv-
ity(farads/metre) and µ(r) is the permeability (hen-
ries/metre). The values of ε and µ in a vacuum (de-
noted by ε0 and µ0, respectively) are ε0 = 8.854× 10−12

farads/metre and µ0 = 4π×10−7 henries/metre, the rela-
tive permittivity εr and the relative permeability µr being
defined by εr = ε/ε0 and µr = µ/µ0, respectively.

Equation (1) is Coulomb’s law in differential form. Equa-
tion (2) is the law (in differential form) stating that
magnetic fields are generated by dipoles (no magnetic
monopoles). Equations (3) and (4) are Faraday’s and
Ampere’s laws in differential form, respectively, where,
the latter equation includes Maxwell’s displacement cur-
rent term ε∂tE. If the medium is considered to be a
good conductor and/or consists of isolated conductive el-
ements (such as in an antenna) a current is induced which

depends on the magnitude of the electric field and the
conductivity σ (siemens/metre) of the material. This al-
lows a further simplification to equation (1) to be made
as discussed below.

3.1 Non-Conductive and High Conduc-
tion Media

For a linear and isotropic medium, the relationship be-
tween the electric field E and the current density j is
given by Ohm’s law

j = σE (5)

Taking the divergence of equation (4) and noting that

∇ · (∇×H) = 0

we obtain (using equation (1) for constant ε)

∂ρ

∂t
+
σ

ε
ρ = 0

whose solution is

ρ(t) = ρ0 exp(−σt/ε), where ρ0 = ρ(t = 0)

which shows that the charge density decays exponentially
with time. Typical values of ε are ∼ 10−12 − 10−10

farads/metre and hence, if σ >> 1, the dissipation of
charge is very rapid. It is therefore reasonable to set the
charge density to zero in equation (1) and, for problems
involving the interaction of electromagnetic waves with
good conductors, equation (1) becomes

∇ · εE = 0 (6)

so that equation (4) becomes

∇×H = ε
∂E

∂t
+ σE

On the other hand, if the medium is non-conductive no
current can flow so that j = 0 and equation (4) reduces
to

∇×H = ε
∂E

∂t
.

Further, if the conductivity is zero then ρ = ρ0 and, if
ρ0 = 0, then equation (1) reduces to equation (6).

3.2 Wave Equation for the Electric Field

By decoupling Maxwell’s equations for the magnetic field
H, a wave equation for the electric field E is recovered.



Starting with equation (3), we divide through by µ and
take the curl of the resulting equation. This gives

∇×
(

1

µ
∇×E

)
= − ∂

∂t
∇×H

By taking the derivative with respect to time t of equation
(4) and using Ohm’s law - equation (5) - we obtain

∂

∂t
(∇×H) = ε

∂2E

∂t2
+ σ

∂E

∂t

From the previous equation we can then write

∇×
(

1

µ
∇×E

)
= −ε∂

2E

∂t2
− σ∂E

∂t

Expanding the first term, multiplying through by µ and
noting that

µ∇
(

1

µ

)
= −∇ lnµ

we get

∇×∇×E + εµ
∂2E

∂t2
+ σµ

∂E

∂t
= (∇ lnµ)×∇×E. (7)

Expanding equation (6) we have

ε∇ ·E + E · ∇ε = 0 or ∇ ·E = −E · ∇ ln ε

Hence, using the vector identity

∇×∇×E = −∇2E +∇(∇ ·E)

from equation (7), we obtain the following wave equation
for the electric field

∇2E− εµ∂
2E

∂t2
− σµ∂E

∂t

= −∇(E · ∇ ln ε)− (∇ lnµ)×∇×E

This equation is inhomogeneous in ε, µ and σ and its
solutions provide information on the behaviour of the
electric field in an inhomogeneous non-conductive and/or
high conduction dielectric environment. In order to de-
rive such a solution, it must be re-cast in the form of a
Langevin equation [10]. By adding

ε0
∂2E

∂t2
− 1

µ0
∇×∇×E

to both sides of equation (7) and re-arranging the result,
we can write

∇×∇×E + ε0µ0
∂2E

∂t2

= −ε0µ0γε
∂2E

∂t2
− µ0σ

∂E

∂t
+∇× (γµ∇×E)

where

γε =
ε− ε0
ε0

and γµ =
µ− µ0

µ

With equation (6), we can then use the result (valid for
ρ ∼ 0)

∇×∇×E = −∇2E +∇(∇ ·E) = −∇2E−∇(E · ∇ ln ε)

so that the above wave equation can be written as

∇2E− ε0µ0
∂2E

∂t2
= µ0ε0γε

∂2E

∂t2

+µ0σ
∂E

∂t
−∇(E · ∇ ln ε)−∇× (γµ∇×E)

Finally, introducing the Fourier transform

E(r, t) =
1

2π

∞∫
−∞

Ẽ(r, ω) exp(iωt)dω

we can write the above wave equation in the time inde-
pendent form

(∇2 + k2)Ẽ = −k2γεẼ + ikz0σẼ

−∇(Ẽ · ∇ ln ε)−∇× (γµ∇× Ẽ) (8)

where

k =
2π

λ
=
ω

c0
, c0 =

1
√
ε0µ0

and z0 = µ0c0

Here, λ is the wavelength and ω is the (angular) fre-
quency of the electric wavefield. The parameter z0 is the
free space wave impedance and is approximately equal
to 376.6 Ohms. The constant c0 is the velocity at which
electromagnetic waves propagate in a ‘free space’.

3.3 Wave Equation for a Constant Di-
electric Medium

In principal, a solution to equation (8) can be used to
generate the electric wavefield strength given any geo-
metrical antenna design with known functions ε(r), µ(r)
and σ(r). However, in most cases, the influence of varia-
tions in the permeability can be taken to be insignificant
compared to the permittivity and, in particular, the con-
ductivity, when concerned with the design of an antenna.
For a ‘conductivity only’ model, where the permittivity
and permeability are taken to be constant, equation (8)
reduces to the form

(∇2 + k2)Ẽ = ikz0σẼ

Apart from removing three terms from the the right hand
side of equation (8), this model also allows a solution to



be developed using a scalar wave equation since the equa-
tion above applies to any vector component of the electric
field. However, this is also the case if we ignore polarisa-
tion effects induced by variations in the permittivity due
to the term ∇(Ẽ · ∇ ln ε) and use the equation

(∇2 + k2)Ẽ = −k2γεẼ + ikz0σẼ

Thus, we consider a solution to the scalar wave equation

(∇2 + k2)u(r, k) = −Γ(r, k)u(r, k)− s(r, k)

for constant k where u is any component of the electric
wavefield vector,

Γ(r, k) = k2γε(r)− ikz0σ(r)

and s is a source function which is taken to describe the
‘primary source’ of electromagnetic radiation in the an-
tenna. The inclusion of the source term provides a source-
scattering model in which the wavefield u is taken to be
the sum of the incident field ui generated by the primary
source and the scattered field us generated by the interac-
tion of this incident field within the (near-field) vicinity
antenna. This effect is important when designing inte-
grated antennas as discussed in Section I.

The incident field is given by the solution of

(∇2 + k2)ui(r, k) = −s(r, k) (9)

so that the scattered field can be taken to be given by
the solution of

(∇2 + k2)us(r, k) = −Γ(r, k)u(r, k) (10)

where
u(r, k) = ui(r, k) + us(r, k)

In each case, we consider the dielectric parameters to be
real and of compact support in real space, i.e. r ∈ R3.

4 Green’s Function Solutions

The general solutions to equations (9) and (10) using the
free space Green’s function method are well known and
given by [11]

ui(r, k) =

∮
S

(g∇ui−ui∇g) ·d2r+ g(r, k)⊗3 s(r, k) (11)

and

us(r, k) =

∮
S

(g∇us − us∇g) · d2r + g(r, k)⊗3 Γ(r)u(r, k)

(12)

respectively, where g is the Green’s

g(r, k) =
exp(ikr)

4πr

which is the solution to

(∇2 + k2)g(r, k) = −δ3(r)

and ⊗3 denotes the three-dimensional convolution inte-
gral

g(r)⊗3 f(r) =

∫
R3

g(| r− r′ |)f(r′)d3r′

The surface integrals (obtained through application of
Green’s Theorem) represent the effect generated by a
boundary upon which the fields ui and us. These fields
together with their respective gradients need to be speci-
fied - the ‘Boundary Conditions’. In the case of equation
(11), the surface integral determines the effect of the sur-
face of the source when it is taken to be of compact sup-
port. With regard to equation (12), the surface integral
models surface scattering effects. In the context of the
model considered here, the surface integrals are taken
to be zero so that volume effects are considered alone.
Formally, this requires that we invoke the ‘homogeneous
boundary condition’

ui = 0, us = 0, ∇ui = 0 and ∇us = 0

and equation (12) is reduced to

us(r, k) = g(r, k)⊗3 Γ(r.k)u(r, k) (13)

which is the solution to equation (10) since

(∇2 + k2)us(r, k) = (∇2 + k2)[g(r, k)⊗3 Γu(r, k)]

= −δ3(r)⊗3 Γ(r.k)u(r, k) = −Γ(r, k)u(r, k)

We require a solution for us given equation (13) which
has the conventional iterative form (for n = 0, 1, 2, ...)

u(n+1)
s (r, k) = g(r, k)⊗3 Γui(r, k) + g(r, k)⊗3 Γu(n)

s (r, k)

where u
(0)
s (r, k) = 0 leading to the Born series given by

us = g ⊗3 Γui + g ⊗3 [Γ(g ⊗3 Γui)] + ... (14)

each term representing the effect of single, double and
high order scattering effect respectively [12]. The first
term g ⊗3 Γui provides a solution under the Born ap-
proximation when ‖us‖ << ‖ui‖ and implies that

〈Γ〉 ≡

√√√√√√
∫
R3

| Γ |2 d3r∫
R3

d3r
<<

1

R2



where R is the radius of a sphere whose volume is taken
to be equal to that of the scattering domain R3.

For 800 - 2400 MHz transmission frequencies used by cell
phones, the wavelength is approximately 0.3 metres and if
we take R ∼ 0.03 metres (i.e. a scattering domain on the
cm scale) then, using the definition of Γ, this condition
becomes

〈γε − 18iσ〉 << 2.5

which is not easily satisfied for arbitrary geometries of the
permittivity and conductivity especially if these values
are high (the conductivity of metals being ∼ 107 siemens
per metre). On the other hand, if we consider a scattering
domain to be composed of ‘infinitely thin’ components
such as a patch antenna and reflector (as considered in
Section VI and Section VII) then the scattering domain
is taken to be composed primarily empty space and the
condition above is more easily satisfied. However, there
is another approach that can be taken to evaluate the
scattered field us. This is based on noting that, because
[13], [14]

∇2 1

4πr
= −δ3(r)

then

(∇2 + k2)us(r, k) = ∇2

(
us −

k2

4πr
⊗3 us

)
and equation (10) can be written in the form of the in-
homogeneous Poisson equation

∇2

[
us(r, k)− k2

4πr
⊗3 us(r, k)

]
= −Γ(r, k)ui(r, k)− Γ(r, k)us(r, k)

which has the Green’s function solution[
us(r, k)− k2

4πr
⊗3 us(r, k)

]

=
1

4πr
⊗3 Γ(r, k)ui(r, k) +

1

4πr
⊗3 Γ(r, k)us(r, k)

subject to the homogeneous boundary conditions for the
Green’s function (4πr)−1. Collecting like terms, we can
now write

us(r, k) =
1

4πr
⊗3 Γ(r, k)ui(r, k)

+
1

4πr
⊗3 [k2 + Γ(r, k)]us(r, k) (15)

Both equation (13) and equation (15) are solutions to
equation (10) since, in the latter case, taking the Lapla-
cian of equation (14),

∇2us(r, k) = ∇2 1

4πr
⊗3 Γ(r, k)ui(r, k)

+∇2 1

4πr
⊗3 [k2 + Γ(r, k)]us(r, k)

= −δ3(r)⊗3 Γ(r, k)ui(r, k)−δ3(r)⊗3 [k2 +Γ(r, k)]us(r, k)

= −Γ(r, k)ui(r, k)− k2us(r, k)− Γ(r, k)us(r, k)

However, in the case of equation (15), we can consider
the iteration

u(n+1)
s (r, k) =

1

4πr
⊗3 Γ(r, k)ui(r, k)

+
1

4πr
⊗3 [k2 + Γ(r, k)]u(n)

s (r, k)

which yields the series solution

us =
1

4πr
⊗3 Γui +

1

4πr
⊗3

[
(k2 + Γ)

1

4πr
⊗3 Γui

]
+ ...

(16)
Taking the first term in equation (16) is then the equiv-
alent of applying the Born approximation to compute
the scattered field given equation (14). However, this
solution shows that all higher order terms in equation
(16), which represent multiple scattering effects by anal-
ogy with equation (14), vanish if (the ‘null multiple scat-
tering condition’)

k2 + Γ(r, k) = 0, ∀r ∈ R3

This is an entirely different condition to that required
to apply the Born approximation to equation (14) - the
conventional solution method - although predicated on a
scalar wavefield theory in which polarisation effects are
ignored. Nevertheless, under this condition, the Born ap-
proximation becomes an exact solution and, by inference,
inverse solutions (under the Born approximation) become
exact solutions1 The condition above states that

kεr(r)− iz0σ(r)

=
√
k2ε2r(r) + z2

0σ
2(r) exp[−iθ(r, k)] = 0, ∀r ∈ R3

where

θ(r, k) = tan−1

[
z0σ(r)

kεr(r)

]
and is therefore satisfied if (for any integer n)

θ(r, k) = ±nπ
2

and ± nπ,

a duality which is not plausible, or

k2ε2r(r) + z2
0σ

2(r) = 0

1The condition k = 0 represents the trivial case consistent with
the condition’ k → 0 when the conventional Born approximation
becomes an exact solution to the problem - the ‘Ramm Scattering’
condition.



⇒ σ(r) = ± ikεr(r)

z0
= ±i0.0167

εr(r)

λ

In the latter case, there exists the implication that the
relative permittivity can be both positive and negative.
The negative option being associated with ‘negative in-
dex’ materials, e.g. [15]. More specifically, the condition
(which requires that the conductivity is imaginary) re-
duces equation (15) to

us(r, k) =
1

4πr
⊗3 f(r)ui(r, k)

where

f(r) =

{
1. ∀r ∈ R3;

0, ∀r /∈ R3.

Note, that this ‘null multiple scattering condition’ does
not affect the geometry and topology of the binary ‘scat-
tering function’ f(r) which can be completely arbitrary
in terms of its simplicity .v. complexity.

5 Solutions for the Scattered field in the
Fresnel and Fourier Zones

Evaluating the scattered field in the Fresnel and Fourier
zones is well known in the case of equation (14). How-
ever, equation (16) provides properties that simplify this
evaluation as shown below. We consider the case when
the source function is a delta function so that incident
field ui is given by the Green’s function

g(| r− r0 |, k) =
exp(ik | r− r0 |)

4π | r− r0 |

where r is taken to be the position of the source and r0

is the point at which the wavefield is observed It is well
known that the key to evaluating the scattered field in the
Fresnel and Fourier zones relies on a binomial expansion
of | r− r0 | in the exponential component of the Green’s
function and considering the relative magnitudes of the
vectors r and r0 (given by r and r0, respectively). This
yields the results given in the following sections.

5.1 Fourier Zone

g(r, r0, k) =
1

4πr0
exp(ikr0) exp(−ikn̂ · r), n̂ =

r0

| r0 |
which is based on the condition r/r0 << 1 so that terms
involving second and high order powers of this quotient
are ignored. In equation (16), the convolution terms be-
come integrals over r ∈ R3 (where r0 is taken to be out-
side of the domain of integration) and we obtain the result

us(r0, k) = c(r0, k)
exp(ikr0)

(4πr0)2
A(n̂, k)

where A is the scattering amplitude given by

A(n̂, k) =

∫
R3

Γ(r, k) exp(−ikn̂ · r)d3r (17)

and

c(r0, k) =

1 +
1

4πr0

∫
R3

[k2 + Γ(r, k)]d3r + ...

 (18)

5.2 Fresnel Zone

g(r, r0, k) =
1

4πr0
exp(ikr0) exp(−ikn̂ · r) exp(iαr2)

where

α =
k

2r0
=

π

λr0

which is based on relaxing the condition r/r0 << 1 and
ignoring all terms with higher order powers greater than
2. In this case, equation (16) becomes

us(r0, k) = c(r0, k)
exp(ikr0)

(4πr0)2

×
∫
R3

Γ(r, k) exp(−ikn̂ · r) exp(iαr2)d3r

However, noting that

ik

2r0
| r0 − r |2=

ik

2r0
(r2

0 + r2 − 2r0 · r)

=
ikr0

2
+
ikr2

2r0
− ikn̂ · r

we can write this result in the form

us(r, r0, k) = c(r0, k)
exp(ikr0/2)

(4πr0)2
A(r, k)

where A is the scattering amplitude function given by

A(r, k) = Γ(r, k)⊗3 exp(iαr2) (19)

the function exp(iαr2) being the (three-dimensional)
Fresnel Point Spread Function (PSF).

Equations (17) and (19) represent the scattering ampli-
tude generated in the ‘far’ and ‘intermidiate’ fields, re-
spectively. The complex coefficient c(r0, k) incorporates
the multiple scattering effects that are determined by the
integral of the function k2 + Γ(r, k) over the scattering
domain R3. However, the value of this coefficient does
not affect the models for the scattering amplitudes given
by equations (17) and (19) and it is clear that the series
defining this coefficient will converge provide

1

4πr0

∣∣∣∣∣∣
∫
R3

[k2 + Γ(r, k)]d3r

∣∣∣∣∣∣ < 1



6 Radiation Field Patterns for a Simple
Monopole Source

The design of an integrated antenna for a given applica-
tion ultimately depends on the interaction of electromag-
netic waves generated by a primary source whose physical
size with respect to the wavelength has the predominant
influence on the radiation characteristics. With mod-
ern day communication devices becoming smaller and
lighter, demand for low-profile antenna designs has in-
creased. One way of realising a low-profile antenna de-
sign is to use a high impedance ground plane in place of
the conventional metallic ground plane. Metallic plates
are used as ground planes to redirect the back-scattered
radiation and provide shielding to the antennas. Conven-
tional ground planes that are Perfect Electric Conductors
(PECs) exhibit the property of phase reversal of the in-
cident currents that result in destructive interference of
both the original antenna currents and the image cur-
rents. To overcome this effect, antennas are placed at
a quarter wavelength above the metallic ground plane,
making the size of the antenna bulky at low frequencies.
To reduce the size of the antenna, a ground plane that is
a dual of the conventional PECs is needed, i.e. a per-
fect magnetic conductor is required. This is achieved
by introducing a High Impedance Surface (HIS) which
can be considered to be an artificial magnetic conduc-
tor. HISs are popular for their widespread applications
in reflected array antennas, low-profile antennas, electro-
magnetic absorbers and polarisers. These surfaces ex-
hibit unique properties such as the in-phase reflection of
incident waves and the suppression of surface waves. Dif-
ferent antenna parameters such as gain, impedance and
size can be enhanced by incorporating the HISs into the
antenna structures. Thus, the back-scattering of radia-
tion from a high impedance back-reflector is an impor-
tant factor in the simulation of the resulting radiation
field pattern and must be undertaken in the near field.

We consider the interaction of the electric wavefield in
the Fresnel zone for an antenna composed of an array-
reflector system based on evaluating equation (19) for the
positive half space, the reflector being placed at the origin
of the half-space z > 0. The far-field radiation pattern
is then given by the Fourier transform of the resulting
wavefield which is taken to be the source of radiation
generated by the scattering of the electric wavefield be-
tween the primary antenna and the back-reflector (in the
Fresnel zone), the intensity field pattern being given by

I(n̂.k) =| Ã(n̂, k) |2 (20)

where

Ã(n̂, k) =

∫
R3

A(r, k) exp(−ikn̂ · r)d3r

and A(r, k) is defined by equation (19).

We consider a digital computation using a regular three-
dimensional Cartesian mesh of size N3 where the antenna
is placed at a fixed distance z = L voxels from the pri-
mary reflector and taken to have a thickness of 1 Voxel2.
Further, for simplicity with regard to developing a first il-
lustrative example, we consider an integrated antenna to
be composed of conductive elements alone with uniform
conductivity where the permittivity of the scattering do-
main R3 is 1 so that Γ(x, y, z) = ikz0σ(x, y, z). For a
fixed wavelength, the complex coefficient ikz0 is not rel-
evant to the computation of the intensity field pattern
given by equation (20) which is normalised for display
purposes. In this context, the value of σ can be taken to
be equal to 1 for all Voxels that describe the geometry
of the the antenna including the primary back-reflector
within the scattering domain R3.

Computation of the Fresnel PSF is also undertaken on a
Cartesian grid. For a given value of N , the scaling of this
function (i.e. the range of values of α that can be applied)
is important in order to avoid aliasing. For the current
application, the scaling can be based on considering the
resonance frequency condition discussed in Section I. Un-
der this condition, we require the size of the antenna to be
approximately one quarter of a wavelength. For a patch
antenna, which is taken to infinitely thin in the scattering
domain, we then require that

λ

4
∼ ∆N

where ∆ defines the spatial resolution of the mesh, the
length of each side of a Voxel being taken to be given by
∆. Thus,

αr2 =
π

λr0
∆2(n2

x + n2
y + n2

z)

where nx, ny, and nz are array indices running from
−N/2 through 0 to N/2, the Fresnel PSF being com-
puted over all space and not just a positive half-space. It
is then clear that we can obtain a wavelength independent
(a consequence of the resonance condition) expression for
α given by

α =
4π

N

∆

r0

Figure 2 shows a simple example for an idealised
monopole antenna composed of a single circular element
(with no feed contacts) and a reflector which are both
taken to be ‘infinitely thin’ placed L = 10 Voxels apart.
The element is taken to radiate a electric wavefield which
back-scatters from the back-reflector to produce a field
pattern determined by equation (19). This field pattern

2A ‘Voxel’ is a Volume Element.



is based on scattering effects generated by both the back-
reflector and the primary radiation source. The scattered
wavefield generated within R3 establishes a secondary ra-
diation source whose far-field intensity field pattern is
then given by equation (20). This produces a different
field pattern to that modelled by treating the antenna
as a source function alone and computing the Fourier
transform of this function to evaluate the radiation field
intensity in the far-field.

Figure 2: Basic three-dimensional geometry of an ide-
alised antenna consisting of a single circular element (the
source function in absence of feed contacts) with a thick-
ness of 1 Voxel placed 10 Voxels from a back-reflector also
with a thickness of 1 Voxel using a 1003 Cartesian mesh.

Figure 3 shows an Isosurface of the Fresnel PDF for
∆/r0 = 0.1 and illustrates the three-dimensional wave
fronts generated by a function with a quadratic phase
that is a ‘near-field characteristic’.

Figure 4 shows a colour coded normalised intensity map
of the field | A(x, y, z = 2L) |2 obtained by convolving
the PDF given in Figure 3 with the scattering function
given in Figure 2 using the MATLAB function convn with
the option ‘same’ which returns the central part of the
convolution that is the same size as the input arrays.

If we now take the field in the plane at z = 2L to be
a (planar source) then the far-field intensity pattern is
given by taking the two-dimensional Fourier transform of
the function A(x, y, z = 2L). This is shown in Figure 5
which provides normalised colour coded maps of the log
power spectrum and, for comparison, the log power spec-
trum of the source function alone (i.e. the antenna el-
ement without the back-reflector), the axes being given
by (kx0/z0, ky0/z0)3. As expected, there is a significant

3Computed using the MATLAB function fft2 with fftshift which

Figure 3: Isosurface of the Fresnel PSF given in equation
(19) using a 1003 Cartesian mesh with ∆/r0 = 0.1.

Figure 4: Intensity field map of the function given by
equation (19) for z = 5L.



difference between these field patterns especially with re-
gard to their comparative intensities away from the cen-
tral lobe due to the Fresnel interaction of the source with
the back-reflector. The spectrum of the source function
alone (an infinitely thin circular disc) shows an ‘Airy pat-
tern’ characterised by the function J1(ka)/(ka) where a
is the radius of the disc and J1 is the first order Bessel
function of the first kind. This function describes a cir-
cularly symmetric spectrum composed of a central lobe
surrounded by a sequence of concentric rings separated
by the positions at which the Bessel function approaches
zero.

The three-dimensional field patterns can of course be in-
vestigated by computing the three-dimensional Fourier
transform as given by equation (20) and visualised at dif-
ferent planes and/or different coordinate geometries. The
results given in Figure 5 are illustrative of the near-field
scattering effects generated by the interaction of a prim-
itive source-reflector system. In the context of the model
considered, given a specific antenna and back-reflector
geometry (with uniform conductivity), the field patterns
are determined by the parameter set (L,∆/r0). This pa-
rameter set does not affect simulations in the far-field
obtained by taking the Fourier transform of the source
function alone.

Figure 5: Log Power Spectrum of the field whose intensity
map is given in Figure 4 (left) and the Log Power Spec-
trum of the source function shown in Figure 2 (right).

7 Fields Generated by Fractal Antennas

The method of simulation discussed in the previous sec-
tion can be used to simulate the field patterns generated
by any integrated antenna configuration coupled with
near field components. A Voxel modelling system is re-
quired to construct three-dimensional arrays representing
the conductivity and the permittivity of the integrated
source-reflector (or otherwise) antenna system details of

generates a two-dimensional Fourier transform in ‘optical form’
with the zero-frequency component placed at the centre of the spec-
trum.

which lie beyond the scope of this paper. However, it
should be noted that, unlike the example given in the
previous section, a Volume element model for Γ which
includes variations in both the permittivity and conduc-
tivity (which yields a complex scattering function) gener-
ates cross-terms in the radiation field pattern since, from
equation (19), the scattered amplitude intensity is given
by

| A(r, k) |2= k4 | [γε(r)− i(z0/k)σ(r)]⊗3 exp(iαr2) |2

The geometries of planar antennas are becoming increas-
ingly complex and include fractal geometric shapes which
exhibit self-similar or fractal properties which are com-
pact designs [16]. These antennas have radiative elements
that contain at least one multi-level structure formed by
a set of similar geometric elements (polygons or poly-
hedrons) electromagnetically coupled and grouped such
that the structure of the antenna can be identified by
each of the basic component elements. The design pro-
vides two important advantages: the antenna may op-
erate simultaneously in several frequencies, and/or its
size can be substantially reduced. Thus, a multi-band
radio-electric behaviour is achieved, providing similar be-
haviour for different frequency bands. Planar arrays of
periodic resonant elements (printed or complementary
slot) interact with electromagnetic waves within certain
frequency band(s) and can be characterised as Frequency
Selective Surfaces (FSS). Different FSS elements have
been described in the literature, where each design has
its own advantage over the other. The overall goal of
fractal antennas design is the realisation of the Rumsey
principle which is that the impedance and pattern prop-
erties of an antenna will be frequency independent if the
shape is specified only in terms of angles.

Fractal antenna have been developed commercially since
the 2000 [17] and include a range of strictly fractal and
quasi-fractal types some of which are based on well known
fractal shapes such as the Sierpinski gasket [18] and von
Koch monopole [19]. Some conventional wide-band an-
tennas can be considered to fall into the class of fractal
structures. For example, the logarithmic spiral and log-
periodic structures can be considered as fractal antennas
The infinite (logarithmic) spiral is a constant impedance
device over all frequencies and we can consider the spiral
as ‘smoothly’ self-symmetric. The Log-Periodic Dipole
Array (LPDA) is a wide-band device (actually it is multi-
band with arbitrarily close band spacing). Its various
performance properties repeat in the same geometric ra-
tio (log-periodic) with regard to element size and spacing.
The LPDA is an example of a ‘discretely’ self-symmetric
antenna.

The principal reason for the multi-modal and broad-band



characteristics of fractal antennas is the space filling prop-
erties of fractals. For this reason antennas designed from
certain fractal shapes can have superior electrical to phys-
ical size ratios than antennas designed from an under-
standing of shapes based on Euclidean geometry includ-
ing those designed from free form curves/surfaces. This
effect is not exclusive to deterministic fractals and ran-
dom scaling fractal arrays can be used to balance long-
range order (typical of fractals) and short-range disorder
(typical of random arrays). The randomness provides
robustness to element failure while the fractal structure
provides the required multi-band or wide-band perfor-
mance. Moreover, unlike deterministic fractals (which
have a specific fractal dimension) random fractal arrays
[20] can be used to produce fractal radiation patterns for
user defined values of the Fractal Dimension D.

By way of an example, Figure 6 shows simulations of the
field intensities generated in the plane for the Sierpinski
Carpet antenna (which has a Fractal Dimension D =
1.8928) and is illustrative of the different modes generated
by the electric field scattering from a plane reflector at
different distance from the antenna.

Figure 6: Fractal antenna (top-left) and the Fresnel zone
radiation patterns in the plane at z = 2L using a 1003

mesh for L = 5, 10 and 15 with ∆/r0 = 0.1.

Another property that is easily investigated is the (scalar)
current density j induced though the scattered electric
field E in the plane of the antenna since from Ohms law
j(x, y) = σ(x, y)E(x, y) ∼ σ(x, y)A(x, y). In practice, the
current density is obtained by multiplying the antenna
array with the field pattern generated in the plane at
which the antenna is placed. By way of an example,

Figure 7 shows the induction currents generated for the
Sierpinski Carpet and Quadratic Snow Flake (D = 1.37)
antennas.

Figure 7: Induction currents induced by the scattered
electric field in the Sierpinski Carpet (left) and Quadratic
Snow Flake (right) antennas for L = 10 and ∆/r0 = 0.1
.

8 Summary and Conclusion

The purpose of this paper has been to develop a three-
dimensional simulator for investigating the scattering
electromagnetic field generated by an integrated antenna.
The model has been derived in a systematic fashion start-
ing with Maxwell’s macroscopic equation so that the con-
ditions upon which the present simulator is based are
clearly identified in terms of fundamental electromagnetic
theory. The focus of the model has been to introduce
the volume scattering effects generated by the integra-
tion of an antenna into a compact space associated with
the design of a mobile phones, for example. In this case,
the antenna can not be assumed to be an isolated radia-
tive source and simulation of the radiation field pattern
based on the use of a source function alone is not valid.
In this paper, we have considered the locality of an inte-
grated antenna to be a scattering environment in the near
field. The scattered field is then taken to be the source
of radiation whose far-field radiation pattern is obtained
through Fourier transformation. However, like all simu-
lation methods there are limits imposed on the applied
physics of the model used. The conditions used in the
work report in this paper are as follows:

• the dielectric material is isotropic and assumed to
be composed of (three-dimensional) variations in the
permittivity and conductivity alone;

• the magnetic permeability is taken to be a constant
so that the term ∇ × (γµ∇ × E) given in equation
(8) can be ignored;

• polarisation effects due to variations in the permit-
tivity which are compounded in the term∇(E·∇ ln ε)



given in equation (8) are ignored.

However, within the context of the model developed,
whose principal conditions are listed below, it is relatively
easy to include these terms in order to investigate po-
larisation effects (through variations in the relative per-
mittivity and/or variations in the relative permeability)
which will be the subject of a future publication.

The principal conditions upon which the scattered field
is evaluated are as follows:

1. the scattered field is a model for the electric field
alone;

2. surface scattering is negligible (homogenous bound-
ary condition are imposed) and the simulator is
based strictly on a volume scattering model;

3. multiple scattering effects are insignificant at least
within the near-field domain over which the the scat-
tered field is evaluated;

4. scattering occurs in the Fresnel zone where the wave-
fronts are taken to have a quadratic phase;

5. computation of the scattered field is based on us-
ing the quarter wavelength resonance frequency con-
dition so that the Fresnel PSF become wavelength
independent.

With regard to surface scattering effects, it is noted that
the skin depth (the depth below the surface of a conduc-
tor at which the electric field has decade to 1/e ' 0.37
of the field at the surface) is given by δ =

√
λ/(πµσ).

For non-conductive dielectrics, volume scattering domi-
nates but for conductive dielectrics the effect of volume
versus surface scattering is determined by the depth to
which the electric field penetrates the material. For wave-
lengths of the order of 0.3 metres and with µσ ∼ 1 (N.B.
averaged over the scattering domain), the skin depth is
approximately 0.3 metres. Thus, the volume scattering
condition is appropriate given that the dimensions of an
integrated antenna and the volume of the scattering do-
main are on the same scale. Moreover, for patch antennas
whose dimensions are comparable to the skin depth (and
taken to be infinitely thin, at least on a theoretical basis),
surface scattering effects are not as significant as volume
scattering. Moreover, surface scattering requires that the
surface integrals and hence, surface patches, have to be
defined precisely and the generality afforded by a volume
scattering simulation in terms of utilising a Voxel based
Computer Aided Design system, is not applicable.

In terms of the conditions 1-5 above, the issue of neglect-
ing multiple scattering effects is a fundamental issue with

regard to all electromagnetic and other wave scattering
models. In this paper we have considered a solution based
on the conventional Green’s function solution to the inho-
mogeneous Helmholtz equation and compared the result
with a Green’s function solution to the inhomogeneous
Poisson equation based on an equivalence relationship
for the Helmholtz operator. The latter solution reveals a
‘null multiple-scattering condition’ that is not apparent
using the former conventional approach and warrants fur-
ther investigation into its ramifications in terms of, for ex-
ample, the possibility of designing integrated antenna us-
ing conductive meta-materials that generate plasmon res-
onance and eliminate dissipation through multiple scat-
tering. Application of the Fresnel zone to model near-field
scattering provides a model that is based on convolv-
ing the scattering function with the Fresnel PSF com-
pounded in the expression for the scattering amplitude
given by equation (19). The principle ‘computational
cost’ is then determined by the discrete convolution op-
eration required to evaluate this equation on a high res-
olution mesh where the PSF is conditioned by applying
the quarter wavelength resonance effect which integrated
antennas used to boost the signal.

With regard to the computational issues discussed in this
paper and the result presented, there is significant po-
tential for the development of a sophisticated Voxel mod-
elling system for designing integrated antennas with vari-
ations in the permittivity, permeability and conductiv-
ity each subject to a geometry of a arbitrary complexity.
However, this is predicated on the computational perfor-
mance being available to evaluate equation (19) over a
three-dimensional mesh having a resolution that is com-
patible with the geometric detail of the antenna. In this
way, the approach considered in this paper can be used
to assess the near- and then far-field radiation patterns
generated by a given design in order to optimise the per-
formance of mobile communications devices. Finally, the
approach can be extended to simulate time dependent
problems by taking the incident field to be given by

ui(r, k) = P (k)g(r, k)

where P (k), k = ω/c0 is the temporal Transfer Function
with band-width Ω and Impulse Response Function (IRF)

p(t) =
1

2π

Ω/2∫
−Ω/2

P (ω) exp(iωt)dω

From equation (19), the time dependent signal associated
with the near-field scattering amplitude is then given by

s(r, t) = p(t)⊗t
Ω

2π
sinc(Ωt/2)⊗t a(r, t)



where

a(r, t) =
1

2π

∞∫
−∞

A(r, ω) exp(iωt)dω

and ⊗t denotes the convolution integral over time t,
the far-field (time-dependent) intensity pattern being ob-
tained through application of equation (20).

Time-dependent analysis is important in the design of
Ultra-Wide-Bband (UWB) antennas which are often used
for short range, indoor transmission due to low emission
requirements and where short pulse lengths enable trans-
mission of high data rate signals [21]. The IRF is typically
given by a modulated Gaussian pulse and applications
include high precision through-wall radar imaging and
PC-peripherals such as wireless printers. In such cases,
additional time domain analysis is necessary to charac-
terise the antennas overall performance for pulsed signal
transmission. Parameters such as pulse distortion and
antenna fidelity need to be analysed together with stan-
dard antenna performance parameters for reliable design
[22].

By focusing on a volume scattering approach to com-
pute near-field effects compounded in equation (19), em-
phasis can be placed on integreted antenna designs us-
ing Voxel modelling systems such as Voxelogic [23] and
Voxel Sculpting [24] that allow designers to sculpt without
any topological constraints. These systems include open
source produce such as VoxCAD [25] that provides for
the inclusion of multiple materials and is therefore ideal
for introducing designs based on variations in the relative
permittivity, relative permeability and conductivity. Sys-
tems such as Pendix, [26] operate like 2D graphics soft-
ware while producing 3D models, [27] and are therefore
ideal for designing single material based patch antennas.
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