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The acute ecotoxicity of different diameters of silica and polyethyleneimine polystyrene (PS-PEI) nanoparticles
(NPs) was assessed on a test battery of aquatic organisms representing different trophic levels. Daphnia
magna, Thamnocephalus platyurus, Pseudokirchneriella subcapitata and Vibrio fischeri, were employed in a series
of standard acute ecotoxicity tests andworkwas complementedwith two cytotoxicological end points on a rain-
bow trout gonadal cell line (RTG-2). Physico-chemical characterization of the NPswas performed in the different
test media employed, using dynamic light scattering (DLS) and zeta potentiometry. In contrast to silica NPs ex-
posure, for which no effect was observed for concentrations up to 1000 μg ml−1 for all in vivo aquatic organisms
tested, significant toxicity was detected after exposure to PS-PEI NPs at concentrations from 0.40 μg ml−1 to
416.5 μg ml−1. Differing sensitivities for each NP diameter for the different organisms were observed as:
P. subcapitata≥D. magna>T. platyurus>V. fischeri. The effects observed were dependent in some cases on the
NP size, a higher effect being observed for the larger NPs. Finally, cytotoxicity studies showed an effect at the
highest concentrations for both sets of NPs which was greater in the case of the PS-PEI NPs. However, as agglom-
eration and sedimentation of the nanoparticles was observed at these concentrations, the cytotoxicity studies
were found not to be a reliable ecotoxicity test model.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The development of materials and products at the nanoscale has be-
come amajor investment area on a global level. Nanotechnology is large-
ly based on these materials, generally defined as nanomaterials (NMs),
which, for regulatory purposes, have been recently defined by the Euro-
peanCommission (EC) as anynatural, incidental, ormanufacturedpartic-
ulate material which is in the unbounded, aggregated or agglomerated
form and with at least a 50% of the particles in the number size distribu-
tion that has at least one dimension in the size between 1 and 100 nano-
meters (nm) (EC, 2011). NPs fall within this definition, but to be more
specific, NPs are defined as particulate materials with three dimensions
of the order of 100 nm or less (Loevestam et al., 2010).

NMs often exhibit enhanced or different properties when com-
pared with the bulk material due to their extremely small size, conse-
quent high specific surface area, surface energy and other factors such as
larger proportions of under co-ordinated bonds and spatially constrained

electronic wavefunctions (Lead and Wilkinson, 2006). Certain NMs can
offer, among others, distinct optical, electrical and magnetic properties,
rendering them of great potential in a very wide range of fields and ap-
plications (Rao and Cheetham, 2001). These, and other properties, make
NMs very useful in technology and their use is rapidly increasing due to
their applications in areas such as textiles, electronics, pharmaceutics,
cosmetics and environmental remediation (Roco, 2005).

NPs can be divided into natural and anthropogenic NPs. In the latter
case, NPs can be formed unintentionally as a by-product, generally by
combustion or formed intentionally, in which case they are termed
manufactured or engineered NPs (ENPs) (Nowack and Bucheli, 2007).
According to ‘The Project on Emerging Nanotechnologies’ (2005) inven-
tory, the production of nanotechnology-based consumer products has in-
creased 521% sinceMarch 2006, reaching as inMarch 2011 a total of 1317
products currently on themarket worldwide. However, the increased use
of NPs increases the likelihood of environmental exposure to NPs and
poses questions as to specificNP-associated hazards. In addition, although
a NP type may be characterized as nontoxic, aggregation or interaction
with the exposure medium may affect their properties, mobility and
hence exposure in poorly understood ways (Slaveykova and Wilkinson,
2005). Concerns are thus raised by the possible release of certain novel
ENPs into the environment and their potential effects on the aquatic
ecosystem.
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Although nanotoxicological research started in the early 1990s, re-
search on the effects of NPs on environmentally relevant species has
only emerged in the recent years, the first reports being published in
2006 (Hund-Rinke and Simon, 2006). In a relatively short time, however,
hundreds of studies and dozens of review papers on nanoecotoxicology
have emerged (Farre et al., 2009; Kahru andDubourguier, 2010; Navarro
et al., 2008). In general, nanoecotoxicologists are challenged to develop
new protocols suitable for NPs, using the already large experience
and toxicity data published on the evaluation of the bulk chemical as
an environmental hazard (Baun et al., 2008; Handy et al., 2008; Klaine
et al., 2008).

In this study, standard ecotoxicity tests used for bulk chemicals
were explored, with slight modifications to the protocols to better
suit these novel test materials. The aquatic species selected for the
toxicity tests in this study, ranging from fish cell lines, algae, crusta-
ceans and bacteria, are representative of a range of trophic levels.
They are simple established tests using organisms known to be espe-
cially sensitive to a wide range of pollutants and to have a standard
reproducible response to facilitate inter-laboratory comparisons. A
similar test battery has been employed to characterize the responses
to a series of co-polymer (Naha et al., 2009a) and dendritic polymer
NPs (Naha et al., 2009b) of systematically varying structure, and thus
the consistency of study design enables comparison of materials
response.

The study will focus exclusively on amorphous silica NPs and poly-
styrene (PS) NPs. Crystalline silica NPs are known for their high toxicity
in vivo and in vitro (Napierska et al., 2010) and in some cases are being
used as positive controls within other NP studies (Lin et al., 2006). Crys-
tallinity is a very important property of silica that is proportionally
linked to its toxicity. Amorphous silica particles, in comparison, are
considered to be relatively harmless and are therefore being produced
in large quantities for a large number of applications, especially in bio-
medical applications and the food sector (Wang et al., 2006). Thus, par-
ticular concern arises about their possible toxicity and a number of
studies have already shown both non-toxic (Barnes et al., 2008) and
toxic effects with amorphous silica NPs (Van Hoecke et al., 2008), and
specifically in the form of pulmonary inflammation upon inhalation
(Rosenbruch, 1992).

Synthesized from organic polymers, with the possibility to produce
them in different sizes, surface charge, composition and morphology,
polymeric NPs can be obtainedwith very different functional properties
that makes them a perfect product for a wide range of applications
(Nowack and Bucheli, 2007). Depending on the polymer type, they
can potentially be used in a range of applications, the main one being
in the medical sector for drug delivery (Chan et al., 2010). PS NPs can
be divided into three main groups according to their effective surface
charge; cationic, anionic or neutral (unmodified) PS NPs. Their surface
chargewill depend on the surface coating, themost common functional
groups used being NH2– for cationic and COOH– for anionic surfaces.
This allows them to pass more easily through the cell membrane, as
they share a similar molecular structure to proteins, rendering them a
potential tool for drug delivery. However, some studies have shown
that, while the neutral and negatively charged PS NPs are considered
to be nontoxic, the positively charged PS NPs induce some toxicity
(Liu et al., 2011).

In this study, the responses of the battery of ecotoxicological test
species to silica and PS nanoparticles, chosen as model compounds,
are compared in order to evaluate their suitability and relative sensitiv-
ities for NP screening. Although the selected nanoparticles may not ac-
curately represent the materials used in actual consumer products, the
model systems are employed as reliable, well defined, physically and
chemically model particles for demonstration studies. The results are
compared to previous studies of polymeric nanoparticle systems of
systematically varied physico-chemical properties. The suitability of the
model NPs as positive and negative controls for NP screening is also
evaluated.

2. Materials and methods

2.1. Test compounds

Twodifferent sizes of plain silicaNPs and greenfluorescently labeled
silica NPs were purchased from Kisker Biotech GmbH & Co (Germany).
These are amorphous, monodisperse silica beads, of 50 nmand 100 nm
nominal diameters, with a density of 2.0 g cm−3 per particle and are
supplied in 10 ml aqueous suspensions of 25 μg ml−1 and 50 μg ml−1

concentrations respectively. The excitation and emission wavelengths
of the fluorescently green labeled silica NPs are 485 nm and 510 nm
respectively.

PS-PEI NPs were manufactured and supplied by the Centre for
BioNano Interactions (University College Dublin (UCD), Ireland). Briefly,
these PS-PEI particles are synthesized from carboxylated PS NPs (also
manufactured by UCD), whereby the carboxylate surface group reacts
with the amine of the PEI using EDAC (N-(3-Dimethylaminopropyl)-N
′-ethylcarbodiimide hydrochloride) as a dehydrating agent. Two differ-
ent nominal sizeswere supplied; 55 nmand 110 nmdiameter, both in a
stock concentration of 30 mg ml−1 suspended in deionized water.
Phenol (CAS No. 108-95-2) and potassium dichromate (CAS No.
7778-50-9) were employed as positive reference toxicants and were
purchased from Sigma-Aldrich (Ireland).

2.2. Nanoparticle characterization

Selected physico-chemical properties of the different sizes of fluo-
rescently labeled silica NPs and aminated PS NPs testedwere character-
ized over time and at several representative exposure concentrations
in the different media used in the assays (no organisms/cells present).
The NP size, as characterized by their hydrodynamic diameter, the ef-
fective surface charge, as characterized by their zeta potential were de-
termined, and agglomeration state monitored, using dynamic light
scattering and zeta potentiometry, with the aid of a Malvern Instru-
ments Zetasizer Nano Series (Particular Sciences, UK) operating with
version 5.03 of the system's Dispersion Technology Software (DTS
Nano), in order to confirm, in the case of the silica NPs, the manufac-
turers' specifications, and in the case of the PS nanoparticles, to charac-
terize their physico-chemical properties. Characterization of silica NPs
was carried out only on fluorescently labeled silica NPs as plain silica
NPs are manufactured under the same conditions, and have identical
technical specifications (Kisker Biotech GmbH & Co).

For each experimental replicate, samples of fluorescent silica NPs
and PS-PEI NPs were freshly prepared from their stock solutions by
dilution into the respective media in order to obtain concentrations
of 10, 100 and 1000 μg ml−1 and 1, 10 and 100 μg ml−1, respectively.
No specific sonication/shaking/stirring procedurewas employed except
for the cytotoxicity assays, which were bath sonicated for 30 min. DLS
analysis was performed immediately for time=0 h at the different
concentrations mentioned.

In order to determine whether particles sediment over time in
the test media, further analysis was undertaken at the following end-
point times and the following relevant concentrations for each test
in their respective media; 100 μg ml−1

fluorescent silica NP and
1 μg ml−1 PS-PEI NP concentration for Algal medium [AM] after
72 h, 1000 μg ml−1

fluorescent silica NP and 10 μg ml−1 PS-PEI NP
concentration for Thamnotox medium [TM] and for Elendt M4 Daphnia
medium after 24 h and 48 h, respectively and 1000 μg ml−1

fluores-
cent silica NP and 100 μg ml−1 PS-PEI NP concentration for the cell
culture medium Dulbecco's modified medium nutrient mix/F-12 Ham
[DMEM] after 24, 48, 72 and 96 h exposure. It should be noted that
the above prepared samples were maintained over the duration of the
measurement under the same conditions (shaking/illumination/
temperature) as in the exposure experiments detailed in the following
sections.
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Approximately 1.5 ml of the sample suspension of NPs in their
respective assay media (Milli-Q water [MQ], Microtox diluent [MD],
AM, TM, Elendt M4 Daphnia medium and DMEM) in 10×10×45 mm
polystyrol/polystyrene cuvettes was inserted for DLS analysis at 20 °C
for all measurements, except for the analysis in Thamnotox medium,
which was set at 25 °C in order to follow the same conditions as in
the toxicity assays.

The zeta potential of all particles in MQ water and the respective
assay media was measured using the Zetasizer (Malvern Instruments,
UK). Approximately 3 ml of 100 μg ml−1 concentration of NPs in solu-
tion was injected into a folded capillary cell for zeta potential analysis,
at 20 °C for allmeasurements, except for the analysis in Thamnotoxme-
dium which was set at 25 °C.

2.3. Ecotoxicity tests

The following tests were carried out, where possible, in accor-
dance with standard guidelines. However, due to the high cost and
low sample volumes of the supplied silica NPs, slight modifications
to standard procedures were necessary. Any deviations from standard
guidelines are described in full.

In order to establish suitable test ranges, initial range finding tests,
using a series of widely spaced exposure concentrations with no rep-
lication, were conducted with the NPs and the various test species.
Taking into consideration the results of the range finding tests, the
definitive tests employed a concentration range (at least five concen-
trations and appropriate controls, as specified in the respective de-
scriptions of the tests) in which effects were likely to occur.

2.3.1. Microtox test: Vibrio fischeri
Lyophilised V. fischeri bacteria (NRRL B-11177) and all Microtox®

reagents were obtained from SDI Europe, (Hampshire, UK).
The acute toxicity of 50 nm and 100 nm amorphous plain silica NPs,

and 55 nm and 110 nm PS-PEI NPs to the marine bacterium V. fischeri
was determined using the 90% basic test for aqueous extract protocol
(Azur Environmental Ltd., 1998) and bioluminescence inhibition was
measured at 5-, 15- and 30-min exposure time to a dilution series of
concentrations ranging from 1000 μg ml−1 to 3 μg ml−1 with one rep-
licate per test concentration. The acute toxicity data were obtained
and analyzed using the MicrotoxOmni software (SDI Europe,
Hampshire, UK). A basic test was also conducted for every fresh vial
of bacteria prior to testing with NPs in order to ensure the viability of
the test and the bacteria with the reference toxicant phenol.

2.3.2. OECD 201 growth inhibition of algae: Pseudokirchneriella
subcapitata

P. subcapitata CCAP 278/4 were obtained from the Culture Collec-
tion of Algae and Protozoa ((CCAP) Argyll, Scotland). All microalgae
growth inhibition tests were conducted at 20±1 °C with continuous
shaking at 100 rpm and continuous illumination (4000 lx, cool-white
fluorescence, measured with a Lux meter [Lutron Electronic LX-101]).

Assessment of the acute toxicity of 50 nm and 100 nm fluores-
cently labeled silica NPs and 55 nm and 110 nm PS-PEI NPs to the
freshwater algae P. subcapitata, was conducted in accordance with the
OECD Guideline 201 (OECD, 2006) with some variations. Exposure to
a limit test of 100 μg ml−1 silica NP concentration was conducted
with 6 replicates. Similarly, exposure to 5 different concentrations,
ranging from 0.1 μg ml−1 to 1.0 μg ml−1 for 55 nm PS-PEI NPs and
from 0.1 μg ml−1 to 0.8 μg ml−1 of 110 nm for PS-PEI NPs, was
conductedwith 3 replicates per test concentration. The initial algal den-
sity of all flasks was 1×104 cell ml−1 in a final volume of 20 ml and 6
negative controls were incorporated for each test containing only
algal growth media and algal inoculum. The cell density of each repli-
catewasmeasured after 72 h using a Neubauer Improved (Bright-Line)
chamber (Brand, Germany) and growth was quantified from measure-
ments of the algal biomass as a function of time. Average specific

growth rate (μ) and percentage inhibition of average specific growth
rate (%Ir) relative to controls were calculated and the Median Effective
Concentration (EC50) was determined. The pH of the controls and the
highestNP concentrationsweremeasured at the start and endof the ex-
periment (Table 4. Supplementary information).

Potassium dichromate was employed as a positive control in accor-
dance with the OECD Guideline to ensure validity of the test method
and the EC50 calculated and compared to the expected EC50 according
to the literature (Nyholm, 1990).

2.3.3. Thamnotox test™: Thamnocephalus platyurus
This toxicity test was purchased in kit form from SDI Europe

(Hampshire, UK) and the testwas performedaccording tomanufacturer's
instructions (Thamnotox, 1995). Briefly, the test is a 24 h Median Lethal
Concentration (LC50) bioassay, which is performed in a 24-well test
plate using instar II–III larvae of the shrimp T. platyurus, which are
hatched from cysts. Upon hatching, 10 shrimp per well were exposed
to a range of 5 concentrations in triplicate in standard freshwater
medium, ranging from 0.1 to 1000 μg ml−1 in the case of 50 nm and
100 nm amorphous plain silica and fluorescently labeled silica NPs,
and from 3 to 20 μg ml−1 for 55 nm PS-PEI NPs and from 2 to
15 μg ml−1 for 110 nm PS-PEI NPs. These were incubated at 25 °C for
24 h in the dark. The test endpoint was mortality (no observed move-
ment after 15 s and gentle agitation). At test termination, the number
of dead shrimp at each concentration was recorded and the respective
LC50 was determined.

2.3.4. OECD 202 Daphnia magna immobilization test
Acute toxicity immobilization tests were performed on each of the

NPs in accordance with OECD Guideline 202 (OECD, 2004). Daphnia
magna were kindly supplied by Shannon Aquatic Toxicity Laboratory
and cultured in static conditions at 20±1 °C and under a 16 h/8 h
light/dark photoperiod for all exposures. Acute toxicity tests were
performed onD. magna neonates thatwere less than 24 h old. A control
and five different exposure concentrations of 0.1, 1.0, 10, 100 and
1000 μg ml−1 for 50 nm and 100 nm fluorescently labeled silica and
plain silica NPs and 0.33, 1.0, 1.5, 2.0, and 3.3 μg ml−1 for 55 nm and
110 nm PS-PEI NPs were used. Four replicates were tested for each
test concentration and control and five neonates were used in each
replicate. There was no feeding during the tests. Immobilization (no in-
dependent movement after gentle agitation of the test liquid for 15 s)
was determined visually and recorded after 24 h and 48 h at each con-
centration and the respective EC50 values were determined. The pH of
the controls and the highest NP concentrations were measured at the
start and end of the experiment (Table 4. Supplementary information).

2.3.5. Cell Culture and cytotoxicity assays
An established fish cell line was used for cytotoxicity testing.

RTG-2 cells (catalog no. 90102529), a rainbow trout gonadal cell
line, were obtained from the European Collection of Cell Cultures
(Salisbury, UK). These were maintained in DMEM supplemented with
10% fetal bovine serum (FBS) and 45 IU ml−1 penicillin, 45 mg ml−1

streptomycin, 25 mMHEPES and 1%non-essential amino acids. Cultures
were maintained in a refrigerated incubator (Leec, Nottingham, UK) at
20 °C under normoxic atmosphere.

For cytotoxicity assays, RTG-2 cells were seeded in 96-well
microplates (Nunc, Denmark) at a density of 2×105 cells ml−1,
1.8×105 cells ml−1, 1.6×105 cells ml−1 and 1.6×105 cells ml−1 in
DMEM for 24, 48, 72 and 96 h, respectively. These seeding densities
were found to be optimal to achieve 80% confluency at the end of
each respective exposure period. After 24 h of cell attachment, plates
were washed with 100 μl/well phosphate buffered saline (PBS) and
the cells were treated with increasing concentrations of 50 nm and
100 nm fluorescently labeled silica NPs up to 1000 μg ml−1 and in-
creasing concentrations of 55 nm and 110 nm PS-PEI NPs up to
200 μg ml−1, both types of NP suspensions having been previously
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placed in a sonicating bath for 30 min approximately. Cells were
maintained at 20 °C under normoxic atmosphere. Six replicate wells
were used for each control and test concentration per microplate. The
Alamar Blue (AB) assay, employed to assess the metabolic activity,
and the Neutral Red (NR) assay, employed for the assessment of mem-
brane function and lysosomal activity, were subsequently conducted
in the same plate following the methodology as described by Davoren
and Fogarty (Davoren and Fogarty, 2006). Interference of the assays
was checked following the protocol described by Casey et al. (Casey et
al., 2007) and no interferences between theNPs and the colorimetric as-
says were observed (Fig. 6. Supplementary information). Rather than a
decrease in fluorescence, an increase in fluorescence is observed, and
therefore any observed toxicity result (manifest as a decrease influores-
cence) is not the result of interference. It should be noted that the pro-
tocol of Casey et al. over estimates the result of the possible interactions,
assuming that the particles are not washed away after exposure (in
both AB and NR assays, cells are washed with PBS before the addition
of the dye and the actual measurement). Any residual NP concentra-
tions during the cytotoxicity measurement are expected to be signifi-
cantly lower.

2.3.6. Statistical Analysis
All experiments were conducted in at least triplicate (three inde-

pendent experiments). Ecotoxicity was expressed as mean percentage
inhibition in the case of Microtox ® (inhibition of bioluminescence),
D.magna (immobilization) and percentagemortality for the T. platyurus
assay. Fluorescence (AB/NR assays) as fluorescent units (FUs) was
quantified using a microplate reader (TECAN GENios, Grödig, Austria).
Raw data from cell cytotoxicity assays were collated and analyzed
using Microsoft Excel ® (Microsoft Corporation, Redmond, WA). Cyto-
toxicity was expressed as mean percentage relative to the unexposed
control±standard error of the mean (SEM), which was calculated

using the formula [(mean experimental data/mean control data)×100].
Control values were set at 100% cell viability. Statistical analyses were
carried out using a one-way analyses of variance (ANOVA) followed by
Dunnett's multiple comparison test. Cytotoxicity data was fitted to a
sigmoidal curve and a four parameter logistic model used to calculate
the EC50 values. This analysis was performed using Xlfit3™ a curve
fitting add-in for Microsoft® Excel (ID Business Solutions, UK).

3. Results

3.1. Characterization of particles

3.1.1. Particle size measurement
The average particle sizes, as characterized by their hydrodynamic

diameter, of fluorescently labeled silicaNPs and PS-PEI NPs in the differ-
ent test media before exposure to the organism (time=0 h) and as a
function of concentration, are shown in Table 1. For comparison, and
in order to determine whether particles sediment in the test media
over time, Table 2 shows the mean intensity distribution after different
time exposures of the particles in different test media. Errors indicate
the standard deviation over six independent measurements.

Particle size measurement (DLS) results in Tables 1 and 2 showed
no significant differences in the diameter distribution of the particles
between the different media over the duration of the tests and con-
centrations, except in the case of the cell culture medium used for
the cytotoxicity assays, shown in Table 1. In all but the cell culture
medium, the distributions were quite monodisperse, with low Polydis-
persity Index (PdI) values in the range between 0.00 and 0.30 (Tables 1
and 2. Supplementary information), the particle size and size distribu-
tions were observed to be independent of concentration over the
range studied, although a slight increase in the size distribution and
PdI values were observed at the lower concentrations of 1 μg ml−1 in

Table 1
Mean zeta-average (d·nm) as measured by intensity, of 50 nm and 100 nm fluorescently labeled silica NPs and 55 nm and 110 nm PS-PEI NPs in Milli-Q water (MQ), Microtox
Diluent (MD), Algal medium (AM), Thamnotox medium (TM), Elendt M4 Daphnia medium (DM), and the cell culture medium Dulbecco's modified nutrient mix/F-12 Ham
(DMEM) and their respective standard deviation (n=6) before exposure (time=0 h).

Silica NPs 50 nm 100 nm PS-PEI NPs 55 nm 110 nm

Z-ave (d·nm) STDEV Z-ave (d·nm) STDEV Z-ave (d·nm) STDEV Z-ave (d·nm) STDEV

MQ 10 μg ml−1 49.73 0.70 89.93 1.46 MQ 1 μg ml−1 141.20 2.14 173.33 1.17
MQ 100 μg ml−1 49.40 0.30 91.04 1.51 MQ 10 μg ml−1 136.40 0.37 165.63 1.63
MQ 1000 μg ml−1 51.35 0.42 93.17 0.81 MQ 100 μg ml−1 139.55 1.18 169.38 1.63
MD 10 μg ml−1 70.89 0.54 111.60 1.60 MD 1 μg ml−1 152.42 0.99 241.05 9.21
MD 100 μg ml−1 52.99 0.58 95.02 0.95 MD 10 μg ml−1 123.10 1.18 163.95 4.66
MD 1000 μg ml−1 52.07 0.17 93.17 0.55 MD 100 μg ml−1 119.90 1.86 159.42 2.13
AM 10 μg ml−1 54.81 1.41 89.80 1.36 AM 1 μg ml−1 139.88 1.42 174.58 3.83
AM 100 μg ml−1 49.82 0.22 87.51 1.14 AM 10 μg ml−1 121.08 1.02 147.80 2.81
AM 1000 μg ml−1 49.05 0.19 87.90 0.61 AM 100 μg ml−1 116.63 2.28 144.03 2.76
TM 10 μg ml−1 52.17 1.55 89.87 2.17 TM 1 μg ml−1 126.87 2.49 185.85 1.65
TM 100 μg ml−1 50.92 1.09 91.13 1.51 TM 10 μg ml−1 122.02 1.80 149.07 1.09
TM 1000 μg ml−1 49.95 0.36 89.88 1.81 TM 100 μg ml−1 118.90 1.23 147.30 0.82
DM 10 μg ml−1 58.39 2.40 100.29 4.50 DM 1 μg ml−1 161.00 5.01 133.70 6.85
DM 100 μg ml−1 63.52 4.72 89.28 0.96 DM 10 μg ml−1 124.78 0.94 150.90 1.03
DM 1000 μg ml−1 49.39 0.64 88.30 0.80 DM 100 μg ml−1 122.75 0.39 205.35 5.06
DMEM 10 μg ml−1 147.65 9.44 190.13 10.49 DMEM 1 μg ml−1 117.51 28.82 267.02 157.67
DMEM 100 μg ml−1 182.55 3.00 208.90 3.13 DMEM 10 μg ml−1 455.35 40.79 301.98 8.40
DMEM 1000 μg ml−1 204.18 3.27 214.00 2.17 DMEM 100 μg ml−1 3072.83 864.09 3001.33 1170.41

Table 2
Mean zeta-average (d·nm) as measured by intensity, of 50 nm and 100 nm fluorescently labeled silica NPs and 55 nm and 110 nm PS-PEI NPs after different time exposures to
Algal medium (AM), Thamnotox medium (TM) and Elendt M4 Daphnia medium (DM) and their respective standard deviation (n=6).

Time exposure Silica NPs 50 nm 100 nm PS-PEI NPs 55 nm 110 nm

Z-ave (d·nm) STDEV Z-ave (d·nm) STDEV Z-ave (d·nm) STDEV Z-ave (d·nm) STDEV

72 h AM 100 μg ml−1 49.89 0.21 88.41 0.39 AM 1 μg ml−1 154.54 15.84 152.43 1.12
24 h TM 1000 μg ml−1 49.37 0.72 89.58 1.33 TM 10 μg ml−1 120.65 0.91 149.93 2.14
48 h DM 1000 μg ml−1 48.69 0.31 88.92 0.52 DM 10 μg ml−1 119.73 1.20 148.87 0.66
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the case of the PS-PEI NPs, indicating some instability of the particles
at low concentrations. For the silica NPs, the measured values were
found to be consistent with the nominal values of 50 nm and 100 nm.
In the case of the PS-PEI NPs, the values were found to be consistently
higher than the nominal values. The nominal values refer however
to the PS core, the hydrodynamic radius of which is increased by
the PEI coating. Throughout the manuscript, the nominal values of par-
ticle size will continue to be employed for simplicity of nomenclature.

In the cell culture medium, the measurement registered particles as
large as 200 nm and 3 μm, increasing with concentration in the case of
the fluorescently labeled silica NPs and PS-PEI NPs respectively. The size
was seen to be significantly increased compared to the othermedia, and
the increase in size concentration dependent. Similar increases of ap-
parent NP size in cell culture medium have been observed by others,
and have been attributed to interaction with the cell culture medium
and/or NP aggregation/agglomeration (Rabolli et al., 2010).

In contrast to the other test culture media, the particle size distri-
bution was seen to be unstable over time in the RTG-2 cell culture
medium and sedimentation of the NPs at the highest concentrations
was observed (Figs. 1 and 2. Supplementary information). Exposure
concentrations in the rest of the assays and at lower concentrations
in the cell culture media are assumed to be constant throughout
the duration of the experiment. In the case of 1000 μg ml−1 exposure
of the 50 nm silica NPs to RTG-2 cells, the initial mean of ~200 nm
increased to ~300 nm after 24 h, whereas over extended exposure
periods the particle size distribution was identical to that of the
unexposed control medium, as shown in Fig. 1. The behavior is con-
sistent with an initial adsorption of media components on the surface
of the NPs, followed by precipitation. In the case of the 100 nm silica
particles, a similar behavior is observed, although less pronounced
(Fig. 3. Supplementary information). In the case of PS-PEI NPs, the
55 nm PS-PEI particles show a very similar behavior as that exhibited
by the 50 nm silica NPs (Fig. 4. Supplementary information), whereas

the 110 nm PS-PEI NPs appear to have sedimented within 24 h (Fig. 5.
Supplementary information).

3.1.2. Zeta potentiometry
Zeta potentiometry of fluorescent silica NPs and PS-PEI NPs was also

carried out in all media at 100 μg ml−1 concentration. Fig. 2 summa-
rizes the results for all zeta potential measurements. The zeta potential
is derived from the electrophoretic mobility, values of which are listed
in Table 3. Supplementary information.

Negative zeta potentials were obtained for silica NPs, the 100 nm
silica NPs exhibiting a zeta potential consistently almost twice that of
the 50 nm particles. In AM, a slight decrease in the zeta potential was
observed when compared to the values in MQ. In TM, a greater reduc-
tion was observed, probably due to the salts present in the standard
freshwater media. In cell culture medium and MD, the zeta potential
was reduced to a greater extent, leading to zeta potential values lower
than −10 mV for both sizes NP.

Positive zeta potentials of around 60 mV were obtained for PS-PEI
NPs, due to the cationic coating of the NP. Both sizes of the particles
exhibited similar zeta potentials, as expected, as the interactions of
the particles with their environment are governed by the surface rather
than the core. In DM, a slight decrease in the zeta potential was ob-
served when compared to the values in MQ. Similar values were ob-
served in AM, and TM with lower zeta potential values, but these
were still >30 mV, indicating the dispersion is stable and unlikely to ex-
perience agglomeration. InMD, however, a larger reduction is observed,
yielding zeta potential values b30 mV, which could lead to agglomera-
tion of the particles and instability, making them less bioavailable in the
test assay. This is due to charge neutralization with the salts present
in the media; as V. fischeri is a marine bacterium, the MD has a high
ionic strength which is bound to affect the stability of the particle.
In cell culturemedium, the zeta potential is reduced to a greater degree,
to the point of obtaining negative surface charge values around 5–7 mV,
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Fig. 1. Mean DLS profile of: a) the neat RTG-2 cell culture medium by particle number size distribution (with no NPs added), and b) particle number size distributions of
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indicating that the coating from the proteins (negatively charged) in
the media dominates the particle surface.

In summary, the reductions of the zeta potential were potentially
due to interactions with the molecular constituents of the medium in
the case of the cell culture medium (Sager et al., 2007) and charge
neutralization due to the salts present in the other media. However,
with the exception of the cell culture medium, the reduced zeta po-
tentials did not appear to influence the quality of the dispersion, as
there was no indication of agglomeration in Table 1.

3.2. Ecotoxicity

The two different sets of NPs were tested on several standard and
representative ecotoxicity tests for comparison. Different responses
were obtained for the different particles and results were analyzed
and discussed according to the particle characteristics. Testing of the
reference chemicals, phenol, and potassium dichromate, was carried
out in tandem with the NPs to ensure the validity of each test method.
End points of all reference toxicity tests were within those stipulated
in each respective standard guideline for the case of phenol and
V. fischeri (Microtox, 1998), or reported in other previous studies for
the case of potassium dichromate and P. subcapitata (Nyholm, 1990).
Consistent results were achieved for each test control in accordance
with the criteria for validity of each test guideline. A summary on the
results with the EC50 values of silica and PS-PEI NPs on the different
test models are shown in Table 3.

Plain and fluorescently labeled silica NPs showed no significant
toxicity in any of the acute ecotoxicity tests performed on the differ-
ent organisms for both diameters. Such a response may be expected
as amorphous silica NPs are known for their low toxicity (Barnes et
al., 2008; Rabolli et al., 2010), indicating their suitability as a good
negative control for NP exposure. In the case of the cytotoxicity test-
ing, both assays indicate a low dose and exposure time dependent re-
sponse as shown in Fig. 3, a slightly larger effect being observed for
the 50 nm than the 100 nm silica NPs in both assays. The AB assay
also showed a larger effect than the NR assay and the response was
larger at the highest concentrations (1000 μg ml−1).

In contrast, both NP diameters of PS-PEI NPs showed a significant
toxic response in most of the acute toxicity tests performed, except for
the microtox test, as shown in Table 3, where a much weaker effect
was observed, probably due to particle agglomeration as discussed in
the characterization Section 3.1. The effects observed with PS-PEI NPs
were dependent on the NP size in some assays, the size effect being
statistically significant when an ANOVA of two factors was performed

on the Algal, Thamnotox and D. magna results (pb0.05). In all cases,
a greater effect from the 110 nm particles was observed when com-
pared to the 55 nm particles, indicating that the effect observed, could
not only be due to the reactive functional groups on the NP coating,
but as a possible core size effect also, as per unit mass/volume concen-
tration, the 55 nm particles present a higher degree of surface func-
tionalization than the 110 nm particles. A difference in the sensitivity
for both NP diameters with the different organisms is observed as
follows: P. subcapitata≥D. magna>T. platyurus>RTG-2>V. fischeri.
The difference in observed sensitivity was found to be in accordance
with studies using other NPs found in the literature, where algae and
crustaceans (Daphnids) were the most sensitive organisms in aquatic
exposure to NPs (Kahru and Dubourguier, 2010). In fact, although
algae were shown to be the most sensitive organism in this study,
D. magna also showed a strong sensitivity to NP exposure, exhibiting
almost equal but slightly lower EC50 values than those of the algal spe-
cies. Cytotoxicity results expressed as EC50 values in Fig. 4 showed a
higher dose and exposure time dependent response than the silica par-
ticles in both assays, again showing a greater effect at thehigher concen-
trations (100–200 μg ml−1). In both assays AB and NR, and in general
over the different exposure times, the 110 nmparticles showed a slight-
ly higher cytotoxicity than the 55 nm particles.

4. Discussion

The ecotoxicity tests employed and shown here are validated and
widely used standardized short-term methods for estimating the
acute and chronic toxicity of chemical toxicants to bacteria, algae, in-
vertebrates and fish. These require a specific media composition and
light/dark conditions in order to simulate, in a closest possible way,
realistic environmental conditions. The study shows how very different
responses were obtained for the different ecotoxicity tests depending
on the different biological models, as each of themwill possess different
cellular properties. Although the battery of tests employed was focused
mainly on freshwater species, the microtox test with the marine bacte-
ria V. fischeri has previously been shown to provide a good correlation
with other species for a large number of chemical toxicants (Kaiser,
1998). It is also considered to play an important role, as it sits at the
base of most food webs and provides essential ecological and biochem-
ical services, making it a good starting point to any ecotoxicity test.
Furthermore, it is a very simple, fast, robust and cost-effective assay
(Parvez et al., 2006).

In general, and according to previous ecotoxicity studies testing a
broad range of chemicals, when toxicity is observed, fish is expected
to be the least sensitive trophic level when compared to algae and
Daphnia, and algae is expected to be the most sensitive trophic level
when compared to fish and Daphnia sp (Weyers et al., 2000). The re-
sults presented here are consistent with such a conclusion.

Amorphous silica NPs were shown not to exhibit any toxic effect
in most of the tests performed for any of the wide range of concentra-
tions employed, except in the cytotoxicity tests, in which a weak dose
and exposure-time dependent response was observed at the highest
concentrations. These generally low responses have been shown to be
in accordance with other ecotoxicity studies using engineered amor-
phous silica NPs, where little or no toxicity was observed in the tests
employed (Barnes et al., 2008; Shapero et al., 2011; Van Hoecke et al.,
2008). Thus, the lack of toxicity observed to date with amorphous silica
NPs, suggests that, in the different standard toxicity methods, this could
generally be used as a good negative NP control, except in the case of
the cytotoxicity assays which themselves are shown not to be suitable
to NP testing.

In contrast, PS-PEI NPs exhibited a strong toxic response for most
of the tests employed, except for the microtox test. In fact, the EC50
values determined in this study indicate a stronger toxic response com-
pared to other ecotoxicological studies reported with co-polymers
(Naha et al., 2009a) and dendritic polymers (Naha et al., 2009b).
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Fig. 2. Zeta potentiometry measurements of 100 μg ml−1 concentration of 50 nm fluo-
rescent silica NPs (■), 100 nm fluorescent silica NPs ( ), 55 nm PS-PEI NPs ( ), and
110 nm PS-PEI NPs ( ) in Milli-Q water (MQ), Microtox Diluent (MD), Algal medium
(AM), Thamnotox medium (TM), Elendt M4 Daphnia medium (DM), and the cell cul-
ture medium Dulbecco's modified nutrient mix/F-12 Ham (DMEM). Data presented
as mean±SD (n=6).
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D. magna was shown to be one of the most sensitive species of the
test battery employed in both previous studies, exhibiting the lowest
EC50 values of ~60 μg ml−1 for N-isopropylacrylamide (NIPAM)/
N-tert-butylacrylamide (BAM) 50:50 co-polymer NPs (Naha et al.,
2009a) and ~8 μg ml−1 (0.13 μM) for polyamidoamine (PAMAM)
dendrimers of generation G-6 (Naha et al., 2009b). These findings are
in agreement with those of the current study, where, although in our
study D. magna was not the most sensitive species, the EC50 values
for D. magna were very close to those of the most sensitive, the algal
test. For the PS-PEI NPs tested in the current study, the EC50 values
for D. magna were ~0.7 μg ml−1, indicating a greater toxicity than
that observed in the co-polymers and dendritic polymerwork. A similar
trend is observed in terms of, not only sensitivity of species, but also
degree of toxicity to PS-PEI NPs when comparing to the work with the
PAMAM dendrimers. This is understandable, as PS-PEI NPs share a sim-
ilar surface chemical structure to PAMAM dendrimers, suggesting that
the surface amino groups play an important role in the toxic effects ob-
served. Furthermore, and similar to the PAMAM dendrimer work, a NP
size dependence effect is also observed on the Algal, Thamnotox and
Daphnia assays, the larger particle of 110 nm diameter size exhibiting
a greater effect than the 55 nm diameter size, therefore showing a clear
dependence on the physico-chemical properties of the NP regardless

of their mode of action. Moreover, the results obtained for PS-PEI NPs
are consistent with what was expected for polycationic polymers as
they are known to induce the formation of nanoscale holes in the lipid
bilayer and consequently enhance permeabilization of the cell mem-
brane (Hong et al., 2006). Once internalized, they have been demon-
strated to cause oxidative stress by the generation of elevated levels of
reactive oxygen species (Mukherjee et al., 2010). Their mode of toxic
action is thus specifically due to their surface activity. This also shows
the importance of the surface charge of the particle, as a cationic surface
would enable the particle to interact with the cell membranemore eas-
ily due to their similar molecular structure to proteins, hence, promot-
ing the cell uptake of the NPs (Nel et al., 2009). The results support
the proposal that aminated polystyrene particles may be, where suit-
able for NP testing, appropriate positive controls for nano(eco)toxicity
testing.

Finally, although our cytotoxicity results showed a significant ef-
fect at the highest concentrations for both particles, our DLS results
over time at those concentrations suggested precipitation of the par-
ticles with the consequent depletion of the medium as they are coated
on the particle surface. At concentrations of 1000 μg ml−1 for the silica
particles, and 200 μg ml−1 for the PS-PEI NPs, the particle size has in-
creased to over 200 nm, and 3 μm, respectively at zero exposure time

Table 3
Summary of EC50 values for 50 nm and 100 nm fluorescently labeled and plain silica NPs and 55 nm and 110 nm PS-PEI NPs front different test models. Data presented as mean±
SD (n=3).

Test models Silica 50 nm Silica 100 nm Test models PS-PEI 55 nm PS-PEI 110 nm

EC50 (μg ml−1) EC50 (μg ml−1) EC50 (μg ml−1) STDEV EC50 (μg ml−1) STDEV

V. fischeri (30 min) >1000 >1000 V. fischeri (30 min) >1000 – >1000 –

P. subcapitata (72 h) >100 >100 P. subcapitata (72 h) 0.58 0.037 0.54 0.058
T. platyurus (24 h) >1000 >1000 T. platyurus (24 h) 5.20 0.45 4.03 0.50
D. magna (48 h) >1000 >1000 D. magna (48 h) 0.77 0.10 0.66 0.17
RTG-2 AB (96 h) >1000 >1000 RTG-2 AB (96 h) 60.32 6.56 31.39 3.17
RTG-2 NR (96 h) >1000 >1000 RTG-2 NR (96 h) 77.75 17.97 87.13 30.84

Fig. 3. Cytotoxicity of 50 nm and 100 nm fluorescently labeled silica NPs to RTG-2 cells over 24 h (■), 48 h ( ), 72 h ( ) and 96 h ( ) as determined by: a) AB assay and 50 nm
diameter, b) AB assay and 100 nm diameter, c) NR and 50 nm diameter and d) NR and 100 nm diameter. Data expressed as percentage of control. Data presented as mean±SEM
(n=3). (*) Statistically significant values (p≤0.05).
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(Table 1), indicative of adsorption of components of themedia onto the
NP surface, and/or considerable particle aggregation/agglomeration at
these concentrations in the fish cell culture medium. Furthermore, the
aggregated NPs are seen to sediment out from the dispersion. The pro-
cess may result in significant depletion of themedium, leading to an in-
direct toxic effect as observed for example in the case of exposure of
mammalian cell lines to carbon nanotubes (Casey et al., 2008) and, fur-
thermore, any interaction of such aggregates with the cells cannot be
considered as a NP effect. Using NR, a viability assay, little or no re-
sponse was observed below these concentrations indicating no NP in-
duced cell death. AB is also a monitor of proliferative capacity and the
reduction in the assay response at low dosesmay be a reduction of prolif-
erative capacity due to medium depletion, as previously observed using
both colorometric and clonogenic assays (Herzog et al., 2007). Therefore,
our results show that fish cell lines are not a good reliablemodel for cyto-
toxicity testing of NPs, especially when the NP is unstable in solution.

In summary, in this manuscript we described the comparative tox-
icity of two different types of NPs with extremely different responses
for each type, suggesting them, where suitable for NP testing, as pos-
sible good positive and negative NP controls for PS-PEI and amorphous
silica NPs respectively. The concentrations employed, weremuch higher
thanwould be expected in the environment based onmodel predictions
of NP release from consumer products (Gottschalk et al., 2009). However
one of the purposes of this studywas to assess the suitability of standard
ecotoxicity protocols for the assessment of NP toxicity, thus concentra-
tions employedwere chosen following the guidelines in order to observe
a toxic response. Further investigations about the possibility that NPs
could be transferred between the different trophic levels through expo-
sure to food are suggested as future work, as has already been demon-
strated with Quantum Dots and TiO2 (Bouldin et al., 2008; Zhu et al.,
2010).

These results thus provide a better insight into the suitability of stan-
dard toxicity protocols for NP assessment. New variations or modifica-
tions to the existing protocols should be studied and suggested in
order to be able to develop in the future, new ecotoxicity protocols ap-
propriate for NPs.
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