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A Review of Probabilistic Methods of Assessment of Load Effects in Bridges 

OBrien, E.J., Schmidt, F., Hajializadeh, D., Zhou, X.-Y., Enright, B., Caprani, C.C., Wilson, S., 
Sheils, E. 

 

Abstract 

This paper reviews a range of statistical approaches to illustrate the influence of data quality and 
quantity on the probabilistic modelling of traffic load effects. It also aims to demonstrate the 
importance of long-run simulations in calculating characteristic traffic load effects. The popular 
methods of Peaks Over Threshold and Generalized Extreme Value are considered but also other 
methods including the Box-Cox approach, fitting to a Normal distribution and the Rice formula. For 
these five methods, curves are fitted to the tails of the daily maximum data. 

Bayesian Updating and Predictive Likelihood are also assessed, which require the entire data for 
fittings. The accuracy of each method in calculating 75-year characteristic values and probability of 
failure, using different quantities of data, is assessed. The nature of the problem is first introduced by 
a simple numerical example with a known theoretical answer. It is then extended to more realistic 
problems, where long-run simulations are used to provide benchmark results, against which each 
method is compared. Increasing the number of data in the sample results in higher accuracy of 
approximations but it is not able to completely eliminate the uncertainty associated with the 
extrapolation. Results also show that the accuracy of estimations of characteristic value and 
probabilities of failure are more a function of data quality than extrapolation technique. This 
highlights the importance of long-run simulations as a means of reducing the errors associated with 
the extrapolation process.  

Keywords: Review, Bridge, Load, Traffic, Assessment, POT, Peaks-Over-Threshold, Extreme Value, 
GEV, Box-Cox, Rice, Predictive Likelihood. 

1. Introduction 

A necessary part of bridge management is assessment of the safety of bridge structures. In its simplest 
form, a bridge is safe when its capacity to resist load exceeds the load applied. More precisely, a 
bridge can be considered safe when there is an acceptably low probability that load exceeds capacity. 
A great deal of work has been carried out on methods of evaluating the load-carrying capacity of 
bridges and the associated uncertainties. Load-carrying capacity can be reduced by different forms of 
deterioration, depending on factors such as the structural material, the quality of workmanship during 
construction, the age of the structure, the environment and the loading history. To carry out a more 
accurate assessment of the load-carrying capacity, non-destructive and/or destructive tests can be 
carried out to get more detailed site specific information on these deterioration mechanisms to reduce 
uncertainty and associated conservatism (Al-Harthy et al., 2011, Frangopol & Liu, 2007, Richard et 
al., 2012, Rücker et al., 2005, Suo & Stewart, 2009). These inspection results can be incorporated into 
time-dependent reliability-based assessments to give up-to-date structure-specific deterioration rates. 
These in turn can be used to accurately predict the capacity of the structure and to schedule 
maintenance and repairs (Melchers, 1999, Orcesi & Cremona, 2009, Orcesi & Cremona, 2010, Sheils 
et al., 2010).  
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Traffic loading on bridges, one of the great sources of uncertainty, is the focus of this paper. In this 
study, historical developments in the field of traffic loading are reviewed. A wide range of 
statistical/probabilistic approaches have been applied to the problem, using different quantities of 
data, with no clear ‘winner’ emerging. Two Extreme Value examples are used here as benchmark 
tests, against which a range of approaches are compared. The first example is the problem of finding 
the maximum of numerous normally distributed random variables, a problem for which the exact 
theoretical solution is known. The nature of the problem is studied using a number of samples with 
different quantities of data. 

The second example is based on a carefully calibrated traffic load simulation model. The simulation is 
run for 5000 years so that, while the exact solution is unknown, it can be estimated very well and 
there is a high degree of confidence in the lifetime maximum results. As for the first example, several 
methods of prediction, using modest quantities of data, are tested to demonstrate the importance of the 
quantity of data in probabilistic assessments.  

In this study no allowance for growth in traffic loads is made. Vehicle traffic is a non-stationary 
phenomenon with variation in both vehicle proportions and weights experienced over time as a 
function of economic, legal and technological developments. Despite the recent economic downturn, 
the European Commission (2008) predicts a sustainable annual growth in road freight volume of 
between 1.5% and 2% per annum until 2030. O’Connor et al (2001) note a substantial increase in the 
number of 5-axle vehicles over a 10 year period.	  Sivakumar et al. (2011) recognise the need to allow 
for growth in truck weights and traffic intensities and propose an economic projection analysis. 
OBrien et al. (2014) consider growth in the numbers of heavy vehicles and provide a means of 
addressing the non-stationary nature of growing traffic. However, growth is considered to be beyond 
the scope of this paper. 

2. Review of Literature 

Load effects (LE’s) – bending moments, shear forces, etc. – result from traffic passing over a bridge. 
The process varies in time with many periods of zero LE when there is no traffic on the bridge and 
peaks corresponding to heavy vehicle crossings or more complex vehicle meeting or overtaking 
scenarios. The majority of the local peaks in LE are due to cars which are relatively light and there 
have been many efforts to simplify the problem by excluding consideration of these data. The 
methods of statistical inference used in the literature to predict the extremes of traffic LE’s are quite 
diverse.  

Tail Fitting 

In the context of this problem, many approaches fit a distribution to the tail of the Cumulative 
Distribution Function (CDF) of the LE’s. This can be justified by the fact that the distribution is often 
made up of a mixture of load effect types – for example, LE’s due to 2-axle trucks and those due to 
heavy low-loader vehicles. For bridge traffic loading, the heavier vehicles tend to dominate, with the 
lighter ones making very little contribution to the probability of exceedance at the extremes. The tail 
can be chosen by engineering judgement when the cumulative distribution is seen to change at a 
particular probability level. Alternatively, some authors have fitted to the top 2√n of a distribution of 
n data, based on theoretical considerations (Castillo, 1988). Others have fitted to the top 30% of data 
(Enright, 2010) based on sensitivity analyses.  
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Two of the tail fitting approaches are particularly popular – Peaks-Over-Threshold (POT) and Block 
Maximum. POT considers the extent by which the peaks of LE exceed a specified threshold. The POT 
LE’s are fitted to a probability distribution such as the Generalized Pareto distribution. In the Block 
Maximum approach, only the maximum LE’s in given blocks of time (days, years, etc.), are 
considered. This has the advantage of time referencing the data which is necessary when calculating 
lifetime maximum probabilities of exceedance. Block maximum LE’s can be fitted to one of a range 
of distribution types such as Generalised Extreme Value (GEV) (incorporating Gumbel, Weibull and 
Fréchet), or Normal. Fitting block maximum values to GEV and Normal distributions will be 
considered here. 

The Block Maximum approach has the disadvantage that only one LE in each block of time is 
considered, even if several very large LE’s are recorded. The POT approach addresses this issue but 
the selection of the threshold, below which LE’s are discarded, is subjective. The Box-Cox approach 
is more general and aims to address the disadvantages of both POT and GEV. The Rice formula is 
also investigated as it was used for the extrapolations in the background study supporting the 
development of the Eurocode for traffic loading on bridges. However, while the Rice formula is a 
fitting to tail data, it is applied to a histogram of ‘upcrossings’ past a threshold, not to a CDF, and 
assumes a normally distributed process. 

Full Distribution Fitting 

Bayesian Updating is another approach that can be applied to bridge traffic loading. A probability 
distribution is assumed for the block maximum LE’s and is updated using available LE data. While 
only tail data could be used, in this work, the Bayesian approach is used to update the entire 
distribution, not just the tail. Predictive Likelihood also seeks to develop a probability distribution for 
all LE’s but uses a frequentist likelihood approach, assigning likelihoods on the basis of the quality of 
the fit to the measured data.  

2.1 Peaks Over Threshold (POT)  

Block Maximum approaches use only the maximum LE in each block of time. There is therefore a 
risk that some important data is discarded: if two unrelated extreme loading events occur in the same 
block of time, only one of the resulting LE’s is retained. In such a case, the POT approach would 
retain both LE’s as valid data. 

To find characteristic maximum values of LE, data above the threshold must be fitted to a probability 
distribution. Coles (2001) provides a brief outline proof that the Generalized Pareto (GP) distribution 
approximates the CDF of such POT data well. Crespo-Minguillón & Casas (1997) use the GP 
distribution to model the excesses of weekly maximum traffic LE’s over a threshold. James (2003) 
applies the POT method to analyse load effects on railway bridges. Gindy & Nassif (2006) analyse 
load effects caused by combined data from over 33 Weigh-in-Motion sites over an 11-year 
measurement period, and compare extreme values as predicted by both GP and GEV distributions. 

A significant drawback of the POT approach is the issue of selecting the threshold. There are many 
different kinds of loading scenario on a typical bridge. For example, there are usually many single-
vehicle crossings of standard 5-axle trucks. The probability distribution of LE’s due to such an event 
type may be quite different from that due to large cranes or that due to 2-truck meeting events 
(Caprani et al., 2007). If the threshold is too low, there may be an excessive mixing of extreme event 
types with other less critical types which can result in convergence to an incorrect characteristic LE. 
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On the other hand, if the threshold is too high, there will be too few peaks above the threshold, 
leading to high variance and unreliable results.  

The basic principle in selecting a threshold is to adopt as low a threshold as possible, while 
maintaining a consistent trend in the data. The issue of threshold choice is analogous to the choice of 
block size in the block maxima approach, implying a balance between bias and variance. Two 
methods are available (Coles, 2001): one is an exploratory technique carried out prior to model 
estimation; the other is an assessment of the stability of parameter estimates, based on the fitting of 
models across a range of different thresholds. Crespo-Minguillón & Casas (1997) apply the latter 
method and select the optimal threshold based on a weighted least squares fit. 

Having selected the threshold, the next step is to estimate the parameters of the GP (or other) 
distribution. Bermudez & Kotz (2010) consider several methods of estimating these parameters 
including the method of moments, the probability weighted method, the maximum likelihood method, 
and Bayesian updating. Crespo-Minguillón & Casas (1997) adopt a methodology that is based on the 
minimization of the weighted sum of squared errors. James (2003) and Gindy & Nassif (2006) use 
maximum likelihood estimation. 

2.2 Block Maximum – Extreme Value Distributions 

Extreme value theory is based around the extreme value theorem, proved by Gnedenko (1943) and 
based on initial work by Fisher & Tippett (1928) and Gumbel (1935). For a sequence of independent 
random variables X1, X2,..., with distribution function F(x) = Prob(X ≤ x), the distribution of 
max(X1,...,Xn) is F(x)n. As n gets large, this degenerates to 0 if F(x) < 1, as is usual. The Fisher-Tippett 
theorem shows that a non-degenerate distribution can be found using a linear function of x, say an + 
bnx. Then, there is a non-trivial limit to F(an + bnx) and this limit must be in the form of the 
Generalised Extreme Value distribution (GEV), also known as the Fisher-Tippett distribution 
(Jenkinson, 1955, Von Mises, 1936): 

𝐹!"#(𝑥) =
𝑒𝑥 𝑝 − 1 + 𝜉

𝑥 − 𝜇
𝜎

!!!
   , if  𝜉 ≠ 0

𝑒𝑥𝑝 − 𝑒𝑥𝑝 −
𝑥 − 𝜇
𝜎              , if  𝜉 = 0

 Equation 1 

 

defined in terms of parameters 𝜇, 𝜎 and 𝜉 where 𝜇 ∈ 𝑅 is the location parameter, 𝜎 > 0 the scale 

parameter and 𝜉 ∈ 𝑅 the shape parameter, such that ( )1 0xξ µ σ+ − > . Hence, for an appropriately 

large n, the exact distribution, F(x)n, converges asymptotically to FGEV(x). For the Normal distribution, 
the theorem holds and it is well known that its limiting distribution is the Gumbel, the 𝜉 = 0 case of 
the GEV. However, convergence is slow (Cramér, 1946).  

Each block maximum LE is the maximum of many traffic loading scenarios. As convergence may be 
slow, Caprani (2005) and OBrien et al. (2010) have fitted block maximum LE data with a ‘Normal to 
the power of n’, i.e., a Normal distribution raised to some power, n, whose value is found by fitting to 
the data. This has merit for smaller data samples. Ghosn et al. (2003) determine the distribution of 
lifetime maximum LE by raising the parent distribution of LE to an appropriate power. In this way 
they determine the mean and coefficient of variation of the maximum LE. Caprani (2005) describes a 
probabilistic convolution method to obtain bending moments for single truck loading events and 
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obtains the distribution of lifetime maximum LE by raising the parent distribution to an appropriate 
power. Other authors attempt to calculate the exact distribution of extreme load effect, based on a fit 
to the parent distribution (Bailey, 1996, Bailey & Bez, 1994, Cooper, 1995, Getachew, 2005, Ghosn 
& Moses, 1985, Nowak & Hong, 1991, Nowak et al., 1993). This is done by raising the initial 
distribution to an appropriate power.  

Most researchers fit block maximum LE data to one of the extreme value distributions described by 
the GEV equation: Gumbel, Fréchet or Weibull (also known as Types I, II or III). The three types of 
distribution have distinct forms of behaviour, corresponding to the different forms of the tail in the 
original distribution function (Fisher & Tippett, 1928). Coles (2001) establishes the conditions under 
which the Gumbel, Fréchet and Weibull distributions are the limiting forms for various parent 
distributions (Gumbel, 1958).  

In early applications of Extreme Value theory, it was usual to adopt one of the three distributions, and 
then to estimate the relevant parameters. There are two weaknesses with this: first, a technique is 
required to choose which of the three distributions is most appropriate for the data at hand; second, 
once such a decision is made, subsequent inferences presume this choice to be correct, and do not 
allow for the uncertainty such a selection involves, even though this uncertainty may be substantial 
(Coles, 2001). Nevertheless, many studies (Caprani & OBrien, 2006, Caprani et al., 2008, Kanda & 
Ellingwood, 1991, O’Connor & OBrien, 2005) indicate that LE data is either Weibull or Gumbel and, 
given that Gumbel is a special case of Weibull (with shape parameter, ξ = 0), an assumption that LE is 
always of the form of Equation 1, with ξ ≤ 0, seems reasonable.  

Grave (2001) uses a weighted least-squares approach to fit Weibull distributions to critical LE’s. 
O’Connor (2001) fits Gumbel and Weibull distributions to a population of ‘extreme’ LE’s. OBrien et 
al. (2003) plot hourly maximum strain values on Gumbel probability paper. A least-squares, straight-
line fit is made to the upper 2 𝑛 data points in a similar manner to Grave (2001) and O’Connor 
(2001). González et al. (2003) also use the Gumbel and Weibull distributions to extrapolate bridge 
load effect. Getachew (2005) fits the Generalized Extreme Value distribution to the LE’s from 
simulated 2-truck meeting events representing two weeks of traffic. Bailey (1996) describes the use of 
plots of the mean and standard deviation of load effects, to estimate the appropriate extreme value 
distribution. Bailey (1996), Bailey & Bez (1994) and Bailey & Bez (1999) describe a qualitative 
analysis of 500 simulated upper tails of mean maximum load effects plotted against the number of 
events that contribute. They determine that the Weibull distribution is most appropriate to model these 
tails and use maximum likelihood estimation. Cooper (1997) presents a traffic model of about 81 000 
measured truck events, and uses it to determine the distribution of LE’s due to a ‘single event’. He 
raises this distribution to powers to determine the distribution of LE for 1, 4, 16, 256 and 1024 such 
events. A Gumbel distribution is then fitted to this 1024-event distribution and used to extrapolate to a 
2400-year return period. Cooper (1997) converts histograms of two-week traffic LE’s into CDF’s, 
which he then raises to a power equal to the number of trucks per day, to give the distribution of daily 
block maxima. 

Moyo et al. (2002) plot daily maximum strain values on Gumbel probability paper and use a least-
squares fit to determine the parameters of the distribution. Buckland et al. (1980) use a Gumbel 
distribution to fit the 3-monthly maximum LE’s and extrapolate to find characteristic values. 
Getachew (2005) uses the GEV distribution to model the parent distribution of load effect, but not as 
an asymptotic approximation to the distribution of extreme values. Sivakumar et al. (2011) adopt the 
Gumbel distribution to project the statistics of the maximum LE’s for different return periods. 
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2.3 Box-Cox Approach 

Researchers commonly debate the merits of the POT method relative to the Block Maximum 
approach. The Box-Cox transform (Box & Cox, 1964) is used by Bali (2003) to introduce a more 
general extreme value distribution that encompasses the Generalised Pareto and Generalised Extreme 
Value distributions (Caprani & OBrien, 2009, Rocco, 2010). In the Box-Cox transformation, 
transformed values are a monotonic function of the observations over some admissible range and are 
indexed by: 

𝑦!
(!) = 𝑦!!                𝜆 ≠ 0

𝑙𝑜𝑔   𝑦!       𝜆 = 0
 Equation 2 

 

where 𝜆 is the transform parameter and 𝑦! is the observation (Box & Cox, 1964). 

This transformation offers the possibility of improving the rate of convergence to the limiting extreme 
value form, since different distributions converge at different rates. This approach restricts the 
methodology to cases where the extreme data are strictly positive (Wadsworth et al., 2010) but still 
encompasses a wide variety of practical problems including traffic loading on bridges. The use of the 
Box-Cox transformation in extreme value analysis was considered before in an entirely different 
context by Eastoe & Tawn (2009).  

The Box-Cox-GEV extreme value distributions are given by Bali (2003) as: 

𝐻 𝑥 =
1
𝜆

𝑒𝑥𝑝 − ℎ(𝑥) !
!/! !

− 1 + 1 Equation 3 

 

in which  

ℎ 𝑥 = 1 − 𝜉(
𝑥 − 𝜇
𝜎

) Equation 4 

 

The parameters of this distribution are those of the GEV (µ, σ, ξ) plus a ‘model parameter’, λ. As λ 
→1, Box-Cox converges to the GEV distribution. Conversely, as λ →0, by L’Hôpital’s Rule, it 
converges to the GP distribution. To apply this model, a high threshold is set on the parent distribution 
(Caprani & OBrien, 2009, Rocco, 2010). Bali (2003) uses a threshold of two standard deviations 
about the sample mean. Caprani & OBrien’s thresholds (2009) are taken in steps of 0.5 standard 
deviations in the range from −2.5 to +2.5 standard deviations about the sample mean. Tötterman 
(2010) suggests that the additional parameter should increase the accuracy for Box-Cox, compared 
with GEV and GP. 

Bali & Theodossiou (2008) evaluate the performance of three extreme value distributions including 
the GP, GEV and Box-Cox. The empirical results show that the asymptotic distribution of the 
maximal and minimal returns fits the Box-Cox-GEV distribution in this case. A likelihood ratio test 
between the GEV and Box-Cox results in a rejection of the former (Bali & Theodossiou, 2008, 
Caprani & OBrien, 2009). 

 

2.4 Block Maximum – Normal Distribution 
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Block maximum data is often fitted with extreme value distributions as each data point represents the 
maximum of a number of parent values. However, block maximum data is also sometimes fitted to a 
Normal distribution. Nowak (1999) uses a form of Normal (Gaussian) probability paper, i.e., he fits 
the data to a Normal distribution and extrapolates to find the characteristic maximum. In an earlier 
study, Nowak (1993) uses 2.4 hours as the block size and fits the maximum-per-block data to a 
Normal distribution. This distribution is then raised to an appropriate power to obtain the 75-year 
maximum LE distribution.  

To calibrate the traffic load model for the AASHTO load and resistance factor design (LRFD) 
approach, Nowak and others use Normal probability paper to extrapolate the maximum LE’s for time 
periods from 1 day to 75 years, based on a set of 9250 heavy vehicles representing about two weeks 
of heavy traffic measured on a highway in Ontario (Kulicki et al., 2007, Moses, 2001, Nowak, 1994, 
Nowak, 1995, Nowak, 1999, Nowak & Hong, 1991, Nowak et al., 1993, Sivakumar et al., 2011). The 
expected values of the lifetime maximum LE’s are found by fitting a straight line to the tails of the 
data on Normal probability paper.  

In the background studies for Eurocode 1, Flint & Jacob (1996) fit half-normal curves to the ends of 
the histograms of LE. They adopt a least-squares best fit method to estimate the distribution 
parameters. Multimodal (bimodal or trimodal) Gumbel and Normal distributions are also used.  

2.5 Rice Formula 

The Rice formula, introduced by Rice (1945) and described more recently by Leadbetter et al. (1983), 
can be used to find a parametric fit to statistical data. Ditlevsen (1994) suggests that a load effect 
created by the traffic on a long span bridge can be modelled as a Gaussian random process. Under that 
hypothesis, the mean rate 𝑣(𝑥;𝜎,𝑚,𝜎) of up-crossings for a threshold level, 𝑥 > 0 during a reference 
period  𝑇!"#, can be expressed by the Rice formula:  

𝑣(𝑥) =
σ′
2𝜋𝜎

𝑒𝑥𝑝 −
𝑥 −𝑚 !

2𝜎!
 Equation 5 

 

where 𝑚 is the mean value, 𝜎 is the standard deviation and 𝜎′ is the standard deviation of the 
stochastic process derivative 𝑥.  The CDF can be found from the definition of return period which is 
the mean period between two occurrences, or the value with an expectation of being crossed one time 
during the return period, R (Cremona, 2001): 

𝐹 𝑥 = 𝑒𝑥 𝑝 −𝑅𝑣!×𝑒𝑥 𝑝 −
1
2
𝑥 −𝑚
𝜎

 Equation 6 

 
where, v0 is 𝜎′/2πσ. 
 
Cremona (2001) suggests the Kolmogorov test (DeGroot, 1986) to select the optimal number of bins 
in the outcrossing rate histogram and the threshold. Getachew (2003) adopts Cremona's approach for 
the analysis of traffic LE’s on bridges induced by measured and Monte Carlo simulated vehicle data. 
O’Connor & OBrien (2005) compare the predicted extremes of simply supported moment for a range 
of span lengths by the Rice formula, Gumbel and Weibull Extreme Value distributions: they find 
about 10% difference between Rice and the others. Finally, Jacob (1991) uses Rice's formula to 
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predict characteristic LE’s for the cases of free and congested traffic in background studies for the 
development of the Eurocode. 

2.6  Fitting Distributions to Extreme Data & Bayesian Inference 

The concept of Bayesian Updating stems from Bayes’ Theorem and is a major pillar of modern 
statistics. Bayesian Updating involves the adoption of an initial (prior) probability distribution, 
perhaps based on past experience, and updating it on the basis of measured data to give a posterior 
distribution (Basu, 1964, Bhattacharya, 1967, Holla, 1966). 

Sinha & Sloan (1988) use Bayesian Inference to find the full 3-parameter Weibull distribution from 
measured data. They propose the use of Bayes Linear Estimate to approximate the posterior 
expectations and formulate the corresponding calculations for the Weibull parameters. Smith & 
Naylor (1987) work with the regular Weibull distribution with three parameters, comparing Maximum 
Likelihood with Bayesian estimators, using specially adapted versions of numerical quadrature to 
perform the posterior calculations. Although the priors they work with are arbitrary, they are chosen 
to reflect a range of potential scientific hypotheses. They report that the Bayesian inferential 
framework as a whole proves more satisfactory for their data analysis than the corresponding 
likelihood-based analysis. The issue of prior elicitation is pursued by Singpurewalla & Song (1988), 
who restrict attention to the ‘2-parameter’ Weibull model, i.e., a Weibull model with a constant shape 
parameter. The predictive density function (Aitchison & Dunsmore, 1980) is defined as: 

𝑓 𝑦 𝑥 = 𝑓 𝑦 𝜃 𝑓 𝜃 𝑥 𝑑𝜃 Equation 7 

 
where x represents historical data, y a future observation, θ the vector of parameters describing the 
distribution, 𝑓 𝑦 𝜃  the likelihood and 𝑓 𝜃 𝑥  the posterior distribution of 𝜃 given x. Thus, the 
predictive distribution averages the distribution across the uncertainty in 𝜃 as measured by the 
posterior distribution. Lingappaiah (1984) develops bounds for the predictive probabilities of extreme 
order statistics under a sequential sampling scheme, when sampling is carried out from either an 
exponential or Pareto population. From a practical viewpoint, the most important issues arising from 
the Bayesian literature are the elicitation and formulation of genuine prior information in extreme 
value problems, and the consequent impact such a specification has on subsequent inferences. Coles 
& Tawn (1996) consider a case study in which expert knowledge is sought and formulated into prior 
information as the basis for Bayesian analysis of extreme rainfall.  

2.7  Predictive Likelihood 

The relatively new theory of frequentist Predictive Likelihood can be used to estimate the variability 
of the predicted value, or predictand. Fisher (1959) is the first clear reference to the use of likelihood 
as a basis for prediction in a frequentist setting. A value of the predictand (z) is postulated and the 
maximized joint likelihood of the observed data (y) and the predictand is determined, based on a 
probability distribution with given parameters. The graph of the likelihoods thus obtained for a range 
of values of the predictand, yields a predictive distribution. Such a predictive likelihood is known as 
the profile predictive likelihood. It is found by maximising the likelihood of the data, Ly, and the 
predictand, Lz, jointly: 

𝐿! 𝑧 𝑦 = 𝑠𝑢𝑝𝐿!(𝜃; 𝑦)𝐿!(𝜃; 𝑧)
𝜃            

 Equation 8 
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This formulation states that the likelihood of the predictand, z, given the data, y, is proportional to the 
likelihood of both the data (Ly) and the predictand (Lz) for a maximized parameter vector, 𝜃 (Caprani 
& OBrien, 2010). 

Mathiasen (1979) appears to be the first to study Fisher’s Predictive Likelihood and notes some of its 
problems. Foremost in this work is the problem that it does not take into account the parameter 
variability for each of the maximizations of the joint likelihood function required (Bjornstad, 1990, 
Lindsey, 1996). Lejeune & Faulkenberry (1982) propose a similar predictive likelihood, but include a 
normalizing function. 

Predictive Likelihood is a general concept and in the literature many versions have been proposed. 
Cooley and Parke have a number of papers dealing with the prediction issue (Cooley & Parke, 1987, 
Cooley & Parke, 1990, Cooley et al., 1989). However, their method relies on the assumption that the 
parameters are normally distributed. Leonard (1982) suggests a similar approach while Davison & 
Hinkley (1997) use a different form of Predictive Likelihood.                             

Caprani & OBrien (2010) use the Predictive Likelihood method proposed by Butler (1986), based on 
that of Fisher (1959) and Mathiasen (1979) and also considered by Bjornstad (1990). Lindsey (1996) 
describes the reasoning behind its development. This Predictive Likelihood is the Fisherian approach, 
modified so that the variability of the parameter vector resulting from each maximisation is taken into 
account. 

3. Simple Extreme Value Problem 

To assess the safety of a bridge, a limited quantity of data is generally used to infer a probability of 
failure, a characteristic maximum or a statistical distribution of maximum load effects. Probability of 
failure is clearly the most definitive measure of bridge safety. However, it is strongly influenced by 
resistance which varies greatly from one example to the next. In order to retain the focus on load 
effect, the resistance distribution is here assumed to be a mirrored version of the exact LE distribution, 
shifted sufficiently to the right to give an annual probability of failure of 10-6.  

A simple example is used here to compare the alternative methods of extrapolation. A Normally 
distributed random variable (such as load effect in kNm) is first considered: 

 

Z ∼N(40, 5) Equation 9 
   

Three thousand values of Z are considered in a given block, say per day, with maximum: 

 

( )max 1,2, ,3000iX Z i= = K  Equation 10 
  

Typically, a finite number of days of data is available and extreme value distributions are inferred 
from a dataset of daily maximum values. Hence, a finite number of daily maxima (X values) may be 
used to infer, for example, annual maximum distributions. In all cases, the days are considered to be 
working days and a year is taken to consist of 250 such days.  
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The exact theoretical solution to this problem is readily calculated. The annual maximum can be 
expressed as: 

 

𝐹! 𝑧 = 𝐹! 𝑧 !"# = 𝐹! 𝑧 ! Equation 11 
 

where n is the number of values in a year, equal to (250×3000 =) 750 000. 

In another study performed by the authors the generalized extreme value distribution is used as the 
parent as an alternative to Normal. It is found to not make a significant difference to the results except 
for GEV, Box-Cox and Predictive Likelihood, which is not surprising. The normal distribution is 
chosen here for simplicity and generality. 

3.1 Methods of Inference 

Three alternative quantities of daily maximum data are considered: 200, 500 and 1000 working days. 
A wide range of statistical extrapolation methods are tested in each case to estimate the distribution 
for annual maximum LE:  

• Peaks Over Threshold (POT) data, fitted to the Generalized Pareto distribution; 
• Generalized Extreme Value (GEV) fit to tail of daily maximum data; 
• Box-Cox fit to tail of daily maximum data; 
• Normal distribution fit to tail of daily maximum data; 
• Fit of Upcrossing frequency data tail to Rice formula; 
• Bayesian fit to all daily maximum data; 
• Predictive Likelihood (PL) fit to all daily maximum data. 

In each case, the probability distribution of LE is inferred and the theorem of total probability is used 
with the exact resistance distribution to determine the probability of failure (defined as LE exceeding 
resistance).  

Figure 1 uses Gumbel probability paper to illustrate the first four methods of tail fitting to the CDF’s: 
POT, GEV, Box-Cox and Normal. For all four cases, a least squares fit is found for the top 30% of 
values from 1000 daily maximum LE’s. The exact distribution is shown for comparison. All 
distributions give good fits, with the Normal being more ‘bounded’ than the others in this example, 
i.e., tending towards a vertical asymptote at extremely low probabilities (Weibull-type behaviour). 
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Figure 1 – Best fit distributions using four tail-fitting methods inferred from 1000 days of data 

The Rice formula fit is illustrated in Figure 2 which gives the histogram of upcrossings above each 
threshold, for the same 1000 daily maxima. While Cremona (2001) has considered a variable quantity 
of data, the top 30% is used here to provide a direct comparison with the other tail fitting methods. 
Hence, the optimised parameters are found using a best fit to the normalised upcrossing histogram for 
the top 30% daily maximum data.  

 

Figure 2 – Rice Formula Fit to Tail for 1000 days of data 

Bayesian Updating is the sixth method considered. In this case, unlike the tail fitting methods, all 
1000 daily maximum LE’s are used. The method is therefore a Bayesian approach applied to block 
maximum data. The data is assumed to be GEV except that, in this case, a family of GEV 
distributions is considered. The GEV parameter values are initially assumed to be equally probable 
within specified ranges (uniform prior distributions). The daily maximum data is then used to update 
their probabilities.  
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The final method applied to this problem, Predictive Likelihood, is also based on the entire dataset of 
1000 block maximum values and an assumed GEV distribution. The method is based on the concept 
of calculating the joint likelihood of a range of possible values at a given level of probability 
(predictands), given the value of that predictand and the available daily maxima. Figure 3 illustrates a 
schematic of a statistical extrapolation on probability paper. Two postulated predictands from the 
same set of observed data, are seen to yield different distributions. The figure shows the joint fit to 
Predictand Point A, given the daily maximum data and the joint fit to Predictand Point B, given that 
same set of daily maxima. The likelihood of actually observing Point A is less than that of Point B, 
given the measurements available. In this way, the joint likelihoods of a wide range of possible 
predictands are calculated and used to infer a probability distribution for a given time period, such as 
a year. 

 

Figure 3 – Predictive Likelihood 

3.2 Inference of Annual Maximum Results from Daily Maximum Data  

For the first four tail fitting methods – POT, GEV, Box-Cox and Normal – the parameters of the daily 
maximum distributions are inferred from the best fits to the top 30% of the daily maximum data, i.e., 
the block size is one day. Allowing for public holidays and weekends, 250 days are assumed per year. 
The annual maximum distribution can then be found by raising the CDF for daily maximum to the 
power of 250.  

The Rice formula approach is also a tail fitting method but, in this case, the CDF for annual maximum 
is found directly from Equation 6. Bayesian Updating and Predictive Likelihood both infer the annual 
maximum distribution directly as described above. 

Table 1 gives a summary of the parameters and thresholds used in each method to infer the annual 
maximum distribution from daily maximum data.  

Table 1 – Summary of parameters for the methods used 

No. Method Parameters Threshold Converting daily 
maximum to annual 
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maximum distribution 
1 Peaks-over-Threshold 𝜉,𝜎 Top 30% of data Raised to the power of 250 
2 Generalized Extreme Value 𝜉,𝜎, 𝜇 Top 30% of data Raised to the power of 250 
3 Box-Cox 𝜉,𝜎, 𝜇, 𝜆 Top 30% of data Raised to the power of 250 
4 Normal 𝜎, 𝜇 Top 30% of data Raised to the power of 250 
5 Rice Formula 𝑣!,𝜎,𝑚 Top 30% of data Equation 6 
6 Bayesian Inference 𝜉,𝜎, 𝜇 100% of data Directly 
7 Predictive Likelihood 𝜉,𝜎, 𝜇 100% of data Directly 

 

Figure 4 illustrates the annual maximum CDF’s inferred from all 7 approaches, together with the 
corresponding exact distribution. For this example, most of the tail fitting methods and Predictive 
Likelihood are more bounded than or similar to the exact solution, while Bayesian Updating is less so. 
The horizontal line corresponds to a return period of 75 years and it can be seen that, for this 
particular example, all methods except Bayesian Updating, Box-Cox and GEV are slightly non-
conservative.  

 

 

Figure 4 – Inferred Annual Maximum CDF’s  

Characteristic values are calculated for a 75-year return period. The process is repeated for three 
different quantities of daily maximum data: 200, 500 and 1000 days. For each of the three quantities, 
20 samples are generated using the same distribution parameters (i.e., normal distribution) to 
investigate the variability associated with the results (i.e., each time, a new sample of normally 
distributed data is generated and the same calculation is performed to calculate the characteristic 
value). This process is repeated 20 times so that the variability in the results can be found. Figure 5 
shows the mean of the 20 runs in each case, ± one standard deviation.  
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Figure 5 – Inferred 75-year Characteristic Values (mean ± one standard deviation)  

Figure 5 illustrates that, not surprisingly, results are considerably less accurate when fewer days of 
data are available for inference. These results can be compared from different perspectives and points 
of view. For example, if the assessment criterion is the deviation of the mean characteristic value from 
the exact result, Predictive Likelihood and the Rice formula are the winners for 1000 days of data. 
The other methods are less accurate, at similar accuracy levels to each other. For small quantities of 
data, there is no clear winner but it is of note that Predictive Likelihood is less accurate than several of 
the other methods.  

Root mean square can also be used for comparison of methods and leads to similar conclusions. 
However, comparing methods using the standard deviation gives different results. Bayesian Updating 
shows the smallest standard deviation (results are highly repeatable) and Normal is also small. The 
exact characteristic value (i.e., 67.5 kN) falls within the mean ± standard deviation range for the POT, 
GEV, Box-Cox, Rice and Predictive Likelihood for all quantities of data (i.e., 200, 500 and 1000 
days). On the other hand, Bayesian and the Normal distribution, while giving good repeatability, do 
not include the exact value within the mean ± standard deviation range, i.e. they are less accurate than 
their low standard deviations might suggest.  

In this example, the benchmark cumulative distribution for daily maximum load effects is expected to 
be linear on Gumbel probability paper. Therefore, a deviation from the linear behaviour can cause an 
error in estimated characteristic value. The 20 randomly generated samples exhibit different types of 
tail behaviour – Gumbel, Fréchet and Weibull – which resulted in a wide variation around the correct 
linear (Gumbel) behaviour. This explains the high standard deviation of predicted characteristic 
values for the first three methods.  

The Normal distribution is more bounded than the Gumbel and Fréchet distributions, i.e., it tends to 
curve upwards in probability paper plots such as Figure 1. For data where the trend is to curve 

POT GEV Box-Cox Normal Rice Bayesian PL
60

62

64

66

68

70

72

74

76

78

80
Ch

ar
ac

te
ris

tic
 V

al
ue

Exact

1000 Days

500 Days

200 Days



15 

 

downwards (Fréchet-type), this results in an imperfect but consistent result. This is the reason for the 
small standard deviation in the results. Similarly, the Rice formula does not fit Fréchet-type data well, 
in comparison to the first three tail fitting methods (i.e., POT, Box-Cox and GEV).    

Sensitivity studies of the Predictive Likelihood results show that there is a significant influence of the 
datasets that exhibit Fréchet-type behaviour. In PL, the distribution is found that jointly maximizes the 
likelihood of observing the data and the predictand. If the fit is limited so that Fréchet tails are not 
permitted (admitting only Weibull or Gumbel tails), as could be argued from the physical bounds of 
the traffic loading phenomenon, then the fits were found to improve. 

In order to compare inferred probabilities of failure, the exact annual maximum probability density 
function is mirrored to give a resistance distribution that implies a failure probability of 10-6. This 
resistance distribution is then used with each of the inferred distributions to determine the apparent 
probability of LE exceeding resistance. The calculated probabilities are illustrated in Figure 6. 

 

Figure 6 – Mean ± One Standard Deviation of Inferred Probabilities of Failure, Pf plotted to a Normal scale (ϕ = 
cumulative distribution function for Normal distribution)  

This exercise is analogous to an extrapolation from 200 - 1000 days of data to 1 million years (i.e., 
annual probability of failure of 10-6). The probability of failure calculation uses much more 
information from the tail area of the annual maximum distribution than the characteristic value 
calculation. As expected the results for probability of failure illustrated in Figure 6 exhibit quite a lot 
of variability. However, the relative performance of the seven methods is similar to that illustrated in 
Figure 5. 
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The Y-axis scale in Figure 6 is inverse normal (corresponding to the well known safety index, β). On 
this scale, the mean error from 1000 days of data is less than about 0.5 from the exact value. Errors in 
individual results are considerably worse, being as high as 2.1 in the case of one outlier for GEV. As 
before, it can be seen that for inference using POT, GEV, Box-Cox, Rice and Predictive Likelihood, 
the exact value falls within the error bars, for all three different quantities of daily maximum data.  

4. Traffic Load Effect Problem 

As part of the European 7th Framework ARCHES project [1], extensive WIM measurements were 
collected at five European sites: in the Netherlands, Slovakia, the Czech Republic, Slovenia and 
Poland. The ARCHES site in Slovakia is used as the basis for the simulation model presented here. 
Measurements were collected at this site for 750 000 trucks over 19 months in 2005 and 2006. The 
traffic is bidirectional, with average daily truck traffic (ADTT) of 1100 in each direction. A detailed 
description of the methodology adopted is given by Enright & OBrien (2012), and is summarised 
here. For Monte Carlo simulation, it is necessary to use a set of statistical distributions based on 
observed data for each of the random variables being modelled. For gross vehicle weight and vehicle 
class (defined here simply by the number of axles), a semi-parametric approach is used as described 
by OBrien et al. (2010). This involves using a bivariate empirical frequency distribution in the regions 
where there are sufficient data points. Above a certain GVW threshold value, the tail of a bivariate 
Normal distribution is fitted to the observed frequencies which allows vehicles to be simulated that 
may be heavier than, and have more axles than, any measured vehicle. Results for lifetime maximum 
loading vary to some degree based on decisions made about extrapolation of GVW, and about axle 
configurations for these extremely heavy vehicles, and these decisions are, of necessity, based on 
relatively sparse observed data. 

Bridge load effects for the spans considered here (Table 2) are very sensitive to wheelbase and axle 
layout. Within each vehicle class, empirical distributions are used for the maximum axle spacing for 
each GVW range. Axle spacings other than the maximum are less critical and trimodal Normal 
distributions are used to select representative values. The proportion of the GVW carried by each 
individual axle is also simulated in this work using bimodal Normal distributions fitted to the 
observed data for each axle in each vehicle class. The correlation matrix is calculated for the 
proportions of the load carried by adjacent and non-adjacent axles for each vehicle class, and this 
matrix is used in the simulation using the technique described by Iman & Conover (1982).  

Traffic flows measured at the site are reproduced in the simulation by fitting Weibull distributions to 
the daily truck traffic volumes in each direction, and by using hourly flow variations based on the 
average weekday traffic patterns in each direction. A year’s traffic is assumed to consist of 250 
weekdays, with the very much lighter weekend and holiday traffic being ignored. This is similar to the 
approach used by Caprani et al. (2008) and Cooper (1995).  

For same-lane multi-truck bridge loading events, it is important to accurately model the gaps between 
trucks, and the method used here is based on that presented by OBrien & Caprani (2005). The 
observed gap distributions up to 4 seconds are modelled using quadratic curves for different flow 
rates, and a negative exponential distribution is used for larger gaps. 

The modelled traffic is bidirectional, with one lane in each direction, and independent streams of 
traffic are generated for each direction. In simulation, many millions of loading events are analysed, 
and for efficiency of computation, it is necessary to use a reasonably simple model for transverse load 
distribution on two-lane bridges. For bending moment the maximum LE is assumed to occur at the 
centre of the bridge, with equal contribution laterally from each lane. In the case of shear force at the 
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supports of a simply supported bridge, the maximum occurs when each truck is close to the support, 
and the lateral distribution is very much less than for mid-span bending moment. In this case a 
reduction factor of 0.45 is applied to the axle weights in the second lane. This factor is based on finite 
element analyses performed for different types of bridge (OBrien & Enright, 2012). The load effects 
and bridge lengths examined in the simulation runs are summarized in Table 2.  

 
Table 2 – Load effects and bridge lengths 

	   Load	  Effect	   Bridge	  Lengths	  (m)	  
LE1	   Mid-‐span	  bending	  moment,	  simply	  supported	  bridge	   15,	  35	  
LE2	   Shear	  force	  at	  start/end	  of	  a	  simply	  supported	  bridge	   15,	  35	  
LE3	   Central	  support	  hogging	  moment,	  2-‐span	  continuous	  

bridge	  
35	  

 

Two series of simulation runs are performed – one to represent possible measurements over 1000 
days, repeated 20 times, and another to represent the benchmark results, consisting of 5000 years of 
traffic. For the benchmark run, the outputs consist of annual maximum LE’s, and, as this is an much 
less of an extrapolation (for the characteristic values, it is an interpolation from 5000 years to 75), 
these can be used to calculate the characteristic values and annual maximum distributions to a high 
degree of accuracy.  

Sample results are plotted on Gumbel probability paper in Figure 7 for the 5000-year simulation run. 
Two load effects are shown – shear force (LE2) on a simply supported 15 m bridge, and hogging 
moment (LE3) over the central support of a two-span bridge of total length 35 m. Due to the 
randomness inherent in the process, there is some variability in the results, particularly in the upper 
tail region (top 1% of data approximately). Weibull fits to the upper 30% tail are used to smooth this 
variability (as shown in figure), and these are used to calculate the characteristic values. This long-run 
simulation process is considered to be highly accurate, subject to the assumptions inherent in the 
model and is used as the benchmark against which the accuracy of all other methods is measured. 

It should be noted that the results in this example are strongly site-specific. Several studies have 
shown that truck traffic is highly dependent on the site characteristics, including a study of Wisconsin 
WIM data (Zhao & Tabatabai 2012), a study on WIM data from Idaho, Michigan and Ohio 
(Sivakumar et al. 2007) and in the research conducted by Pelphrey et al. (2008). Kim et al. (1997) also 
highlighted the site dependence of characteristic traffic load effects, even within a geographical 
region. 

 



18 

 

 
Figure 7 – Annual maximum LE’s from 5000 years of simulation 

4.1	  	  Results	  of	  Inference	  Based	  on	  Long-‐run	  Simulation	  Data	  	  

The assumed measurements, consisting of 1000 simulated daily maxima, are used as the basis for 
extrapolation to estimate the benchmark results calculated from the long-run simulation. For the five 
tail fitting methods, the distributions are fitted to the top 30% of data. For some load effects and 
spans, the distribution of the data is multi-modal (see Figure 8), i.e., there is a change in slope – 
around 400 kN in this case – implying data from a different parent distribution. In the case illustrated, 
there is a change around this point from (i) daily maxima arising from heavily loaded regular trucks to 
(ii) maxima arising from extremely heavy (and rarer) low-loader vehicles and cranes.  

 

600 800 1000 1200 1400 1600 1800 2000 2200 2400
-2

-1

0

1

2

3

4

5

6

7

8

X - Load Effect

-lo
g(

-lo
g(

Pr
ob

ab
ilit

y 
of

 N
on

-E
xc

ee
da

nc
e)

)

LE2 - 15 m (kN)

75 - Year value

LE3 - 35 m (kN.m)

300 350 400 450 500 550 600 650
-5

0

5

10

Load Effect (kN)

lo
g(

-lo
g(

Pr
ob

ab
ilit

y 
of

 N
on

-E
xc

ee
da

nc
e)

)



19 

 

Figure 8 – Daily Maximum LE2 - 15 m span. Data and Inferred Distribution 

The 75-year characteristic maximum LE’s are inferred from the assumed measurements. This process 
is carried out for the 5 load effects and repeated 20 times to determine the variability in results. The 
results are illustrated in Figure 9 which shows, in each case (i) the median value, (ii) the 25% to 75% 
range (boxed), (iii) the 0.7% to 99.3% range (mean ± 2.7 standard deviations for normally distributed 
data) (dashed lines) and (iv) individual outliers beyond that range.  

As for the first simple example, Figure 9 shows that the first three tail fitting methods are capable of 
covering the benchmark characteristic value within the boxed range, for all load effects except the 
hogging moment in a 2-span bridge (i.e., LE3). The influence line for this 3rd load effect has two 
peaks and is quite sensitive to the axle configuration of the vehicle. It is probably for this reason that 
the samples of 1000 daily maxima are highly variable, with different samples giving quite different 
results for the three tail fitting methods.  

The Bayesian approach gives different ranges of accuracy for different load effects. Several variations 
were tested in attempts to find a Bayesian approach that is consistently good. The GEV distribution 
within the Bayesian approach was fitted to the top 30% of data, as an alternative to fitting it to all the 
data. Different numbers of parameters of the GEV distribution were updated: two (σ and ξ) and three 
(µ, σ and ξ). Different prior distributions were assumed for these parameters – Normal and Uniform. 
For the latter, different ranges were tested for the parameter values. None of these variations produced 
consistently better results for the five LE’s and spans. The results shown are based on the use of all 
the data; updating just two parameters (σ and ξ) with a uniform prior distribution and a limit on the 
range of ξ to be non-positive.  

Predictive likelihood clearly performs poorly in comparison to the simpler example. This can be 
explained by the fact that data resulting from long-run simulations comes from a mixture distribution 
rather than a single distribution. The tail region in the data is a good fit to a single distribution but this 
is not necessarily true for the entire data. Consequently a method such as predictive likelihood which 
takes account of all data and tends to fit a single distribution to the data generated from multiple 
distributions, fails to provide good results relative to the benchmark.  

  
 

(a) Legend  
 

(b) LE1 – Mid-span Moment, 15 m Span 
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(c) LE2 – Support Shear, 15 m Span  

 
(d) LE1 – Mid-span Moment, 35 m Span 

  
(e) LE2 – Support Shear, 35 m Span (f) LE3 – Support Moment, 2×17.5 m Spans 

 

Figure 9 – Range of Inferred 75-year Characteristic Values from 1000 Days of Data 

Annual probabilities of failure are also inferred for the five combinations of load effect and span. As 
before, the probability of failure for the benchmark example is set at 10-6 in each case and the 
resistance distribution is taken to be a mirrored version of the benchmark LE distribution. It has to be 
noted that using the mirror image of the load effect distribution as the resistance distribution amplifies 
the influence of any errors in the fitted load distribution. The resulting error in probability of failure 
may be quite different that would be the case with an accurate resistance distribution. 

The results are illustrated in Figure 10. As for the simple example, the errors in the probabilities, even 
when plotted on a Normal scale, are much higher than for characteristic values. As before, when 
fitting to a Normal distribution, the benchmark result is sometimes outside the 25%-75% range, but 
not by a great deal.  
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(a) LE1- Mid-span Moment, 15 m Span 

  
(b) LE2 – Support Shear, 15 m Span  

 
(c) LE1 – Mid-span Moment, 35 m Span 

  
(d) LE2 – Support Shear, 35 m Span (e) LE3 – Support Moment, 2×17.5 m Spans 

 

Figure 10 – Probabilities of Failure Inferred from Sets of 1000 Daily Maximum LE’s 

5. Conclusions 
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This study provides a rational evaluation of the performance of several statistical approaches to the 
assessment of load effects, with various quantities of data. Seven methods of statistical inference are 
critically reviewed. Each method is also tested using two examples. The first example is derived from 
a Normal distribution and the exact solution is known. A total of 3000 normally distributed values 
(e.g., vehicle weights) are considered per day and the daily maxima are used to infer the characteristic 
maximum and the probability of failure in a year. In the second example, a sophisticated algorithm is 
used to generate a train of vehicles with weights and axle configurations consistent with measured 
Weigh-in-Motion data. Five different combinations of load effect and span are considered and, in 
each case, characteristic values and probabilities of failure are again calculated. In these cases, the 
exact solutions are not known but the simulation is run for 5000 years to obtain accurate benchmark 
references against which inferences based on 1000 days of data can be compared.  

Of the seven methods considered, five are tail-fitting approaches, i.e., a distribution is fitted to the tail 
of the data. Peaks-Over-Threshold (POT) is popular in some sectors but is not time-referenced and 
selecting the threshold is a subjective process. Fitting the tail of block-maximum data to a Generalized 
Extreme Value (GEV) is perhaps the most popular used for bridge traffic loading, with a typical block 
size of a day. Box-Cox could be considered to be a hybrid between POT and GEV. These three 
methods are generally good for inferring the characteristic values, both for the simple and the more 
complex examples. There is no theoretical justification for fitting block maximum data to the tail of a 
Normal distribution but it is sometimes done. It is found here to also give quite accurate results, with a 
small standard deviation. Finally, the Rice formula is an indirect approach as it is the upcrossing 
frequencies that are fitted to the formula, rather than the data itself. Nevertheless, it performs well in 
these tests, generally better than POT and GEV. 

Bayesian Updating is used here to fit the block maximum data to a family of GEV distributions. The 
parameters of the GEV are allowed to vary, their associated probabilities being updated as the data is 
considered. Finally, Predictive Likelihood is considered, a method where the likelihood of each 
inferred characteristic value is considered, given the available data. Neither of these methods give 
good results on a consistent basis. 

All seven methods are used to infer the annual probabilities of failure as well as the characteristic 
values. To avoid the need for any assumption on the distributions for resistance, the benchmark load 
effect distribution is mirrored and this mirrored version is used in the calculation of probability of 
failure. The inferred failure probabilities are considerably less accurate than the inferred characteristic 
values, perhaps not surprising given that such a small failure probability was being considered (10-6 in 
a year). As for characteristic values, the tail fitting methods are better than the others but none of the 
methods gives an accurate inference with 1000 days of data.  

As a general conclusion it may be stated that the predicted characteristic value and probability of 
failure are more influenced by the database sample being used than the method adopted. Increasing 
the number of data in the sample can result in higher accuracy of approximations but it is not able to 
completely eliminate the uncertainty associated with the extrapolation. This highlights the importance 
of long-run simulations as a means of reducing the errors associated with the extrapolation process.  

As traffic load effects result from a number of statistically dissimilar phenomena (different types of 
vehicle), the benchmark traffic problem exhibits mixture distribution behaviour. Bayesian and 
Predictive Likelihood, use all the data, not just that in the tail, in their predictions. Hence, these 
methods do not work well for the traffic problem, giving quite poor predictions for some load 
effects/spans. POT, GEV and Box-Cox are generally reasonably good and are consistent for most 
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spans and load effects. Surprisingly, Normal and the Rice formula are quite good, despite the lack of a 
scientific basis for the former in particular. This would appear to be because they constrain the 
solutions to Weibull-type (bounded) behaviour. Allowing Fréchet-type behaviour, as happens in POT, 
GEV and Box-Cox, is more consistent with some data samples but gives a greater number of 
inaccurate results. In conclusion, it would seem sensible to constrain distributions to prevent Fréchet-
type behaviour. This suggests that fitting to a Weibull distribution, a subset of GEV, should give good 
results and is scientifically more justifiable than Normal. 

LE3, representing internal support moment in 2-span beams, causes problems for all the methods. 
Unlike simpler load effects such as mid-span moment in a single span, large LE3 values result from 
two clusters of heavy axles, as can happen in a low loader vehicle. The load effect is highly sensitive 
to the spacing between the groups of axles and data tends to be quite variable, with no clear trend on 
probability paper. While all of the methods are less effective with this data, the same general 
conclusions can be made, i.e., Normal and Rice are quite good and Weibull would be expected to be 
good. 
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