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Abstract

This study compares the behaviour of an electrochemical enzyme biosensor with

a theoretical analysis based on a mathematical model and numerical simulation.

The biosensor is based on a bi-enzyme channelling configuration, employing the

enzymes glucose oxidase and horseradish peroxidase, with direct electron transfer

of horseradish peroxidase at a conducting polymer electrode. This was modelled

by a system of partial differential equations and boundary conditions representing

convective and diffusive transport of the substrates glucose and hydrogen perox-

ide, as well as reaction kinetics of the bienzyme electrode. The main parameter

investigated was the ratio of the two immobilised enzymes, with the aim of max-

imising the amperometric signal amplitude. Experimentally, it was found that the

optimum ratio of enzymes on the electrode was 1:1. A theoretical model consistent

with this outcome suggests that the kinetic rates of horseradish peroxidase were

greatly reduced in this configuration.

Keywords: Biosensor; horseradish peroxidase/glucose oxidase electrode; mathematical

and computational modelling; Michaelis-Menten kinetics;

2



1 Introduction

Mathematical modelling is a powerful technique for predicting the behaviour of com-

plex systems which are based on well-defined underlying principles, such as sensors and

biosensors. For example, an electrochemical enzyme biosensor may be represented by

electron transfer processes at the electrode interface, the reaction kinetics of the enzymes

and substrates involved, as well as convection and diffusion mechanisms employed for

the transport of substrates and products. Biosensor design (which incorporates mul-

tiple parameters and potential interactions) is an extremely complex process which is

traditionally carried out in an empirical fashion and often leads to less than optimal out-

put. Using mathematical modelling in parallel with experimental techniques can offer

clearer insights into critical design parameters and therefore the potential of significant

improvements in biosensor performance.

This study investigates a model biosensor system which consists of two enzymes im-

mobilised onto an electrode modified with the conducting polymer polyaniline/polyvinyl-

sulphonate (PANI/PVS). The first enzyme, glucose oxidase (GOX), acts as the source

of the substrate for the second enzyme, horseradish peroxidase (HRP), producing hy-

drogen peroxide from the oxidation of glucose to gluconolactone. Horseradish peroxi-

dase is in direct electronic communication with the electrode via the conducting poly-

mer thus bringing about the electrocatalytic reduction of hydrogen peroxide, which can

be measured amperometrically at moderate reducing potentials such as −100mV (vs.

Ag/AgCl). Cascade schemes, where an enzyme is catalytically linked to another enzyme,

can produce signal amplification and therefore increase the biosensor efficiency.

One important criterion for the performance of this bi-enzyme system is the ratio of

the two enzymes present on the electrode surface. HRP and GOX have very different
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kinetic characteristics which have been studied extensively. HRP has very fast reaction

kinetics and substrate turnover rates and so has been widely used as a reporter enzyme

in many assay systems although its substrate, hydrogen peroxide, is relatively unstable.

By comparison, GOX is significantly slower. However, it uses the highly useful substrate,

glucose, which is not inhibitory at high concentrations (mM) and also produces hydrogen

peroxide as a product. These substrates and products are produced at different rates

and are subjected to different diffusional processes. Obtaining the optimum performance

of the sensor response will, in one instance at least, depend on the correct ratio of these

two components.

Several simplifying assumptions are made about the system. Firstly, it is assumed

that the immobilisation mechanisms of the two enzymes are equally efficient on the

sensor surface under the conditions employed. Secondly, immobilisation of HRP and

GOX is assumed to produce a geometrically close-packed spherical monolayer which is

spatially homogeneous. Thirdly, it is assumed that the electron transfer process is 100%

efficient, since this parameter only affects the magnitude of the signals, and not their

relative responses.

This paper aims to investigate experimentally the optimum ratio of these two en-

zymes on the electrochemical biosensor. In addition, a mathematical model was set up

to represent the behaviour of the system. Numerical simulations of this model were used

to investigate a range of parameters and their effects on the biosensor response. Finally,

a discussion was given as to how the experimental response of the biosensor could be

interpreted within the suggested modelling paradigm.
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2 Experimental methods

2.1 Materials

Aniline was purchased from Aldrich (13, 293-4), vacuum distilled and stored frozen

under nitrogen. Glucose and polyvinylsulphonate (PVS, 27, 842-4) were purchased

from Aldrich. Horseradish peroxidase (HRP, 250U/mg) and glucose oxidase (GOX,

270 U/mg) were purchased from Biozyme Laboratories. 30% (v/v) hydrogen peroxide

solution was purchased from Merck. Silver/silver chloride (Ag/AgCl) electrodes were

purchased from Bioanalytical Systems Ltd (Cheshire, UK). The platinum mesh (29,

809-3) was purchased from Aldrich.

2.2 Buffers

All electrochemical measurements were carried out in phosphate buffered saline (PBS),

(0.1M phosphate, 0.137M NaCl and 2.7mM KCl), ph 6.8. All biochemicals were prepared

in PBS.

2.3 Instrumentation

Screen-printed carbon-paste electrodes (7 mm2) were produced using an automated DEK

248 machine (Weymouth, UK). Electrode modification and protein immobilisation were

performed on a CH1000 electrochemical analyser with CH1000 software, using either

cyclic voltammetry or time-based amperometric modes. An Ag/AgCl pseudo reference

electrode and a platinum mesh auxiliary electrode were used for bulk electrochemical

experiments. Electrochemical flow cells were used according to [5]. These were composed

of polycarbonate and designed to house the screen printed electrodes. The flow cell

incorporated internal Ag/AgCl reference and platinum wire auxiliary electrodes. The

5



cell volume was 26µl. A peristaltic pump (Gilson Miniplus 3) was used to perform

flow-injection analysis at the set flow rate of 400µl/min.

2.4 Screen printed electrode modification with PANI/PVS

Electrodes were placed in 10ml of 0.2M H2SO4, prior to the polymerisation of aniline.

A platinum mesh auxiliary and a silver/silver chloride reference electrode were used.

Electrodes were cleaned and activated using cyclic voltammetry between −1200 and

1500mV versus Ag/AgCl electrode at scan rate of 100mV/s, sensitivity of 10−3A over

one cycle. A mixture of 7.8ml 1M HCl, 186µl aniline and 2ml PVS was degassed under

nitrogen for 10 min. Aniline was polymerised on the surface of the working electrode

using 20 voltammetric cycles between −500 and 1100mV versus Ag/AgCl electrode at

100mV/s, and sensitivity of 10−4A.

2.5 Immobilisation of enzyme

Following polymerisation of aniline, the electrode was transferred to a 2ml batch cell.

The surface of the polymer was reduced in 2ml of PBS (degassed for 10 min under

nitrogen or argon) at −500mV vs Ag/AgCl, sample interval of 500ms, over 600s at a

sensitivity of 1 times 10−4 A/V. Mixtures of HRP and GOX at different molar ratios were

prepared in PBS prior to use. Very quickly after reduction was complete, PBS buffer

was removed from the cell and replaced with the protein solution, not under stirring or

degassing. Oxidation was then performed immediately at +700mV vs Ag/AgCl. The

protein solution was carefully recovered from the cell and restored for later use.

6



3 Experimental results

Experiments were carried out with the aim to build a bienzyme-based biosensor for

glucose analysis. Horseradish peroxidase (HRP) and glucose oxidase (GOX) were im-

mobilised together in one single step on a polyaniline/polyvinylsulphonate (PANI/PVS)

modified screen-printed carbon paste electrode. Different solutions containing the two

enzymes were prepared at the ratio HRP/GOX from 1:7 to 7:1, maintaining a total

concentration of 0.8 mg/ml, and used to immobilise the enzymes on the electrode. The

immobilisation was performed by immersing the electrode into the enzymes solution

and applying a static potential of 0.7 V for 25 min. Due to the ability of polyaniline to

bind biomolecules, the two enzymes resulted electrostatically adsorbed on the electrode

surface and because of the nature of this immobilisation, it can be assumed that the

distribution of the enzyme molecules over the surface was equal in ratio to that of the

solution used. After the immobilisation, the electrode was inserted in a flow-cell and

using a peristaltic pump, an amperometric flow-injection analysis was carried out. A

Figure 1: Amperometric responses of a HRP/GOX (mass ratio 2:6) bienzyme electrode

to a range of glucose concentrations between 0.5 - 20 mM at −0.1V vs Ag/AgCl.
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PBS buffer solution (pH 6.8) was firstly passed over the electrode surface until a steady

current signal was recorded at constant potential of −0.1V. Glucose standard solutions

at concentrations between 0.5 and 20 mM were then passed over the electrode and the

signals recorded. Figure 1 shows a typical amperogram recorded after passing the glu-

cose solutions. The sensitivities of the electrodes were compared using the slope of the

Figure 2: Glucose calibration curves for the bienzyme electrode yielding the highest and

lowest sensitivities. The curve with the highest slope was achieved using the molar ratio

HRP/GOX of 1:1 and the curve with the lowest slope was achieved using the molar

ratio HRP/GOX of 26:1 (−0.1V vs Ag/AgCl).

glucose calibration curves. The mass ratios HRP/GOX in the solutions used for the

immobilisation can be more conveniently expressed as molar ratios in order to visualise

approximately the relative molecular distribution on the electrode surface of the two

enzymes. Figure 2 shows the calibration curves achieved with the best electrode con-

figuration (HRP 0.2, GOX 0.6 mg/ml, which is a molar ratio HRP/GOX of 1:1) and

with the worst (HRP 0.7, GOX 0.1 mg/ml, which is a molar ratio HRP/GOX of 26:1).
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Figure 3: Comparison of HRP/GOX ratio and sensitivity to glucose. The electrode pre-

pared immobilising HRP and GOX at the molar ratio of 1:1 (HRP 0.2, GOX 0.6 mg/ml)

yielded the highest catalytic signals and the highest sensitivity (−0.1V vs Ag/AgCl).

The glucose concentration used in this experiment was 20mM.

Figure 3 shows a comparison between all the sensitivities of the electrodes with the dif-

ferent molar ratios HRP/GOX. It can be clearly seen that the electrode prepared with

HRP/GOX at a molar ratio of 1:1 yielded the highest sensitivity.

The GOX adopted in the experiment has an activity of 270 U/mg protein, and

HRP 250 U/mg protein. Expressing the two activities in U/mol protein, it is 1.7 for

GOX and 5.7 for HRP. Thus, HRP is approximately 3 times more active than GOX.

Considering the difference in activity between the two enzymes, a platform with GOX

in excess with respect to HRP was expected to be the most efficient. The fact that the

platform with HRP and GOX present at molar ratio of 1:1 produced the highest signals,

suggests that other phenomena occur and contribute to generate the response. Diffusion

of the reactants in solution over the electrode surface to reach the enzymes is certainly

an important factor to be considered. Also, the activity of HRP may be reduced as
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a consequence of its immobilisation on the electrode surface and its reliance on direct

electron transfer. The numerical simulations presented in the following section seem to

agree strongly with this latter hypothesis.

4 Mathematical model formulation

The mathematical model is based on the existence of a convection layer, where the

glucose concentration is maintained constant, and a diffusion layer. The two enzymes

form a monolayer on the electrode so all reactions can be assumed to take place at the

lower boundary of the diffusion domain. For computational simplicity, the flow effects

are not explicitly modeled and the existence of the convective zone is only reflected in

the boundary conditions imposed at the top of the diffusion layer. The equations are

therefore one-dimensional, where the spatial variable x measures the distance from the

electrode. (See Figure 4.)

Diffusion layer

Convection layer

x

Glucose

x=L

x=0 Bienzyme electrode

Figure 4: Experimental set-up

A cascade reaction takes place at the electrode. Glucose oxidase catalyses the oxi-

dation reaction of glucose to gluconic acid, with production of H2O2. HRP is oxidised

by hydrogen peroxide and then subsequently reduced by electrons provided by the elec-
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trode, as shown in the following abbreviated reaction. (See, for example, [4], [3].)

β-D-glucose + O2 + H2O
glucose
−→

oxidase
gluconic acid + H2O2 (1)

H2O2 + HRP −→ Compound + H2O (2)

Compound + 2e− + H+ −→ HRP + H2O (3)

The two reactions are modeled by standard Michaelis-Menten equations. This simple

scheme has been used extensively for modelling glucose-glucose oxidase kinetics (see, for

example, [2]) and it was also shown to be appropriate for the case of immobilised HRP

in [7]. For the purpose of our comparative analysis, using similar kinetics for the two

consecutive reactions is a necessary simplifying assumption. The kinetic scheme is thus

given by the equations (4)-(5) below

E1 + S1

k1

⇄

k
−1

C1
k2
−→E1 + S2 (4)

E2 + S2

k3

⇄

k
−3

C2
k4

−→ E2 + P, (5)

where we have used the following notation

E1(t) = first enzyme (Glucose Oxidase) concentration,

E2(t) = second enzyme (Horseradish peroxidase) concentration

S1(x, t) = first substrate (Glucose)

S2(x, t) = second substrate (Hydrogen Peroxide)

C1(t) = first complex

C2(t) = second complex

P (x, t) = final product.

We now write down the differential equations governing the behaviour of the relevant

chemical species. The two substrates, glucose and hydrogen peroxide are free to diffuse
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throughout the domain at all times during the experiment. This is reflected by the

diffusion equations

∂S1

∂t
= D1

∂2S1

∂x2
, 0 ≤ x ≤ L, t ≥ 0 (6)

∂S2

∂t
= D2

∂2S2

∂x2
, 0 ≤ x ≤ L, t ≥ 0. (7)

At the diffusion layer boundary (x = L) the concentration of glucose is maintained

constant by the injected flow, while hydrogen peroxide is assumed to be constantly

flushed away. The resulting boundary conditions are given below,

S1(L, t) = S0, S2(L, t) = 0, t ≥ 0. (8)

At the electrode surface (x = 0) the boundary conditions express the fact that the

diffusive flux is equal to the reaction rate,

D1

∂S1

∂x
= k1E1S1 − k−1C1, (9)

D2

∂S2

∂x
= k3E2S2 − (k2 + k−3)C1. (10)

In addition, the following evolution equations describe the kinetics of the enzyme-

substrate reactions, according to the Michaelis–Menten scheme (4)-(5), taking place at

the electrode.

dE1

dt
= −k1E1S1 + (k−1 + k2)C1, (11)

dE2

dt
= −k3E2S2 + (k4 + k−3)C2, (12)

dC1

dt
= k1E1S1 − (k2 + k−1)C1, (13)

dC2

dt
= k3E2S2 − (k4 + k−3)C2, (14)

Finally, we specify the initial conditions

S1(x, 0) = S0(x), S2(x, 0) = 0, P (x, 0) = 0,

E1(0) = ξe, E2(0) = e, C1(0) = 0, C2(0) = 0. (15)
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For computational simplicity, the initial glucose profile is given by the following step

function

S0(x) =























S0, if x = L,

0, if x 6= L,

where S0 is the constant concentration present in the injection flow.

The purpose of this study is to determine the ratio of GOX to HRP on the electrode

(denoted in the initial conditions (15) by ξ) which maximizes the amplitude of the

measured signal, subject to the additional constraint that ξe + e = E0, where E0 is

the total amount of enzyme present on the electrode. The current measured at the

electrode is given by the electron transfer rate in (3) which, in the simplified scheme (5),

can be assumed proportional to the rate of formation of final product, P . This will be

calculated from the equation

dP

dt
= k4C2 (16)

once the evolution of C2(x, t) is determined by solving the system of equations (6)–(15).

5 Numerical simulations

The numerical integration of the partial differential equations and boundary conditions

(6)–(15) was implemented in C, using a uniform time step of 10−5 and 100 spatial grid

points. A standard implicit Crank-Nicolson scheme was employed in order to avoid in-

stability restrictions and backward and forward difference displacements were used for

the time derivatives. The graphics were produced using IDL (Interactive Data Lan-

guage). The table in Figure 5 summarizes the values of all physical constants used in

the numerical simulations. The purpose of these simulations was to find which of the

parameters used has the greatest influence on the optimal bienzyme ratio and hence to
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determine the suitability of this model as well as improve it for future applications.

Description Constant Value

Diffusion layer depth (m) L 2× 10−4

Diffusion constants (m2/s)

Glucose D1 6.7 × 10−10

Hydrogen peroxide D2 8.8 × 10−10

Reaction rate constants k1 102 − 5× 104

(m3/mol·s) k3 102 − 5× 104

(s−1) k−1 10−1

k−3 10−1

k2 10

k4 1− 200

Initial concentrations:

total enzyme (mol/m2) E0 10−5

glucose (mol/m3=mM) S0 0.5− 20

Figure 5: Typical values for constants

The experimental analysis involves the conversion of an enzyme concentration to a

mass of enzyme immobilised on the electrode surface. Previous work in [8] established

the experimental conditions necessary for the formation of a monolayer deposition of

enzyme on the conducting polymer-modified electrode and calculated the coverage in

this instance to be of the order of 10−5 mol/m2. Exact values of the kinetic constants

k±1, k2, k±3 and k4 were not rigourously derived for this study and they are generally
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Figure 6: Time evolution of product rate formation in (16)

hard to determine. The orders of magnitude for these parameters were chosen within

the accepted ranges for enzyme-substrate kinetics and moreover, it is the relative size

of the rate constants for the two reactions that matters most for this study.

The time evolution of dP

dt
(the rate of formation of final product) on the electrode,

which we took as a measure of the amperometric signal, is plotted in Figure 6. The

steady state (obtained after approximately 40 seconds, which is of the same order of

magnitude as the recorded experimental value of 100 seconds) is recorded as the current

value and used for future parameter iterations. The first set of numerical simulations

was conducted with a view to assessing the effect of varying the glucose concentration

on the current response and the optimal GOX:HRP ratio. The integration of equations

(6)–(15), as described above, was repeated for different values of the initial glucose

concentration S0 (100 values were chosen between 0.5mM and 20mM) and GOX:HRP

molar ratio on the electrode, ξ (we used 60 values between 0.1 and 6). The kinetic

constants were assumed to be the same for both reactions, as given by Table 5 (with

k1 = k3 = 102m3/mol·s). Figure 7 shows the dependence of the current response on
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Figure 7: Dependence of current on ξ (electrode GOX:HRP ratio) for different initial

glucose concentrations, s0. From bottom to top the curves correspond to s0 =1mM,

5mM, 10mM and 20mM. The position of the maximum current value is indicated on

each curve.

Figure 8: Dependence of optimal GOX:HRP ratio on glucose concentration
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the molar ratio of the immobilized enzymes, ξ, for different values of the initial glucose

concentration, S0. (The lower curve is obtained for S0 = 1mM and the upper one for

S0 = 20mM.) The optimal ratios (the values which yield the highest current) for various

glucose concentrations are then plotted in Figure 8. From these graphs we note that,

at low glucose concentrations, varying the ratio of the immobilized enzymes has a small

effect on the electrode sensitivity. As the glucose concentration increases, the optimal

ratio value becomes more pronounced and converges to 1.

The second set of numerical simulations has the purpose of establishing how the rel-

ative speed of the two reactions (oxidation of glucose by glucose oxidase and subsequent

reduction of hydrogen peroxide, in the presence of HRP) affects the current magnitude

and optimal bienzyme ratio. The results below were obtained for a glucose concentra-

tion value of s0 = 10mM (although the value s0 = 20mM produced similar output).

In what follows, the biosensor efficiency constant, ka, is chosen as an indicator of the

kinetic behaviour of a chemical reaction (see, for example, [6], [7]). This parameter is,

in general, defined as

ka =
kcat

KM

where KM is the Michaelis constant of the enzyme-substrate reaction and kcat is the

catalytic turnover number (which is equal to k2 in the case of the first reaction and k4 for

the second). The number ka is believed to be a good measure of catalytic efficiency when

S0 < KM that is, when the enzyme is not saturated with substrate. (See, for example,

[1].) The ultimate limit on the value of kcat/KM is set by the complex formation rate

constant (given here by the kinetic parameters k1 and k3). For the GOX and HRP

reactions in our case, the efficiency constants are

k1
a =

k2

K1
M

, k2
a =

k4

K2
M

,
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respectively, where

K1
M =

k2 + k−1

k1

and K2
M =

k4 + k−3

k2

.

The numerical simulations presented below study the effects of varying the kinetic

characteristics associated with each step of the two reactions. First, the ratio k2
a/k

1
a

was varied by selecting different values for k3 and k1 and keeping all the other kinetic

parameters constant. It was expected that, for high values of k3, the fast rate of the

first step of the second reaction would prevent the diffusion of hydrogen peroxide (the

product of the first reaction) away from the electrode, thus increasing the efficiency of the

biosensor. However, it was observed that as we increased k3 relative to k1, the current

value quickly becomes stationary, the optimal bienzyme ratio converges again to 1 and

there are no noticeable changes in the channelling efficiency. (See Figures 9 and 10.)

One possible explanation is that, given the choice of parameters in this experiment, the

rate-limiting steps for the two reactions (corresponding to the dissociation of complex

into final product) were equal and this was the essential factor characterising the total

relative speed.

Secondly, the ratio of the turnover numbers, k4/k2, was used as a measure of the

relative speed of the two consecutive reactions. According to Table 5, we chose k1 =

k3 = 103m3/mol· s, k2 = 102s−1, k−1 = k−3 = 10−1s−1 and varied k4 from 1 to 200s−1

(using a total of 50 values). This time, we observed a significant change in the optimal

ratio of immobilized enzyme as k4 increases. Figure 11 shows the current as a function

of the molar ratio GOX:HRP, for different values of k4/k2 ranging from 0.5 to 8. It is

interesting to note that the second curve, which corresponds to k4 = k2, indicates that

the highest sensitivity is obtained for a molar ratio GOX:HRP of 1. The dependence of

the optimal bienzyme ratio on k4/k2 is plotted in Figure 12. We note that the graph

18



Figure 9: Dependence of optimal GOX:HRP ratio on k3/k1 ratio.

Figure 10: Dependence of current on k3/k1 ratio for different values of ξ. The upper

curve is obtained for ξ = 1 (the optimal GOX:HRP ratio) while the lower curve has

ξ = 2.
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is almost linear for small values of k4/k2 and that, if k4/k2 is less (or greater) than

one then the optimal GOX:HRP ratio is also less (respectively, greater) than one, hence

the enzyme corresponding to the slower reaction should predominate in order to ensure

maximum biosensor efficiency.

To conclude, the numerical simulations presented here show that, when the two

consecutive reactions are assumed to be equally fast, the optimal ratio of immobilised

enzymes converges to 1 as the glucose concentration increases. Moreover, the results

obtained by fixing the glucose concentration and varying the kinetic rates of the GOX

and HRP reactions strongly suggest that an optimal ratio GOX:HRP of 1 is associated

with the two consecutive reactions proceeding at the same speed.

Figure 11: Dependence of current on ξ (electrode GOX:HRP ratio) for different k4/k2

values. The lower curve corresponds to k4/k2 = 0.5 and the upper curve k4/k2 = 8.
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Figure 12: Dependence of optimal GOX:HRP ratio on k4/k2 ratio.

6 Conclusions

Mathematical modelling has been used to investigate the processes occurring within

an electrochemical enzyme biosensor. The experimental results show that a system

employing equal molar ratios of the two enzymes yields the optimal sensor response,

which was contrary to what was expected, as the enzyme horseradish peroxidase has a

higher activity than glucose oxidase. By contrast, numerical simulations suggest that an

optimal ratio GOX:HRP of 1 is associated with the two enzyme reactions proceeding at

the same speed. Since the mathematical model on which the simulations are based uses

kinetic rate constants for the immobilised enzymes, while the specific activities quoted

in the experimental work refer to the enzymes in the PBS solution, it is reasonable to

conclude that these conditions might be brought about by a reduction in the actual

activity of immobilised HRP. This could be due to the efficiency of electron transfer to

the enzyme active site from the conducting polymer surface, which is affected by the
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random orientation of enzyme on the surface, possibly making much of the immobilised

material completely inactive.
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