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Abstract

Polylactic-co-glycolic acid (PLGA) 50:50 and Eudragit RS 100 nanoparticles entrapping
glipizide along with excipients were prepared using single emulsion solvent evaporation
method. The objective was to develop single oral dose glipizide nano particles for
reducing blood sugar level in diabetes induced experimental animals. Incorporation of
Polyethylene glycol (PEG) (0.5%), Hydroxypropyl methylcellulose (HPMC) (0.5%) and
Tween 20 (0.5%) in the organic phase during particle formulation improved release
profile of glipizide from the polymer particles. Entrapment efficiency of glipizide in all
the polymeric formulations was around ~70 %. Around 80 % of glipizide was released
from both PLGA and Eudragit RS 100 nanoparticles when 0.5% of PEG and Tween 20
were added during preparation. Incorporation of amphiphilic polymer during particle
formulation not only improved entrapment efficiency of glipizide but also resulted in
uniform stabilized nanoparticles having desired control release characteristics. Both
PLGA and Eudragit nanoparticles were biocompatible to SW 480 adenocarcinoma
human cell line at concentration ranges from 12.5 to 500 pg/ml. The efficacy of
glipizide loaded particle formulations were evaluated in female out breed Wistar rats.
Significant reduction of blood glucose level was observed (p < 0.05) for 24 hours from a

single oral dose using stabilized nanoparticles formulations.

Keywords: Nanoparticle, glipizide, excipients, PLGA, Eudragit RS 100, in vitro release.



1. Introduction

Polymer like PLGA and Eudragit nanoparticles have diverse biomedical application
particularly in the area of diagnosis, tissue engineering and as drug delivery agents'”. To
date, several polymeric micro and nanoparticles have been used for the delivery of drugs
and therapeutic proteins®'’. Two major problems hinder the biological application of
polymeric nanoparticles based delivery system. One is the optimal formulation with
appreciable load of the drug with desired sustained release profile''. The other is the
toxicity of nano particulate system'”>. The major toxicological concern with respect to

. . . 1315
nanomaterials particularly to be redox active

and some particles transport across
mammalian cell membranes and especially into mitochondria'®. It is thus imperative to
evaluate the toxicological parameters associated with nanoparticles before evaluating
their therapeutic potential for drug/biomolecules delivery.

Glipizide is an oral hypoglycemic agent, which is a commonly prescribed drug for the
treatment of type II diabetes mellitus'’. It is a weak acid (pK, = 5.9), practically
insoluble in water and acidic environment but highly permeable according to
biopharmaceutical classification system (BSC)'®. Oral absorption is uniform, rapid and
complete with a bioavailability of 100 % and the elimination half life is 2-4 hours'®.
Glipizide have a short biological half life (3.4 = 0.7 hour) requiring it to be administered
in 2-3 doses of 2.5 to 10 mg per day'’. As the glipizide have a short biological half life
(3.4 = 0.7 hour), requiring it to be administered in 2-3 doses per day. Several study
reported Polylactic-co-glycolic acid (PLGA) and Eudragit RS 100 polymers has the
sustained release properties. Due to sustained release properties of PLGA and Eudragit
RS 100 polymers, are used for controlling the release of glipizide from glipizide loaded

nanoparticles to maintain therapeutic effect for a longer duration of time after single

dose administration.



Though a number of multi-particulate systems have been proposed for per oral
controlled delivery of glipizide, most of them are polymeric drug delivery systems***'
and the major problem is the slow release of glipizide from the polymeric matrix due to
its hydrophobic nature. To the best of our knowledge the role of such excipients (PEG,
HPMC and Tween 20) on release of small molecular hydrophobic drugs like glipizide
from polymeric nanoparticles system has not addressed so far in the literature.

Due to the hydrophobic nature of glipizide, more hydrophilic excipients (PEG, HPMC
and Tween 20) were used during formulation. During particle preparation, co-
encapsulation of glipizide with PEG, HPMC and Tween 20 the hydrophilic group is
exposed towards the external aqueous phase which improves the hydrophilicity of the
polymeric nanoparticles and enhance the release of glipizide from the polymeric
nanoparticles. Additionally, PEG and HPMC are polymeric osmoagents which have the
ability to improve the release of drug osmotically*.

The objective of the present investigation was to improve the release of entrapped
glipizide from the PLGA 50:50 and Eudragit RS 100 nanoparticles by incorporation
of polymeric excipients. The in vitro cytotoxicity of these nanoparticles was
evaluated in SW 480 adenocarcinoma human cell line. Efficacy of polymeric
formulations was evaluated in vivo in terms of lowering of blood glucose level in
Wistar rats through oral administration.

2. Materials and methods

2.1 Materials

Poly Lactide-co-Glycolide (PLGA) [112-66-1] was purchased from Birmingham
Polymer Inc. USA; Eudragit RS 100 from Corel Pharma Chem, India; Glipizide [29094-

61-9], Polyethyleneglycol(PEG) [25322-68-3], Hydroxypropylmethyl Cellulose



(HPMC) [H7509], Tween 20 [9005-64-5], Polyvinyl alcohol (PVA) [P8136], Sucrose
[S1888], sodium bicarbonate [S5761], DMEM F-12 HAM, FBS, L-glutamine, Penicillin
and streptomycin from Sigma Chemicals Co. USA. The glucose assay kit was purchased
from Span Diagnostic Ltd, India [B0O1122]. Dichloromethane (HPLC grade) [15105],
Disodiun Hydrogen orthoPhosphate [27785], Sodiun di-hydrogen ortho Phosphate
[14105/01] from Qualigens and acetonitrile, Methanol (HPLC grade) were purchased
from Spectrochem (New Delhi, India).

2.2 Preparation of Nanoparticles

PLGA (50:50) and Eudragit RS 100 nanoparticles entrapping glipizide were prepared by
a solvent evaporation method®. This involves preparation of oil in water (O/W)
emulsion between the glipizide and polymer solution in dichloromethane (DCM) and an
external aqueous phase (EAP) containing PVA and sucrose. The emulsion was stirred
over night to evaporate residual DCM. Sonication at 40 % duty cycle for 3 minutes was
used to prepare the emulsion. After complete evaporation of excess DCM, the
particulate suspension was centrifuged at 15000 rpm for 20 minutes and washed thrice
with Milli Q water for complete removal of excess PVA. The samples were lyophilized
to produce a free flowing powder. Initially, the phase volume ratio and (sonication)
energy input were standardized to produce the desired size particle (~ 200 nm). To
improve the release profile of glipizide from the polymeric nanoparticles, three different
polymeric excipients were incorporated in the organic phase during preparation of the
nanoparticles. Type and concentration of excipients were varied during formulation
keeping constant phase volume ratio and energy input. Detailed compositions of

different formulations used for particle preparation are given in table 1.



2.3 Characterization of PLGA and Eudragit RS 100 nanoparticles

The size distributions of the glipizide loaded nanoparticles were analyzed using a
particle size analyzer (Master sizer, Malvern instruments, UK). For a typical experiment,
about 20 mg of nanoparticles was suspended in 5 ml of Mill Q water and analyzed with
an obscuration index (measurement of the amount of light lost due to the introduction of
the sample into the light path) ranging from 5 to 10 %. Zeta potential of the different
formulations was estimated by a Zeta sizer (Malvern Instruments, UK).

2.4 Entrapment efficiency of glipizide

Entrapment efficiency of glipizide loaded nanoparticles was estimated by UV/Vis
spectroscopy. A known amount of nanoparticles (10 mg, dry powder, prepared as above)
was dissolved in 1 ml of chloroform to extract the solubilized glipizide from the polymer
particles. The samples were centrifuged at 13,000 rpm for 15 minutes and the
supernatant was used for spectroscopic analysis. The Entrapment efficiency (EE) was

calculated using the formula

% EE = Practical load

X 100
Theoretical load

2.5 In vitro cytotoxicity study of PLGA and Eudragit RS 100 nanoparticles

2.5.1 Cell culture

SW480 cells (ATCC, CCL-228), a primary adenocarcinoma cell line of the human
colon, was used for cytotoxic assay. SW480 cells were cultured in Dublecco’s Modified
Eagle’s Medium Nutrient Mixture F-12 HAM with 2mM L-glutamine supplemented
with 10 % fetal bovine serum (FBS), 45 IU ml” penicillin and 45 TU ml"' streptomycin at

37°Cin 5 % CO;.



2.5.2 Cytotoxicity assay

The Alamar blue (AB) assay was carried out for quantitative measurement of cell
viability****. Cells were plated at a seeding density of 1 x 10° cells/ml for the 24
hour test, 6 x 10* cells/ml for the 48 hour test, 4 x 10* cells/ml for the 72 hour and
2 x 10* cells/ml for the 96 hours in 96 well plates. Note that, due to the nature of
the assay, and the need for lower cell numbers for the longer duration exposure
experiments (to allow sufficient room for the cells to proliferate. The plates were
kept in a CO, incubator for 24 hours for proper attachment of cells on the surface
of the 96 well plates. Before exposure of nanoparticles, the plates were washed
with 100 pl of phosphate buffer saline (PBS), where upon 100 pl of different
concentrations (12.5 - 500 pg/ml) of nanoparticles (PLGA 50:50 and Eudragit RS
100) were added to the respective well of each plate. After exposure for 24, 48, 72
and 96 hour, cell viability was assessed by the AB assay according to the
manufacture’s guidelines. Briefly, control media or test exposures were removed;
the cells were rinsed once with PBS and 100u1 of AB medium (5% v/v solution of
AB) prepared in fresh media (without FBS or supplements) were added to each
well. After 3h of incubation, AB fluorescence was measured at the excitation and
emission wavelengths of 540 nm and 595 nm respectively, in a microplate reader
(TECAN GENios, Grodig, Austria). In order to ensure that the presence of
nanoparticles did not influence the assay readout, the fluorescence intensity of AB
media in the absence and presence of nanoparticles was compared, and no
significant difference was observed, suggesting that the particles do not interact

with the AB. Three independent experiments were performed.



2.6 In vitro drug release study

In vitro release of glipizide nanoparticles were carried out at 37°C. Approximately 10
mg nanoparticles were suspended in 1 ml of phosphate buffer saline (pH 7.4) taken in a
1.6 ml microfuge tube and placed in an incubator shaker for the period of study (37°C,
200 rpm). Drug samples were collected at different time intervals after centrifugation at
13,000 rpm for 10 minutes and the amount of drug released in the supernatant was
estimated by UV/Visible spectroscopy (at 276 nm) method®®. The pellet was
reconstituted, resuspended in 1 ml of fresh phosphate buffer saline (pH 7.4) and kept in
a shaker for further sampling.

2.7 In vivo studies

Animals were maintained according to the guidelines established by the Institute of
Animal Ethics Committee (IAEC) of the National Institute of Immunology, New Delhi.
The efficacy of glipizide loaded nanoparticles of different formulation were evaluated in
female outbreed Wistar rats (n = 6), weighing between 200 g to 250 g. Glipizide loaded
PLGA, and Eudragit RS 100 nanoparticles were suspended in Milli Q water and
administered orally with the help of an oral cannula. Care was taken to ensure that the
particle suspension entered through the esophagus. Animals were divided into 6 groups
of six animals and were provided with standard diet and water ad [libitum. Group 1
served as control, Group II were given a suspension of glipizide loaded PLGA
nanoparticles (Formulation A1) orally at a dose level of 800 pg/Kg body weight, Group
IIT were given suspension of glipizide loaded PLGA nanoparticles (Formulation AS5)
orally at a dose level of 800 ng/Kg body weight, Group IV were given suspension of
glipizide loaded Eudragit RS 100 nanoparticles (Formulation B1) orally at a dose level
of 800 pg/Kg body weight. Group V were given suspension of glipizide loaded Eudragit

RS 100 nanoparticles (Formulation B5) orally at a dose level of 800 pg/Kg body weight.



Group VI were given suspension of standard glipizide orally at a dose level of 800
ng/Kg body weight. The blood samples were withdrawn from the retro-orbital plexus of
each rat pre-treatment and at 1, 2, 4, 6, 12, and 24 hours post-treatment. The serum was
separated and stored at —20 C for estimation of glucose level. Glucose levels in the
serum were estimated by the Glucose Oxidase Peroxidase method™.

2.8 Statistical analysis

Statistical analyses were carried out using one-way analyses of variance (ANOVA)
followed by Dunnett’s multiple comparison tests. Statistical significance was
accepted at P < 0.05 for all tests. Cytotoxicity was expressed as mean percentage

inhibition relative to the unexposed control = standard deviation (SD).

3. Results and Discussion

3.1 Characterization of glipizide loaded PLGA and Eudragit RS 100 Nanoparticles
PLGA and Eudragit RS 100 nanoparticles entrapping glipizide were prepared by the
solvent evaporation method. To prepare ~ 200 nm sized particles and to provide
emulsion stability, 1% polyvinyl alcohol (PVA) was added to the external aqueous
phase (EAP) during the particle formulation. Different concentrations of excipients
PEG, HPMC, Polysorbate 20 (Tween 20) were added during particle preparation to
improve the release of glipizide from the polymer particles. Detailed composition of the
different formulation was presented in Table-1. The polymeric particles were
characterized by measurement of hydrodynamic diameter and zeta potential of all the
nanoformulations and results are shown in Table-2.

PLGA nanoparticles are more stable in the gastrointestinal tract than other colloidal
carriers, such as liposomes, and the use of polymeric materials enable the modulation of

physicochemical characteristics (e.g. hydrophobicity, zeta potential), drug release



properties (e.g. delayed, prolonged, triggered), and biological behavior (e.g. targeting,
bioadhesion, improved cellular uptake) of the nanoparticles®’. From previous studies it
was concluded that by adjusting the phase volume ratio (Organic phase and External
aqueous phase) and energy input in terms of sonication/homogenization, different size
polymeric particles can be generated™*°. In this study the sonication time (40 % duty
cycle for 3 minute) was increased and the phase volume ratio adjusted (1:4) in order to
generate ~ 200 nm polymer particles as shown in Table-2. The encapsulation efficiency
of glipizide in both the polymeric particles was around 70%, shown in Table-2 and the
size distribution of PLGA and Eudragit RS 100 nanoparticles are shown in Figure la
and b. No significant difference in encapsulation of glipizide in different formulations
was observed. Amphiphilic stabilizers thus helped in improved entrapment of the drug
in nanoparticles along which monodisperse stable polymeric particles. Similar effect of
excipients on emulsion stability and entrapment efficiency of protein/antigen have been

26,28,29
reported™"™

. This suggested that these excipients mostly stabilize the aqueous/organic
emulsion droplet during primary emulsification step of particle formulation. As primary
emulsion stability controls the features of the polymer particles, these excipients helped
in stable particle formulation.

The zeta potential of plain PLGA particles was nearly -7 mV and upon addition of
different surfactants this value decreased to -15 mV which was an indication of an
improvement of the colloidal stability and a reduction in the tendency of the
nanoparticles to agglomerates. However, the zeta potential of plain Eudragit RS 100
nanoparticles was 23 mV resulting in an almost stable colloidal suspension. Upon

addition of surfactant during particle preparation, the zeta potential value slightly

decreased, indicating aggregation of nanoparticles.
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Zeta potential is the degree of repulsion between adjacent, similarly charged
particles. After addition of non-ionic surfactants to nanoparticle formulation the
change of zeta potential occur due to change in force of attraction/repulsion
between the particles. It has also been reported that zeta potential of PLGA and
PEG-PLGA nanoparticles is differ because of the PEG concentration reduces the
overall negative surface charge® and also hydrophobic interaction has important

role in the change of zeta potential with the nonionic surfactant®'.

3.2 Invitro release of glipizide from polymeric nanoparticles

Glipizide released from nanoparticles at different time intervals was analyzed
spectroscopically. The in vitro release of glipizide from PLGA particles was faster than
the Eudragit RS 100 nanoparticles without any burst release in the initial 30 minutes,
after which, sustained release of glipizide was observed (Figure 2 and 3). In the presence
of different excipients (PEG, HPMC and Tween 20), the release pattern of glipizide
from PLGA particles varied considerably. Due to the hydrophobic nature of glipizide,
more hydrophilic excipients were used during formulation. Co-encapsulation of
glipizide with PEG, HPMC or Tween 20 improved the release profile of encapsulated
glipizide in both the polymeric particles (PLGA and Eudragit RS 100). [In vitro release
data showed a significant difference (p < 0.05) between the plain and co-encapsulation
of glipizide with PEG (formulation A1 and A2), HPMC (formulation A3 and A4), and
Tween-20 (formulation A5 and A6), in the case of the PLGA 50:50 nanoparticles at all
the time points except 30 minutes. However, a significantly different ( p < 0.05) release
profile was observed in the case of Eudragit RS 100 nanoparticles for all the time points
except 24 hour for formulation B2, B3, B4, and B6 as compared to formulation B7

(glipizide loaded plain Eudragit RS 100 nanoparticles). The release pattern was
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optimized by addition of different concentrations of excipients during particle
preparation (Table-1), namely by incorporation of 0.5% of Tween 20 and PEG, ~ 80%
of glipizide was released within 24 hours. Among the two excipients, 0.5 % Tween 20
showed a better release profile than 0.5% PEG and this effect was observed in both the
polymer particles. At lower concentration of excipient shows better release than higher
concentration is due to higher concentration of PEG and Tween 20 accelerates
agglomeration of nanoparticles at longer duration of time period than lower
concentration, which affects the release pattern of glipizide.

All the three excipients (PEG, HPMC and TWEEN 20) are amphiphilic in nature so that
they are soluble both in the organic and aqueous phase. During particle preparation the
hydrophilic group is exposed towards the external aqueous phase and improves the
hydrophilicity of the polymeric nanoparticles which enhances the release of glipizide
from the polymeric nanoparticles. Additionally, PEG and HPMC are polymeric
osmoagents which have the ability to improve the release of drug osmotically**>. Due to
the absence of amphiphilic surfactant in the formulation of A7 and B7 enhanced release
was absence due to the solubility limit of the glipizide in buffer. The mechanism of
enhanced release due to amphiphilic excipients reflects solubility enhancement of
glipizide.

Tween 20 is relatively non-toxic’” and is used as an emulsifier during particle
preparation for improving the stability of emulsion and as a surfactant in a number of
domestic, scientific, and pharmacological applications. The release profile can also be
controlled by altering the pH of PLGA film by incorporation of basic amines
(ammonium acetate/magnesium acetate) which can change the rate of degradation of

polymer as results improve the release of drugs from the polymer particles”.
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Incorporation of stabilizers not only helped in improved entrapment of the drug in the
particles but also helped in continuous release of the drug from the particles.

3.3 Invitro cytotoxicity study of PLGA and Eudragit nanoparticles

Cytotoxicity of the PLGA and Eudragit RS 100 nanoparticles was studied in the SW480
cells, a primary adenocarcinoma cell line of colon. As these nanoparticles are proposed
for the oral delivery of anti-diabetic drugs like glipizide, the cell line was chosen to
evaluate the cytocompatibility to the intestinal model. The assay was carried out by
using alamar blue (AB), a water-soluble dye that has been previously used for
quantifying in vitro viability of various cells'*'>. When added to cell cultures, the
oxidized form of the AB enters the cytosol and is converted to the reduced form by
mitochondrial enzyme activity by accepting electrons from NADPH, FADH, FMNH,
and NADH as well as from the cytochromes. This redox reaction is accompanied by a
shift in colour of the culture medium from indigo blue to fluorescent pink, which can be
easily measured by colorimetric or fluorometric analysis'*. No significant cytotoxicity
was observed at a concentration range of 12.5 to 500 pg/ml (Figure 4 and 5). In recent
days, it was given most attention to the nanomaterials toxicity to human health, so it is
important to understand the adverse toxicology of these polymeric nanoparticles.
Particles less than 1000 nm was easily cross the cell membrane and follow different
kinetic within the cells according to the surface functional group. In our recent study of
PNIAPM nanoparticles with ~ 70nm particles, although internalized and localized in
lysosomes, did not show any toxicological response to HaCaT (keratinocyte cells) and
SW 480 (Primary adenocarcinoma cells)". Similarly, both PLGA and Eudragit RS 100
nanoparticles of ~ 200 nm size did not produce any adverse toxicological response to the
SW 480 cells at exposure concentration between 12.5 to 500 pg/ml, as result shows

excellent biocompatibility to SW 480 cells in vitro.
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3.4 In vivo study of glipizide loaded PLGA and Eudragit RS 100 nanoparticles

The efficacy of the glipizide loaded PLGA and Eudragit RS 100 nanoparticles was
evaluated in female outbreed Wistar rats at doses of 800 pg/Kg body weight.
Formulation A1, A5, B1 and B5 were selected for testing in vivo as the in vitro release
of glipizide from these formulations was found to be better than the other formulations.
It was observed that all the formulations (A1, A5, B1 and B5) reduced the blood glucose
level in a sustained manner up to 24 hours (figure 6). A significant (p < 0.05) reduction
in blood glucose level was observed in all the formulations as compared to control
group. Reduction of blood glucose level was observed significantly ( p < 0.05) in all the
formulations at 4h, 6h, 12h and 24h time points as compared to standard glipizide
(soluble form), as shown in Figure 6. An in vivo and in vitro correlation was established
with all the formulations. The sustained release profile of glipizide from the polymeric
nano-formulation was improved by the incorporation 0.5% HPMC, TWEEN 20 and
PEG, which helps in the controlled manner of absorption and receptor attachment for the
therapeutic effect of glipizide, as a result, improve and sustain the reduction of blood
glucose level for a longer duration of time period from a single dose. These results
indicated that by optimizing the release profile of glipizide using different surfactant, a
single daily oral dose of glipizide entrapped PLGA 50:50 and Eudragit RS 100
nanoparticles can maintain blood sugar level up to 24 hours. This nanoparticulate
glipizide formulation was much better than that observed with conventional glipizide

which maintains blood glucose level for 4 to 6 hours from a single moral dose.

4. Conclusions

High entrapment efficiency, biocompatibility of polymeric nanoparticles and continuous

release of the entrapped drug are the most essential prerequisite for the development of
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polymeric nanoformulations for oral delivery of glipizide. The present investigation
explored the possibility of controlled oral delivery of glipizide by combining the
advantages of the PLGA and Eudragit RS 100 polymer particulate system using
different excipients. Addition of PEG, HPMC and Tween 20 in the organic phase,
during the particle preparation improved the release of glipizide from PLGA and
Eudragit RS 100 nanoparticles. Cytotoxicity study in SW 480 cells indicates the
biocompatibility of both the nanoparticles. Addition of different excipients resulted in
sustained release of glipizide from both the nanoparticles up to 24 hours. Excipients
helped in emulsion stability, uniform sized particle formulation and high entrapment
efficiency of glipizide in nanoparticles.

The efficacy of the glipizide loaded PLGA and Eudragit RS 100 nanoparticles were
evaluated in wistar rats. A significant reduction of blood glucose as compared to control
group was observed for all formulations and the effect was sustained up to 24 hours.
This represents a significant improvement on standard glipizide (soluble form) which
exhibits a glucose reduction up to 4 hours. A single oral dose of such nanoparticles
entrapped glipizide could be helpful in controlling glucose level for more than 24 hours.
The study suggested that stability of emulsion during formulation, and incorporation of
PEG and Tween 20 as an enhancer has major role in controlled release of glipizide from
polymeric particles. Similar strategy can be used to stabilize for single dose based

polymeric formulation for oral delivery of hydrophobic drugs.
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Table Legands

Table 1. Composition of different PLGA/Eudragit RS 100 nanoparticle
formulations.

Table 2. Effect of different formulation on particle size, zeta potential and

encapsulation efficiency.

Figure Legands

Figure 1.a. Size distribution of PLGA 50:50 nanoparticles

b. Size distribution of Eudragit RS 100 nanoparticles

Figure 2. In vitro release of glipizide from PLGA nanoparticles in different time
points. Al, A2, A3, A4, AS, A6 and A7 are glipizide loaded PLGA nanoparticles
formulations with different type and concentration of PEG, HPMC and Tween 20.

Data shown in Mean £SD (n=6).

Figure 3. In vitro release of glipizide from Eudragit RS 100 nanoparticles in

different time points. B1, B2, B3, B4, B5, B6 and B7 are glipizide loaded Eudragit
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RS 100 nanoparticle formulations with different type and concentration of PEG,

HPMC and Tween 20. Data shown in Mean £SD (n=6).

Figure 4. Cytotoxicity results of PLGA 50:50 nanoparticles in SW 480 cells.

Data shown in Mean + SD (n=3).

Figure 5. Cytotoxicity results of Eudragit RS 100 nanoparticles in SW 480 cells.
96 hour. Data shown in Mean + SD (n=3).

Figure 6. In vivo study of glipizide loaded PLGA and Eudragit RS 100
nanoparticles in wistar rats. Gropup (GR) 1- Control group; Group 2- glipizide
loaded PLGA nanoparticles (Formulation Al); Group 3- glipizide loaded PLGA
nanoparticles (Formulation AS5); Group 4- glipizide loaded Eudragit RS 100
nanoparticles (Formulation B1); Group 5- glipizide loaded Eudragit RS 100
nanoparticles (Formulation B5); Group 6- standard glipizide; all the formulations
are given orally at a dose of 800 ng/Kg body weight. Data shown in Mean + SD

(n=6).
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Table 1.

No. of External Aquuous Organic Phase % Surfactant Used
formulations Phase

Al PVA 1% PLGA 50:50- 200mg PEG:0.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100mg

A2 PVA 1% PLGA 50:50- 200mg PEG:2.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100mg

A3 PVA 1% PLGA 50:50- 200mg HPMC: 0.5 %
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100mg

A4 PVA 1% PLGA 50:50- 200mg HPMC: 2.5 %
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100

AS PVA 1% PLGA 50:50- 200mg Tween 20 : 0.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100

A6 PVA 1% PLGA 50:50- 200mg Tween 20 : 2.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100mg

A7 PVA 1% PLGA 50:50- 200mg -
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide 100mg

BI PVA 1% Eudragit RS 100- 200mg PEG:0.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide : 100 mg

B2 PVA 1% Eudragit RS 100- 200mg PEG: 2.5 %
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide : 100 mg

B3 PVA 1% Eudragit RS 100- 200mg HPMC: 0.5 %
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide : 100 mg

B4 PVA 1% Eudragit RS 100- 200mg HPMC: 2.5 %
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide : 100 mg

BS PVA 1% Eudragit RS 100- 200mg | Tween 20 : 0.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide : 100 mg

B6 PVA 1% Eudragit RS 100- 200mg | Tween 20 : 2.5%
Sucrose 10% DCM: 4 ml
Milli-Q water Glipizide : 100 mg

B7 PVA 1% Eudragit RS 100- 200mg -

Sucrose 10%
Milli-Q water

DCM: 4 ml
Glipizide : 100 mg
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Table 2.

No. of Particle Size in Zeta Potential in % EE
Formulation nm mV

Al 248 + 35.5 -15.96 £2.9 65.72 +£3.9
A2 232+ 23.2 -12.43 £ 3.1 68.992 £2.8
A3 236+ 21.9 -542 +£3.5 70.312 + 4.1
A4 227 + 19.7 -11.63 £ 2.1 70.312+5.3
A5 221+ 214 -6.17 £2.3 72.296 £ 6.8
A6 239+ 35.5 -10.27+£1.2 70.312+ 3.9
A7 243 + 21.6 -6.3 £2.6 67.34 £6.4
BI 184+ 5.9 32.89 +£1.2 70.312+ 3.4
B2 198+ 7.8 13.57 £ 3.5 72.296 £ 3.8
B3 213+ 9.1 23.18 £ 1.5 70.312 £ 4.6
B4 219+ 8.2 21.23 £2.1 72.296 £2.3
B5 221+ 11.8 7.06 £3.5 72.3+2.7

B6 189+ 13.6 2299 £2.9 71.632 £ 1.9
B7 234+ 253 23.71 £3.2 68.992 £4.5
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Figures
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 6.
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