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Analysis and performance evaluation of an all-fiber

wide range interrogation system for a Bragg grating

sensor array

Ginu Rajan, Yuliya Semenova, Gerald Farrell

Applied Optoelectronics Centre, School of Electronic and Communications
Engineering, Dublin Institute of Technology, Dublin 8, Ireland

E-mail: ginu.rajan@dit.ie

Abstract. Analysis and performance evaluation of a macro-bend fiber based
interrogation system for a Bragg grating sensor array is presented. Due to the
characteristic properties of the macro-bend fiber filter such as polarization and
temperature dependence and the total noise associated with the ratiometric system, a
best fit ratio slope is required to interrogate multiple FBGs whose peak wavelengths
are spread over a wide wavelength range, rather than the optimal slope for individual
FBG. In this paper for investigation we have used an FBG array with 5 FBGs with
peak reflected wavelengths lying between 1525 nm and 1575 nm. The analysis of the
system is carried out and a fiber filter with a slope which covers a wavelength range
of 1525-1575 nm is selected which ensures a resolution and accuracy for all the FBG
sensors in the array as close as possible to that which would be achieved with a filter
with an optimal slope for each FBG. Performance evaluation of the system is carried
out and static strain, dynamic strain and temperature is measured with the developed
interrogation system.

PACS numbers: 42.79, 42.81

Keywords: macro-bend fiber filter, FBG sensor, static strain, dynamic strain,
temperature.
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1. Introduction

Fiber Bragg grating (FBG) sensors have generated much interest in the area of strain

and temperature sensing and are being used in many applications such as structural

monitoring and smart structures [1-5]. The critical aspect related to the practical use

of an FBG sensor is the necessity of performing accurate measurement of the small

wavelength shift associated with thermal and strain state changes. To facilitate the

broad use of this class of sensor compact, rugged, wide range and low cost interrogation

systems are required. In addition, improvements in the fabrication of FBGs using phase

mask techniques [6] have reduced the cost of grating fabrication, and the interrogation

unit, rather than the sensor accounts for a large proportion of the cost of a complete

sensing system. Many techniques have been developed to interrogate FBGs based on

different principles [7-11]. An interrogation system based on a macro-bending single-

mode fiber edge filter [12] offers the advantages of an all-fiber approach with low cost

together with large dynamic range and wide wavelength measurement range. Due to

the wide wavelength range such a system can interrogate multiple FBGs when used

together with a fast optical tunable filter.

Earlier investigations of the properties of a macro-bend fiber filter showed that a

macro-bend fiber exhibits polarization dependent loss (PDL) [13, 14] and temperature

dependent loss (TDL) [15,16] and both these phenomena are functions of wavelength

and also depend on the slope of the system which is determined by the bend radius and

number of bend turns of the fiber filter. Furthermore the signal-to-noise ratio (SNR)

of the source and the noise in the receiver limits the resolution of the system [17]. It

is proved that the noise induced ratio fluctuation is wavelength dependent and hence

the resolution of the system itself is wavelength dependent. Overall the accuracy and

resolution of the interrogation system will be different for different wavelengths and will

be dependent on the edge filter slope. To interrogate a single FBG the slope of the

system can be optimized so it has the highest resolution and accuracy. However for an

array of FBG sensors with peak wavelengths spread over a wide range it is not possible

to adopt a single slope that yields the best resolution and accuracy for all the FBGs.

In this paper we present an analysis that takes account of all the factors affecting the

resolution and accuracy of the system in order to select a fiber filter with a best fit slope

which gives the highest possible resolution and accuracy for an array of FBG sensors.

A brief description of the basic principles of FBG sensing is presented in section 2.

An interrogation system based on macro-bend fiber filter and its analysis and criteria

for selection of a suitable fiber filter for an FBG array are presented in section 3. A

performance evaluation of the system has been carried out and is presented in section

4.
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2. Principles of FBG sensing

The operation of an FBG sensor is based on the measurement of the peak wavelength

shift induced by the applied strain or change in temperature [18]. The light reflected

by periodic variations of the refractive index of the Bragg grating having a central

wavelength λG is given by λG = 2nΛ, where n is the effective refractive index of the

core and Λ is the periodicity of the refractive index modulation. The sensitivity of the

Bragg wavelength to temperature arises from the change in period associated with the

thermal expansion of the fiber, coupled with a change in the refractive index arising

from the thermo-optic effect. The strain sensitivity of the Bragg wavelength arises from

the change in period of the fiber grating coupled with a change in the refractive index

arising from the strain-optic effect.

For the measurement of a temperature change ∆T, the corresponding wavelength

shift is given by ∆λT = λG(α + ξ)∆T , where α is the coefficient of thermal expansion

of the fiber material and ξ is the fiber thermo optic coefficient.

For the measurement of applied longitudinal strain, the wavelength shift is given

by ∆λS = λG(1 − ρα)∆ε, where ρα is the photo elastic coefficient of the fiber given by

the formula ρα = n2

2
[ρ12 − υ(ρ11 − ρ12)], where ρ11 and ρ12 are the components of fiber

optic strain tensor and υ is the Poisson’s ratio. For a silica core fiber the value of (1

-ρα) is usually 0.78. Thus by measuring the wavelength shift changes in temperature or

strain can be determined.

3. An interrogation system based on a macro-bend fiber filter

The bend loss wavelength characteristic of a macro bend fiber allows it to be employed as

the core of an interrogation system for FBG sensors when used in a ratiometric scheme

[12]. A schematic of the experimental interrogation system used in this investigation

for an array of FBG sensors based on macro-bend fiber filter is shown in Fig. 1. A

super luminescent diode was used as a broadband source (BBS) to drive the Bragg

gratings. An optical isolator is used to block any reflected light from reaching the

source. An optical circulator is used to direct the reflected signal from the FBGs to

the demodulation system. Any edge filter based ratiometric demodulation system can

measure only one wavelength at a time. Therefore an optical tunable wavelength filter

is used to filter the reflected wavelengths, extracting a single wavelength at a time which

is then inputed into the demodulation system, whose band pass allows it to measure

the wavelength shift induced by strain or temperature variations.

Five FBGs with peak reflected wavelengths at 1530.40 nm, 1540.15 nm, 1550.2 nm,

1560.1 nm, 1571.4 nm are used in the experiment. The spectrum of the broadband

source used and the reflected spectrum from the undisturbed FBG sensor array are

shown in Fig. 2(a) and Fig. 2(b) respectively. The peak power of the reflected signals

depends on the broadband source’s intensity distribution, which has a peak intensity at

1560 nm, and the reflectivities of the FBGs. The reflectivity of the FBGs used in this
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Figure 1. Schematic of the interrogations system with multiple FBGs

experiment was approximately 90 %. At the receiver end two identical photodiodes are

used together with low noise preamplifiers, as the signals reflected from the FBGs are of

a very low power and will be further attenuated by the fiber filter. The data acquisition

card used to acquire data from the photodiodes was a NI6143 card which can give a

sampling rate up to 250 kS/s. The bandwidth of the preamplifier used was 2 kHz. The
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Figure 2. (a) Spectral distribution of the broadband source used (b) Reflected spectra
from the FBGs
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macro-bend fiber demodulation system consists of only passive devices and therefore it

does not affect the measurement speed. Thus dynamic strain can be measured up to

a frequency limit imposed by the speed of the post-detection electronics. The tunable

filter used in this experiment was a manual optical tunable filter whose scanning speed

is not considered important in this study as the primary aim of this study is focussed

on the optimization of the fiber filter for interrogating multiple FBGs.

In this experiment a macro-bend fiber filter based on SMF28 fiber is used as the

edge filter. Five filters are considered with a bend radius of 10.5 mm and with 5, 10, 15,

20 and 25 bend turns which gives an average slope of 0.07 dB/nm, 0.14 dB/nm, 0.21

dB/nm, 0.28dB/nm, 0.35 dB/nm respectively. The bend radius of 10.5 mm is chosen

because it provided a useful discrimination range over the wavelength range of interest

[12, 19]. The measured ratio response of the system with different filters is shown in Fig.

3, which is obtained at a temperature of 20 0C. The measurable wavelength range is set

by the signal-to-noise ratio of the source and the slope of the fiber filter [20]. From Fig.

3 it is clear that for filters with a higher number of turns, the slope is higher. However

a filter with large number of turns cannot guarantee a high resolution and accuracy as

it is determined by the parameters such as polarization, temperature and noise [13, 15,

17]. For a single FBG it is possible to optimize the edge filter slope in the vicinity of the

FBG peak wavelength to achieve the best possible resolution and accuracy. However for

an array of FBGs with peak wavelengths spread over a wide range it is not possible to

adopt a single slope that yields the best resolution and accuracy for all the FBGs. Thus

for a macro-bend fiber based demodulation system, it is important to determine a best

fit slope which is most suitable for a wide wavelength range and which provides the best

compromise for resolution and accuracy for all the FBGs in the array. Analysis of the
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system and selection of a suitable fiber filter considering all these factors are presented

in the section below.

4. Analysis of the system

Assuming the BBS has a smooth spectral profile, its spectral response can be modelled

as a Gaussian distribution of wavelengths with a spectral full-width at half-maximum

of ∆λ0 and a center wavelength of λ0 and can be expressed as [21],

B(λ) = Ipeakexp[−4 ln 2
(λ− λ0)

2

∆λ0
2 ], (1)

where λ is the wavelength in vacuum and Ipeak is the peak power which can be expressed

as,

Ipeak =
P0

∆λ0

[4ln2/π]1/2, (2)

where P0 is the total power injected into the system by the BBS.

To simplify the calculation we have assumed that the Bragg grating reflectivity

function is a Gaussian function with a center wavelength as the Bragg wavelength λb

and an FWHM of ∆λb and is expressed as,

Gλb
(λ) = R0exp[−4 ln 2

(λ− λb)
2

∆λb
2 ], (3)

where R0 is the maximum reflectivity that occurs at the Bragg wavelength.

It has to be noted that in practice the reflected signal from the FBG has a limited

SNR. The limited SNR of the signal fed to the demodulation system will affect the

linearity of the measured ratio spectrum and hence the wavelength range [20]. The

spectral width of the BBS is much larger than the spectral width of the FBG, hence we

can express the spectral distribution of the wavelengths reflected from a grating when

illuminated by the BBS with a limited SNR as,

Ib(λ) =

[
Bλb

Gλb
, |λ− λb| ≤ Ω

−S + Rand.Rs, |λ− λb| > Ω

]
, (4)

where B(λb) is given by equation 1, when λ = λb and S is the SNR of the reflected

signal from the FBG. To describe the random fluctuations in the noise floor of the

reflected signal, the term Rand.Rs is used, where Rand is a random number (between

+0.5 and -0.5) and Rs is a parameter which dictates the peak fluctuation in the SNR.

Ω is a parameter which is determined by the noise level and can be determined for any

reflected signal with a given SNR from the relationship,

Bλb
R0 exp(−4ln2

Ω2

∆λ2
b

)] = −S, (5)

Receiver noise also has an impact on the ratio of the system and it is necessary to

consider the noise effects while modelling the system. Taking account of noise, the total
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power reaching the photodiodes connected to the filter arm and the reference arm can

be represented as follows,

If (λ) =

∫
Is(λ)S1(λ)Tf (λ)dλ + Grande (6)

Ir(λ) =

∫
Is(λ)S2(λ)dλ + Grandr, (7)

where S1(λ) and S2(λ) represents the responses of the arms of the 3dB coupler.

Gaussian statistics are used to model the electrical noise. Grande and Grandr are

Gaussian random numbers used to represent the receiver noise with a mean value 0

and standard deviation equal to the rms noise of the receivers connected to the edge

filter and the reference arms respectively. The noise in the two receivers employed are

uncorrelated to each other. As the shot noise of the receiver connected to the edge filter

is a function of optical power and thus wavelength, so Grande varies as the wavelength

changes [17]. Since the power distribution of the BBS source also varies with wavelength,

Grande and Grandr changes for different peak reflected wavelengths.

Considering the BBS spectral distribution, noise in the receiver and the SNR of the

reflected Bragg wavelength spectrum, the ratio of the system at a wavelength, λ0, can

be expressed as,

R(λ0) = −10log10[
Ifλ0

Irλ0

] (8)

4.1. Effect of noise in the system

Using the above model, the ratio fluctuation in the system for all the 5 bend loss

filters and for all the peak reflected wavelengths from the FBG, caused by the noise

in the receivers and limited SNR of the FBG signal are calculated. The estimated

ratio fluctuation for all the FBG sensors is shown in Fig 4(a). From the figure we

can see that the ratio fluctuation is significantly higher, for example, at 1550 nm, the

ratio fluctuation is 0.03 dB for a filter with 10 fiber turns. Due to this high ratio

fluctuation, the system cannot repeatably resolve small strain or temperature changes

and hence averaging can be used to reduce the ratio fluctuation. The ratio fluctuation

of the system with an averaging of 256 is shown in Fig. 4(b) which is in the acceptable

range to resolve small strain and temperature changes. However, as a consequence of

averaging, the measurement speed of the system will be reduced and that will affect the

dynamic measurement capabilities of the system.

Due to the noise induced fluctuation in the ratio of the system, the resolution of

the system will be limited and will be a function of wavelength and filter discrimination.

The estimated resolution of the system, which is limited by the noise of the receiver

and SNR of the reflected Bragg signal, is shown in Fig. 5(a) with an averaging over 256

samples. From Fig 5(a) it can be seen that for FBGs with peak wavelengths around

1540.15 nm, 1550.2 nm and 1571.4 nm, a filter with 5 turns gives the best achievable

resolution among the 5 filters, while for 1530.4 nm and 1560.1 nm, a filter with 10 turns
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Figure 4. Fluctuation in ratio due to the noise at different FBG peak wavelengths
for systems with different slopes (a) without averaging (b) with 256 averaging

gives the highest resolution. Hence the selection of a suitable filter can be made based

on calculations of the deviation of the estimated resolution of each filter from the best

individual resolution for each FBG. The calculated percentage deviation in resolution

for systems with filters of 5 and 10 turns for all the FBG peak wavelengths from the
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Figure 5. (a) Estimated resolution for FBGs with different peak wavelengths with
different system slopes with an averaging of 256 (b) Percentage deviation from the best
resolution for different FBGs for system with filters of 5 and 10 turns
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System Bragg Strain Temperature

with different Wavelengths Resolution Resolution

filters nm µε 0C

1530.40 74.88 8.16

1540.15 15.93 1.73

5 turns 1550.20 15.13 1.65

1560.10 11.87 1.29

1571.40 15.69 1.71

1530.40 51.45 5.61

1540.15 22.02 2.40

10 turns 1550.20 18.11 1.97

1560.10 7.05 0.76

1570.40 21.53 2.34

Table 1. Estimated strain and temperature resolution of the system with filters of 5
and 10 fiber turns

individual best resolution is shown in Fig 5(b). From the figure it can be seen that for

a filter with 5 turns, FBG2, FBG3 and FBG5 can have the highest resolution, while

the other two have the largest deviation from the best achievable value. However for

a system with filter with 10 turns FBG1 and FBG4 can have much better resolutions.

Filters with 15, 20 and 25 bend turns are not considered for further analysis due to its

high ratio fluctuation when compared to filters of 5 and 10 bend turns.

Ultimately the measurement system is required not to just measure wavelength but

also to provide a measure of strain or temperature and for this reason it is necessary

to estimate the strain and temperature resolution of the interrogation system. The

strain and temperature sensitivity of the FBGs used were 1.2pm/µε and 11 pm/0C

respectively. The estimated strain and temperature resolution for all 5 FBGs obtained

with systems using filters with 5 and 10 turns are shown in Table 1. The average strain

and temperature resolution of the system with 5 turns is 26.7 µε and 2.9 0C respectively

while for a system with 10 turns the resolution is 24.03 µε and 2.61 0C respectively.

While these results suggest that the 10 turns filter is best, the effect of polarization

and temperature drift for the system and their impact on accuracy also needs to be

considered before making a final determination of which filter to use.

4.2. Effect of polarization and temperature dependency of the system

The polarization and temperature dependency of the macro-bend fiber are the key

parameters determining the accuracy of the interrogation system. The polarization

dependency of the macro-bend fiber originates from the difference in bend loss for the

TE mode and TM mode propagating along the fiber [13]. This occurs because of the

different boundary conditions between the cladding and polymer coating layers for the
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Figure 6. (a) Measured inaccuracy at the peak reflected wavelengths of the FBG due
the PDL of the system (b) Temperature induced wavelength variation of the system
with different filters at 1550 nm

two polarization states [13]. However the polarization dependency of the fiber filter can

be minimized by using a twisted configuration as we proposed in Ref [22]. Since the

PDL of the filter originates from the difference in bend loss for the TE and TE modes,

a 900 twist in the middle of the fiber will effectively equalize the losses for the input

TE and TM modes and the PDL of the whole section will be minimized. Commonly

all commercial 3 dB couplers exhibit a finite PDL. To minimize the PDL of the 3 dB

coupler, a polarization insensitive (PI) 3 dB coupler is used together with the twisted

fiber filter in the interrogation system [22, 23]. Even with the twisted filter configuration

and the PI 3 dB coupler, a small finite PDL induced ratio error remains in the system

due to the residual PDL of the fiber filter which originates due to the small mismatch

between the two bend fiber sections and also due to the finite small PDL (0.01 - 0.02

dB) of the PI 3 dB coupler. This residual PDL can result in wavelength inaccuracies.

The measured wavelength inaccuracies due to the PDL of the system with filters of 5,

10, 15 turns are shown in Fig. 6(a).

Ambient temperature variation is another factor that can create inaccuracies in the

measured wavelength of systems based on macro-bend fiber filters. Earlier investigations

on macro-bend fiber edge filters show that the buffer coating layer has a significant effect

on the temperature dependence of the filter [15, 16, 24]. Due to whispering gallery modes

induced oscillatory variations in the bend loss and hence in the ratio, and the different

ratio variations at different wavelengths, a correction in the calibration response required

to compensate for temperature variation is very complex for systems based on SMF28

fiber filter. For illustration the temperature induced wavelength variation of the system

with different fiber filters at 1550 nm is shown in Fig. 6(b) which is oscillatory in nature.
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System Bragg PDL induced Temperature induced

with different Wavelengths inaccuracy inaccuracy

filters nm µε 0C µε 0C

1530.40 ±53 ±5.78 ±5.58 ±0.60

1540.15 ±49.08 ±5.35 ±6.83 ±0.75

5 turns 1550.20 ±13 ±1.41 ±8.23 ±0.90

1560.10 ±26.16 ±2.85 ±20.91 ±1.19

1571.40 ±53.75 ±5.86 ± 13.25 ±1.45

1530.40 ±135.41 ±14.77 ±6.75 ±0.73

1540.15 ±129 ±14.07 ±6.57 ±0.72

10 turns 1550.20 ±63 ±6.87 ±9.34 ±1.01

1560.10 ± 63.66 ±6.94 ±9.25 ±1.01

1570.40 ±130.08 ±14.19 ±12.41 ±1.35

Table 2. Estimated accuracy of the system with filters of 5 and 10 turns due to the
polarization and temperature dependence of the system

Therefore for the interrogation system to achieve the highest accuracy, the temperature

of the fiber filter has to be maintained at a temperature equal to that used during

calibration.

The wavelength error due to the polarization and temperature dependence of the

system leads to measurement inaccuracies in strain and temperature. The inaccuracies

in strain and temperature measurements due to the PDL of the system and a

temperature variation ±1 0C from the calibration temperature of 20 0C for fiber filters

of 5 and 10 turns are estimated. Table 2 summarize the estimated accuracy of strain

and temperature measurements for all the 5 FBGs when used with the demodulation

system with filters of 5 and 10 turns. From table 1 and table 2 one can see that the

average strain and temperature resolution of a system with 10 turns is slightly higher

when compared to 5 turns, but the accuracy is very poor for a system with 10 turns

compared to 5 turns. The average strain inaccuracy induced by PDL and temperature

dependence for a system with 5 turns are ±38.23 µε and ±8.96µε respectively while

for a system with 10 turns the accuracies are ±104.23 µε and ±8.87 µε respectively.

Similarly the average accuracy in measured temperature induced by the polarization

and temperature dependence of the system with 5 fiber turns is ±4.25 0C and ±0.97 0C

respectively, while a system with 10 turns is ±11.37 0C and ±0.96 0Crespectively. Thus

from the analysis we conclude that while the average resolution is marginally higher for

the 10 turn filter, the accuracy of the system taking into account PDL is substantially

better for a filter with 5 turns and for this reason this filter is selected as the one

which can give the overall best results for the FBG array. An experimental performance

evaluation of the interrogation system with a fiber filter of 5 turns is presented in the

next section.
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5. Performance evaluation of the system

For evaluating the performance of the interrogation system, which is estimated in the

above section, static strain, dynamic strain and temperature are measured using the

FBG interrogation system. In our experiment, temperature variations are applied to

FBG2, static strain to FBG3 and dynamic strain to FBG4 whose reflected wavelengths

are 1540.15 nm, 1550.2 nm and 1560.1 nm respectively. The other 2 FBGs are left

undisturbed for the purpose of this experiment. The fiber filter used in the system has

5 fiber turns. For all the measurements averaging over 256 samples was applied. The

temperature of the fiber filter is monitored during the course of the experiment and the

recorded variation in the ambient temperature was ±2 0C around 20 0C.

5.1. Static and dynamic strain measurements

For applying static strain to FBG3, one end of the grating is fixed to a translation stage

and other end to a fixed point. Using a micrometer translation stage a strain up to 540 µε

is applied to the FBG using incremental steps of 90 µε. The applied strain is calculated

from the ratio of the elongation of the fiber containing the FBG, which is the same

as the micrometer translation value and from the length of the fiber between the fixed

points. This applied strain is measured with the macro-bend fiber based interrogation

system. For strain measurements the temperature of the FBG is kept constant using a

temperature controller, which has an accuracy of ± 0.1 0C. This temperature variation

can contribute an inaccuracy of ± 1 µε to the strain measurements. Fig. 7 shows the

comparison between the measured and applied static strain. Both are in close agreement,

demonstrating that the system measures strain accurately. To examine the resolution

of the system, step strains of 10 µε and 20 µε are applied to the FBG. The measured
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strain variations are shown in Fig. 8(a) and Fig. 8(b) respectively. From the figure it

can be seen that 20 µε is clearly detectable and hence the measured strain resolution

agrees with the estimated strain resolution of 15.13 µε for a system with a filter of 5

fiber turns.

Figure 9. Schematic of the setup to apply dynamic strain to the FBG.

To apply dynamic strain, as shown in Fig. 9, a piezo actuator (AE0505D18) is

used, where one surface of the piezo actuator is glued to a heavy fixed surface. The

other end of the piezo actuator is fixed to a T shaped element to which one end of

the fiber containing the FBG is attached. The other end of the fiber is attached to a

micrometer translation stage, which is used to adjust the static pre-strain. The driver

used to supply voltage to the piezo actuator was a MDT694A from Thorlabs. The

output current versus frequency characteristic of the driver also needs to be considered

for experimental measurements. For the driver used the maximum output current was

60 mA. The maximum sinusoidal frequency that can give the same displacement for a
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Figure 10. Strain amplitude versus frequency characteristics of the piezo driver for a
0 Hz strain of 25 µε.

current Iout can be calculated from the relation, f = Iout

2πVampC
, where Vamp is the voltage

applied to the piezo actuator and C is the capacitance of the piezo actuator. The strain

amplitude versus frequency characteristic for the driver is shown in Fig. 10, for a 0 Hz

(or DC) strain value of 25 µε.

Different amplitudes of dynamic strain at a frequency 25 Hz were applied to FBG4.

Fig. 11 shows the measured dynamic strain with an applied strain amplitude of 19 µε

(equivalent to 25 µε at 0 Hz) with a variation of ±7 µε. The dynamic strain resolution

0.0 0.2 0.4 0.6 0.8 1.0
-5

0

5

10

15

20

25

St
ra

in
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Figure 11. Measured dynamic strain for a strain amplitude of 19 µε and frequency
25 Hz
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measured was 5 µε/
√

Hz. Applying dynamic strain at higher frequencies was not

possible due to the limitations of the piezo driver to provide the required current to

drive the piezo actuator at higher frequencies. In summary, using a FBG sensor array

together with a fiber bend loss filter demodulation system, static and dynamic strain

measurement is clearly achievable.

5.2. Temperature measurements

To demonstrate the ability of the interrogation system to measure the temperature

variations, FBG2 with a peak reflected wavelength of 1540.15 nm was subjected to

temperature variations by attaching the sensor to a Peltier cooler which was driven by a

temperature controller. To verify the temperature resolution of the system, incremental

step changes of 2 0C have been applied from 20 0C to 30 0C. As the temperature

controller requires time to settle, the measurements were taken at 2 minute time

intervals. The measured change in temperature and a comparison with the temperature

measured by the temperature controller are shown in Fig. 12. The comparison shows

that a temperature resolution of 2 0C can be obtained with the interrogation system

which was predicted for a system with an FBG sensor of peak reflected wavelength

1540.15 nm and with a macro-bend fiber filter of 5 turns.
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Figure 12. A comparison of change in temperature measured using the FBG
interrogation system and the temperature controller

6. Conclusion

An analysis and performance evaluation of an all-fiber interrogation system for an FBG

sensor array is presented. Due to the characteristic properties of the macro-bend fiber

filter and the total noise associated with the system, it is shown that it is not possible
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to achieve the optimum strain and temperature resolution for all the FBGs in an array

using a single filter with a fixed slope. The polarization and temperature dependent

losses are different for different wavelengths and hence the accuracy of the measurands

will be different for different FBGs. Since noise associated with the system determines

the resolution of the system, which is a function of wavelength, the resolution of the

measurands is different for different FBG sensors. To demonstrate these effects, we

had considered a system with different filters, which give different ratio slopes. The

maximum achievable resolution and accuracy for FBGs of peak reflected wavelengths at

1530.40 nm, 1540.15 nm, 1550.2 nm, 1560.1 nm, 1571.4 nm were estimated. From the

estimation we have found that a system with a filter of 5 number of turns provides

the best fit slope with which the best results for the FBG array can be achieved.

Performance evaluation of the system with a macro-bend fiber filter has been carried

out and the experimental results agreed with the estimated values. Temperature, static

strain and dynamic strain were applied to 3 FBGs with peak wavelengths 1540.15 nm,

1550.2 nm and 1560.1 nm respectively. In the demonstration we achieved a static strain

resolution of 20 µε and dynamic strain resolution of 5 µε/
√

Hz. Thus in this paper

we have successfully demonstrated the consequences of the characteristic properties of

the system and how it affects the resolution and accuracy of the measurands. We have

also proved the importance of a best fit slope to achieve the best results for an array of

FBGs, when used together with a macro-bend fiber filter demodulation system.
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