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__________________________________________________________________________________________ 

 
 Abstract – An algorithm for Non-negative Tensor Factorisation 
is introduced which extends current matrix factorisation techniques 
to deal with tensors. The effectiveness of the algorithm is then 
demonstrated through tests on synthetic data. The algorithm is then 
employed as a means of performing sound source separation on two 
channel mixtures, and the separation capabilities of the algorithm 
demonstrated on a two channel mixture containing saxophone, 
strings and bass guitar. 

Keywords – Non-negative tensor factorisation, sound source 
separation. 
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I  MATRIX FACTORISATION 
TECHNIQUES 

In recent years, sparse matrix factorisation 
techniques have been used to attempt sound source 
separation, with a focus on single channel sound 
source separation. Various methods of sparse matrix 
factorisation have been proposed for this task, 
including Independent Subspace Analysis (ISA) [1], 
Non-Negative Sparse Coding (SC) [2] and Non-
negative Matrix Factorisation (NMF) [3]. These 
techniques typically take as input a magnitude or 
power spectrogram X of size n x m, and attempt to 
decompose X into matrix factors A and S, such that 

TASXX =≈ ˆ     (1) 

where X̂  is an approximation to X, A  is an n x k 
matrix, S is an m x k matrix, with r smaller than n or 
m, where k is the chosen rank of the decomposition 
and T denotes matrix transpose. This results in a 
compressed version of the original spectrogram. 
While a factorisation such as described in equation 1 
could be obtained by singular value decomposition 
(SVD), using SVD results in a factorisation where 
the energy of the factors is spread across the 
frequency range. This does not reflect the fact that 
most musical instruments are harmonic in nature and 
so can be represented efficiently as sparse factors. 
The use of sparseness as a factorisation criterion 
encourages the recovery of factors which reflect this 
situation.  When k is chosen correctly, this can result 

in a factorisation where the elements of A and S 
reveal the underlying structure of the input 
spectrogram.  
 
The principal difference between the above 
mentioned sparse matrix factorisation methods lies in 
how the decomposition is achieved. ISA makes use 
of SVD to obtain a reduced rank approximation to 
the original spectrogram, followed by Independent 
Component Analysis [4] to obtain a set of 
independent and sparse factors. SC attempts to 
balance the reconstruction of the spectrogram with 
the sparseness of the recovered factors, with 
additional constraints to ensure the non-negativity of 
the factorisation. NMF makes use of a generalised 
Kullback-Liebler divergence between the 
spectrogram and the reconstruction of the 
spectrogram, and uses multiplicative updates to 
ensure the non-negativity of the factorisation. The 
divergence used is: 

( ) XX
X
XXXX ˆ
ˆlogˆ

,

+−= ∑
ji

D  (2)    

where i and j index over the frequency bins and time 
frames of the spectrogram respectively. This cost 
function is equivalent to assuming a Poisson noise 
model for the input spectrogram. The addition of 
non-negativity to the factorisation is important in 
that, by its nature, a magnitude or power spectrogram 
contains only non-negative data, and so a non-
negative factorisation is more likely to model 
accurately the data presented. 



After factorisation, the columns of A contain 
frequency basis functions, while the rows of S 
contain a corresponding set of amplitude basis 
functions. In the case of pitched musical signals, it 
has been observed when r has been chosen properly, 
the basis functions correspond to notes or chords 
played by the instruments present [2], [3].  
 
As observed above, each basis function typically 
contains a note or chord played by a given 
instrument. This means that for instruments that play 
melodies some method of grouping the notes to their 
respective instruments is required for source 
separation to succeed. Grouping methods have been 
proposed by Casey [1] and Virtanen [2], but in many 
cases it is difficult to obtain a correct clustering for 
reasons described in [5].  
 
As a result, extended methods have been proposed to 
try and overcome this problem, such as shifted NMF 
[6]. In shifted NMF, instruments are represented by a 
single frequency basis function, and notes played by 
an instrument are represented as translations of the 
instrument frequency basis function. It should be 
noted that this technique requires the use of 
logarithmic frequency resolution.  Another technique 
is that of non-linear ISA which represents chord 
spectra as sums of note power spectra, and note 
spectra as sums of instrument dependent log-power 
spectra [7]. Unlike shifted NMF, non-linear ISA 
requires the use of trained instrument priors to 
separate the signals. 

II  STEREO SIGNAL MODEL 

As noted above, matrix factorisation techniques have 
been used for sound source separation of single 
channel mixtures. However, most musical recordings 
from the past 40 years are stereo, or two channel 
recordings. In most cases, these recordings have been 
created by recording each instrument individually. 
The recordings of the instruments are then summed 
and distributed (or panned) across the two channels. 
This results in a situation where for any individual 
instrument, the only difference between the 2 
channels lies in the intensity of the instrument. This 
fact has been used for sound source separation by 
Barry et al. in [8]. The mixing model can be 
mathematically described, after Barry et al., as 
follows: 
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where Sj are the J independent sources, and where 
Glj and Grj are the gains for each source for the left 
and right channels, and L  and R  are the resulting 
channel mixtures. 

As observed above, the only difference between the 
2 channels for a given instrument lies in the intensity 
of each source. Therefore, the same frequency basis 
function could be used to describe a note or chord 
from a given instrument in either channel, the only 
difference lying in the gain of the basis function in 
each channel. Therefore, it is proposed to learn a 
single set of frequency basis functions which can be 
used to describe both channels of the input signal, a 
corresponding set of amplitude basis functions, and a 
set of corresponding gains which decide how loud a 
given pair of frequency and amplitude basis 
functions are in each channel. These gains can then 
be used to group the basis functions to their sources.  
The signal model can then be written as: 
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where X is a 2 x n x m tensor containing the 

spectrograms of the two channels, X̂  is an 
approximation to X, G is a 2 x k matrix containing 
the gains of each factor in each channel, A is an n x k 
matrix containing the frequency basis functions, and 
S is an m x k matrix containing the amplitude basis 
functions, o  denotes outer product multiplication, 
and :k denotes the kth column of a given matrix. 

III  NON-NEGATIVE TENSOR 
FACTORISATION 

The signal model in equation 5 describes a tensor 
factorisation. Algorithms for tensor factorisation 
such as PARAFAC and multilinear SVD have been 
in existence for quite some time [9], [10]. However, 
these factorisation algorithms are analogous to SVD 
in the sense that the energy of the factors gets spread 
across the frequency range, and so are unlikely to 
recover meaningful factors.  Further, these 
decompositions do not reflect the non-negativity of 
the spectrograms to be factorised. Therefore, it is 
proposed to perform a non-negative tensor 
factorisation on X.  
 
For the remainder of the paper the following 
conventions are used. Tensors are denoted by upper 
case letters such as X, and contracted tensor product 
multiplication is defined as follows. If W is a tensor 
of size I1 x ··· x IN  x J1 x ··· x JM and Y  is a tensor of  
size I1 x ··· x IN  x K1 x ··· x KP then contracted tensor 
multiplication along the first N modes is given as: 
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where element indexing occurs within ( ) brackets, 
and where the modes to be multiplied are specified in 
the subscripts within the angle brackets. This is in 



line with the conventions adapted by Bader and 
Kolda in [11] 
 
The concept of non-negative tensor factorisation was 
introduced by Shashua and Hazan in [12], where 
they presented an algorithm based on a least squares 
based factorisation of the input tensor. Here we 
present an algorithm derived from extending the cost 
function in equation 2 to tensors. The cost function is 
now given as: 
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where l, i, and j index over channel, frequency bin 
and time frame respectively. Eliminating terms in X 
which are constant, and substituting for equation 5 
yields: 

( )

∑

∑ ∑

=

=

+









=

K

k
kkk

lji

K

k
kkkD

1
:::

,, 1
:::log ˆ

SAG

SAG

oo

ooX-XX
 (8) 

Taking the gradient with respect to G yields the 
following update equation: 

{ } { }[ ]
2:1,3:22:1,3:2

POPD −+= λGG  (9) 

where P is a tensor of size n x m x k and where 
( ) kkk ::,:,: SA o=P    (10) 

XXD ˆ/.=     (11) 
and where O is an all-ones tensor of size equal to X. 
Elementwise division is denoted by ./ .  Equation 9 
can be converted into a multiplicative update rule by 
setting λ equal to: 

{ }2:1,3:2
/. POG=λ    (12) 

The multiplicative update rule is then given by: 

{ } { }[ ]
2:1,3:22:1,3:2

/.*. POPDGG =  (13) 

where .* denotes elementwise multiplication. Update 
equations for A and S can be derived in a similar 
manner and are given by: 

[ ]{ } [ ]{ }[ ]
2:1,3,12:1,3,1

/.*. QOQDAA =  (14) 

where Q is a tensor of size 2 x m x k  and where 
( ) kkk ::,:,: SG o=Q    (15) 

{ } { }[ ]
2:1,2:12:1,2:1

/.*. RORDSS =  (16) 

where R is a tensor of size 2 x n x k and where 
( ) kkk ::,:,: AG o=R    (17) 

 
The use of multiplicative updates ensures that once 
G, A, and S are randomly initialised to positive 
values the factorisation will be non-negative. 
Although the convergence proofs used for NMF (see 
[13]) no longer apply, in practice it has been 
observed that the algorithm converges reliably. 
Though the derivation presented is for a 3-D tensor, 

it can be easily extended to deal with higher order 
tensors. Though it is proposed to use the algorithm 
for the purposes of sound source separation, the 
algorithm is potentially useful in other areas such as 
image analysis and chemometrics, and in the 
processing of multivariate data in general. 
 
The NTF algorithm was implemented in Matlab 
using the Matlab Tensor Classes developed by Bader 
and Kolda, which are available from [14]. To 
demonstrate the effectiveness of NTF algorithm, a 
tensor of size 2 x 264 x 100 was created from a set of 
factors with K = 2. Figure 1 shows the normalised 
factors used to create the tensor, while Figure 2 
shows the factors recovered by the NTF algorithm. 
G, A, and S were all randomly initialised to positive 
values. The algorithm converged after 100 iterations. 
It can be seen that the algorithm has successfully 
recovered the underlying factors used to generate the 
data. 

 
Figure 1: Factors used to create synthetic tensor. 

 
Figure 2: Factors recovered by the NTF algorithm. 

IV  SOUND SOURCE SEPARATION 
USING NTF 

Having demonstrated that the NTF algorithm 
performs as intended, there remains to show its 
effectiveness as a means of sound source separation. 
To enable automatic separation of the sources 
requires the addition of a number of additional steps, 



namely the clustering of the gain values obtained, 
and the creation of source spectrograms based on the 
results of the clustering. As the NTF algorithm works 
on magnitude or power spectrograms, a set of phase 
information must be generated to invert the 
spectrograms to time-domain waveforms. To this 
end, the original phase information of the 
spectrogram in which the source is dominant is used. 
This has proved to be the most effective method of 
obtaining phase information for inverting magnitude 
spectrograms of this nature [15].  
 
The algorithm proposed for automatically separating 
the sources is as follows: 

1. Obtain a spectrogram for each of the two 
input channels. 

2. Combine the two spectrograms into a tensor 
and perform NTF on the tensor. 

3. Determine log intensity ratio of the factors: 
( ) ( )[ ]:,2/.:,1log GG=H   (18) 

4. Cluster H into J clusters, where J is the 
number of sources. 

5. Estimate source spectrogram from: 
 ( ) ( )Taa :,:, SAS =   (19) 
 where a is a vector containing the indices of 

the factors associated with the jth source. 
6. Apply phase information from the 

spectrogram where the source is dominant 
to S. 

7. Invert the spectrogram to obtain the time 
domain waveform. 

8. Repeat steps 5-7 for each of the J sources. 
 

In this case, the clusters were created using a k-
Nearest Neighbours approach, though other 
approaches could also be used. To demonstrate the 
use of the algorithm for sound source separation, a 
two channel mixture containing strings, saxophone, 
and bass guitar was created. The strings had an 
intensity ratio of 2:1 between the two channels, the 
bass guitar, a ratio of 1:1 and the saxophone had a 
ratio of 1:2.  The number of factors to be recovered 
was set to 14, and the algorithm had again converged 
after 100 iterations. Figure 3 shows the two channel 
mixture input to the algorithm, while figure 4 shows 
the original waveforms for bass, saxophone and 
strings used to create the two channel mixture. 
Figure 5 shows the separated waveforms obtained 
from the separation algorithm. 
 
It can be seen that the sources have been separated 
reasonably well, with the main characteristics of the 
sources having been captured. On listening to the 
separated waveforms, traces of the strings can be 
heard in the bass guitar, but the bass predominates. 
Similarly traces of the bass guitar can be heard on 
both the separated saxophone and string waveforms, 
but again the audio separation is quite good, with the 
respective instruments predominating in all cases. It 
should be noted that the best separation in terms of 

audio quality occurred for the saxophone, followed 
by bass guitar, and then strings, which is in line with 
what is visible in figures 4 and 5. This demonstrates 
that the proposed algorithm can perform automatic 
sound source separation when the underlying 
assumptions of the algorithm have been met. 

 
Figure 3: Input two channel mixture of strings, bass guitar, 

and saxophone. 

 
Figure 4: Original waveforms for bass guitar, saxophone 

and strings respectively. 

 
Figure 5: Separated waveforms for bass guitar, saxophone 

and strings respectively. 

The principal problem with the algorithm as 
presently implemented is that the number of factors 
K has to be set by hand. At present, there is no 
method for automatically estimating the number of 



factors required. This is a problem for all 
factorisation algorithms at present.  
 
The algorithm presented works well when each 
factor recovered represents a single note of a given 
instrument. However, setting K too low can result in 
a factorisation where multiple notes from different 
instruments are approximated by a single factor, 
which in turn leads to incorrect separation. Setting K 
too high results in a situation where elements of 
notes are spread across several factors, and this can 
cause problems at the grouping stage. The best 
results are obtained when K is set approximately 
equal to the sum of the number of different notes 
played by all the instruments. A further problem is 
that clustering becomes more difficult as the number 
of sources increases. Nevertheless, the method 
presented does represent a new way of attempting 
sound source separation from two channel mixtures. 

V CONCLUSIONS 

An algorithm for performing Non-negative Tensor 
Factorisation was presented which extends present 
matrix factorisation techniques to deal with tensors. 
The effectiveness of the NTF algorithm was 
demonstrated using synthetic test data. The NTF 
algorithm was then incorporated into a sound source 
separation algorithm which was shown to be capable 
of separation mixtures of instruments from a two 
channel mixture. It is intended to improve the 
performance of the algorithm through the use of 
perceptual weighting, which has been shown to 
improve the performance of matrix factorisation 
techniques when used for sound source separation 
[16], and by investigating ways of automatically 
estimating the number of factors required. 
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